Ӧ�ø���ͳ�� 2009, 25(5) 519-530 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
Supporting info
Email Alert
Article by
�º���ʲ����ѧ����ͳ��ϵ ���ϴ�ѧ��ѧϵ
ժҪ�� �����ע�������ǽ�����ƽ�ȹ��̵�Davydov��
��Ϊ����ӳ�䶨���һ�����, ����Ҳ������һЩ������������ĸ��ʱ߽�.
�ؼ����� ��ʽ�����˶�   �����ƽ������   ����ԭ��   ������������.  
A Note on Weighted Invariance Principle
Li Linyuan:Chen Ping
Department of Mathematics and Statistics,University of New Hampshire Department of Mathematics, Southeast University
Abstract: In this note we generalize Davydov's\ucite{1}
weak invariance principle for stationary processes to a weighted
partial sums of long memory infinite moving average processes. This
note also contains some bounds on the second moments of increments
of some weighted partial sum processes of a general long memory time
series, not necessarily moving average type. These bounds are useful
in proving the tightness in uniform metric of these processes. As a
consequence of continuous mapping theorem, the probability bounds on
certain functions of random variables can be established.
Keywords: Fractional Brownian motion   infinite moving average processes   invariance principle   long range dependent data.  
�ո����� 1900-01-01 �޻����� 1900-01-01 ����淢������  

ͨѶ����: ����Ԫ


Copyright by Ӧ�ø���ͳ��