Ӧ�ø���ͳ�� 2013, 29(4) 363-380 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(263KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
���������������
PubMed
����Ӧ��II�ͻ�Ͻ�β������������¹���ָ���ֲ���ͳ�Ʒ���
֣����, ʦ����
������ҵ��ѧӦ����ѧϵ
ժҪ��

������Ӧ��II�ͻ�Ͻ�β�㶨Ӧ����������������,
����������������ָ���ֲ���ͳ�Ʒ���. ����EM
�㷨����С���˷����ϵ��·����Ƶ���δ֪������ɿ��Ⱥ����ĵ����,
ͨ����Ϣȱʧԭ��õ��˹۲�Fisher��Ϣ��ͳ߶Ȳ����Ľ�����ƫ����.
���ù��ƵĽ�����̬�ԺͲ���bootstrap���������˲�������������.
�������Monte-Carlo�����ֱ�Եõ��ĵ���ƺ�������Ƶľ��Ƚ����о�,
��������߶Ȳ����Ľ�����ƫ����������Ӧ����������,
Boot-p�����������Ӧ�Ľ��������������ȷ.

�ؼ�����
Statistical Analysis in Constant-Stress Accelerated Life Tests for Generalized Exponential Distribution Based on Adaptive Type-II Progressive Hybrid Censored Data
Zheng Guangyu, Shi Yimin
Department of Applied Mathematics, Northwestern Polytechnical University
Abstract:

Based on adaptive type-II progressive
hybrid censored data statistical analysis for constant-stress
accelerated life test (CS-ALT) with products' lifetime following
two-parameter generalized exponential (GE) distribution is
investigated. The estimates of the unknown parameters and the
reliability function are obtained through a new method combining the
EM algorithm and the least square method. The observed Fisher
information matrix is achieved with missing information principle,
and the asymptotic unbiased estimate (AUE) of the scale parameter is
also obtained. Confidence intervals (CIs) for the parameters are
derived using asymptotic normality of the estimators and the
percentile bootstrap (Boot-p) method. Finally, Monte Carlo
simulation study is carried out to investigate the precision of the
point estimates and interval estimates, respectively. It is shown
that the AUE of the scale parameter is better than the corresponding
two-step estimation, and the Boot-p CIs are more accurate than the
corresponding asymptotic CIs.

Keywords:
�ո�����  �޻�����  ����淢������  
DOI:
������Ŀ:

ͨѶ����: ֣����
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��