Ӧ�ø���ͳ�� 2009, 25(2) 201-214 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
Supporting info
Email Alert
Article by
Article by
�Ž���, ������
ժҪ�� ֱ��ͼ��һ����Ϊ�������ܶȹ��ƺ����ݷ�������. ��ֱ��ͼ���ۺ�����������, ����ѡ��ͱ߽���ȷ����Ϊ��Ҫ. Ȼ��, ���ѧ�߶�������������ѡ����Ȼ���þ���ķ���, �������ڴ����ͳ�������ȷ��ֱ��ͼ������ʱҲ��Ĭ�ϲ��ô��Եļ��㹫ʽ. ������Ҫ����ֱ��ͼ���ۺ�����ֱ��ͼ�����������о��ɹ�, ǿ����������������ֱ��ͼ��������.
�ؼ����� ֱ��ͼ   Sturges��ʽ   Scott��ʽ   Cross-Validation   Histogram-Kernel   Error   ���ƽ����.  
Histogram Theories and Optimal Histogram Construction Algorithms
Zhang Jianfang,Wang Xiuxiang
College of Department, Graduate University of Chinese Academyof Sciences; Hangzhou SME Financial Department of China Minsheng BankingCorp., LTD.
Abstract: Histogram is the most widely used density estimator and data analysis tool. It is completely determined by two parameters: the bin width and one of the bin edges. However, many professional statisticians have no really definitive answers and simply give some intuitive advises when face to choose these two parameters. Even most statistical packages use the rules of thumbs for selecting the number of bins as a default. In this paper, we will present the histogram theories and optimal histogram construction algorithms that have been recently proposed. The methods of how to construct the data-based histograms are the
emphasis of this paper.
Keywords: Histogram   Sturges' rule   Scott's rule   Cross-Validation   Histogram-Kernel Error   integrated square error.  
�ո����� 1900-01-01 �޻����� 1900-01-01 ����淢������  

ͨѶ����: �Ž���


Copyright by Ӧ�ø���ͳ��