Ӧ�ø���ͳ�� 2012, 28(5) 551-560 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(228KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
���������������
PubMed
�����ͼ�Ⱥ���ݲ�λع�ģ�͵ı�Ҷ˹�ƶ�
ʩ����
����ʦ��ѧԺ���Ƚ���ѧԺ
ժҪ��

������Poisson�ع�ģ�����о���۲�
ֵ����ļ������ݵij��ù���, ���������һ����Ͼ�����������
�ļ�Ⱥ���ݵIJ�������Ͳ��ɻع�ģ��, ����������Ӧ�ı�Ҷ˹�ƶϷ���,
��������ͨ��Gibbs�������,
ģ�ͱȽ���ѡ����ͨ������Ŷȼ�����BIC׼��ʵ��. ���,
����һ�����������¹�������չʾ���ķ�����ʵ�ּ�Ӧ��.

�ؼ�����
Bayesian Inference of Hierarchical Regression Model for zero-Inflated Clustered Count Data
Shi Hongxing
School of Primary Education, Chuxiong Normal University
Abstract:

Zero-inflated Poisson (ZIP) regression
model is a popular tool for analyzing count data with excess zeros.
In this paper, a flexible hierarchical ZIP regression model is
proposed to handle with such data with cluster and Bayesian approach
is develop. A Gibbs sampler is employed to produce the Bayesian
estimate, a goodness-of-fit and a Bayesian information criterion
(BIC) are used for model comparison and selection. Finally, an
application of data from a ship damage incident study illustrates
the proposed method.

Keywords:
�ո�����  �޻�����  ����淢������  
DOI:
������Ŀ:

ͨѶ����: ʩ����
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��