Ӧ�ø���ͳ�� 2010, 26(3) 323-335 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(248KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
���������������
PubMed
���򲿷�����ģ�͵ķֿ龭����Ȼ����Ч�ƶ�
����,������
������ѧͳ��ѧϵ
ժҪ��

���Ŀ������������ݵIJ�������ģ��.
�ڿ��Ǹ����ڲ�����Ե������, �о��˻ع�ϵ���ľ�����Ȼ�ƶ�.
��������Ĺ���Э�������, �����ľ�����Ȼ��ͳ�������ӽ��������ֲ�,
�ɴ˿��Թ���ع������������. ģ��������,
����ȷָ��������ؽṹ�������, �ƶϵ�Ч�ʻ����������. ���,
�����˰�������.

�ؼ�����
Efficient Inference Based on Block Empirical Likelihood
for Longitudinal Partially Linear Regression Models
Zhang Tao,Zhu Zhongyi
Department of Statistics, Fudan University
Abstract:

Longitudinal data arises when subjects are
followed over a period time. In this paper, we applied block
empirical likelihood in partially linear regression model accounting
for the within-subject correlation. For any working covariance
matrix, an empirical log-likelihood ratio for the parametric
components, which are of primary interest, is proposed, and the
nonparametric version of the Wilk's theorem is derived. Simulations
show that performance can be substantially improved by correctly
specifying the correlation structure. At last, we illustrate the
proposed method by analyzing an example in epidemiology.

Keywords:
�ո����� 1900-01-01 �޻����� 1900-01-01 ����淢������  
DOI:
������Ŀ:

ͨѶ����: ����
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��