Ӧ�ø���ͳ�� 2008, 24(6) 648-659 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
Supporting info
Email Alert
Article by
Article by
Article by
Ǯ����, ����ƽ, Ҧ����
ժҪ�� Ȩ��ָ�������������С��֤������, �ܲ����ض�Ȩ�������. ͨ��Ȩ��ָ����𶨼����ڼ���Ȩ��ָ�����Black-Scholesģʽ�½��е�, ����һЩ�����¼�(����, �ش�������¼�)�ķ���, �ᵼ�¼۸�ľ޷�����, ������貢������. ��˱����о���Ȩ��ָ��������ɢģ����Ȩ��ָ�����Ķ�������. ����Esscher�任�����õ��˵�Ե�ָ�����淽����Ȩ��ָ����𶨼۵���ʾ��,
�ؼ����� Ȩ��ָ�����   Esscher�任   ������   ��Ե�   ����ɢ����.  
Valuation of Equity-Indexed Annuity under Jump Diffusion Process
Qian Linyi, Zhu Liping, Yao Dingjun
School of Finance and Statistics, East China Normal University
Abstract: The Equity-Indexed Annuity (EIA) contract offers a proportional participation in the return on a specified equity index, in addition to a guaranteed return on the
single premium. In general, valuation of Equity-Indexed Annuity is often assumed that the equity index is within the Black-Scholes framework. But some rare events (release of an unexpected economic figure, major political changes or even a natural disaster in a major economy) can lead to brusque variations in prices. So in the present work we study the equity index following a jump diffusion process. By Esscher transform, we obtain a closed form of the valuation of point-to-point EIA, which can be expressed as a function of some pricing factors. Finally, we conduct several numerical experiments in which, the break even participation rate $\alpha$ can be solved when the other factors are fixed. The relationship between $\alpha$ and the other factors are also discussed.
Keywords: Equity-indexed annuities   Esscher transform   participation rate   point to point   jump diffusion process.  
�ո����� 1900-01-01 �޻����� 1900-01-01 ����淢������  

ͨѶ����: Ǯ����


Copyright by Ӧ�ø���ͳ��