Ӧ�ø���ͳ�� 2012, 28(6) 625-636 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(223KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
���������������
PubMed
��������ɾ����ģ�����Իع�ģ�͵�Ӱ������
����
�γ�ʦ��ѧԺ��ѧ��ѧѧԺ
ժҪ��

��ģ����֮���Euclidean�����Lebesgue�������С���˷���,
�ֱ��о��˻�������ɾ����ģ�����Իع�ģ�͵IJ�������,
�������־����µIJ������ƽ����˱Ƚ�. ��ģ�͵�����Ϊʵ��,
���Ϊģ����.
�����˼���۲�������ǿӰ�����쳣���ͳ�������---,�ع鷽�̵Ĺ��Ʊ�׼���,
ͨ����ʵ�����ݵ��о�, ʶ������е�ǿӰ���,
��������������ͳ��������Ч��.

�ؼ�����
Impact Assessment for Fuzzy Linear Regression Model Based on Case Deletion
Zhang Aiwu
School of Mathematical Sciences, Yancheng Teachers University
Abstract:

Least squares method based on Euclidean
distance and Lebesgue distance between fuzzy data is used to study
parameter estimation of fuzzy linear regression model based on case
deletion respectively. And the parameter estimations on two kinds of
distance are compared. The input of the above model is real data and
output is fuzzy data. The statistical diagnosis --- estimation
standard error of regression equations is constructed to test highly
influential point or outlier in observation data. At last through
identifying highly influential point or outlier in actual data, it
shows that the statistic constructed in this paper is effective.

Keywords:
�ո�����  �޻�����  ����淢������  
DOI:
������Ŀ:

ͨѶ����: �Ű���
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��