|
Ӧ�ø���ͳ�� 2006, 22(4) 358-362 DOI:
ISSN: 1001-4268 CN: 31-1256 |
|
|
|
|
����Ŀ¼ |
����Ŀ¼ |
������� |
������
[��ӡ��ҳ]
[�ر�] |
|
���� |
|
������ƫ���һ��ע�� |
|
|
������ |
|
|
��ۿƼ���ѧ��ѧϵ;�������ոԴ�ѧ��ѧϵ;�㽭��ѧ��ѧϵ |
|
|
ժҪ��
��$X_1,X_2,\cdots$Ϊһ�ж���ͬ�ֲ��������������\bd ��(1997)��û���κξ������½��� ��������ƫ���, �����Ͻ��֤���൱����\bd Ϊ��, ���ĸ�����һ������֤�� |
|
|
�ؼ�����
�������ֺ�
��ƫ��
|
|
|
A Note on the Self-Normalized Large Deviation |
|
|
SHAO Qiman |
|
|
Department of Mathematics, Hong Kong University of Science and Technology;Department of Mathematics, University of Oregon;Department of Mathematics, Zhejiang University, |
|
|
Abstract:
Let $X_1,X_2,\cdots$ be a sequence of i.i.d. random variables. Shao (1997) established a self-normalized large deviation without any moment assumption. However, the proof of the upper bound was quite complicated. In this note we give a much simpler proof. |
|
|
Keywords:
Self-normalized partial sums
large deviation
|
|
|
�ո����� 1900-01-01 ������ 1900-01-01 ����淢������ |
|
|
DOI: |
|
|
������Ŀ:
|
|
|
ͨѶ����: ������ |
|
|
�����: |
|
����Email: |
|
|
�ο����ף� |
|
������������� |
|
Copyright by Ӧ�ø���ͳ�� |