Ӧ�ø���ͳ�� 2014, 30(5) 510-526 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(500KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
���彻����Ȩ
���Ͻ�����Ȩ
�ϰ�������Ȩ
���̵���Ȩ

Esscher�任.
���������������
PubMed
Esscher�任����չ��ŷʽ������Ȩ����
������, ��ȫ��, ����ǿ
�Ͼ�ʦ����ѧ��ѧ��ѧѧԺ�ͽ�����ͳ���о���
ժҪ��

�����о�Esscher�任�±���ʲ��۸���Ӽ��β����˶�����չ
�ļ���ŷʽ������Ȩ(�������彻����Ȩ, ���Ͻ�����Ȩ, �ϰ�������Ȩ, ���̵���Ȩ)��������.
����, �����˴�Ư�Ʋ����˶��ķ���ԭ�������; ���, ����Gerber��Shiu(1994)�����˶�ά
����ƽ���������̺Ͷ�ά��Ư�Ʋ����˶���Esscher�任���弰������; ���, Ӧ��Esscher�任
��������۸����˱���ʲ��۸���Ӽ��β����˶�����չ�Ķ���ŷʽ������Ȩ���۹�ʽ. �ر�,
�������õ�����Ȩ���۹�ʽ�����������и����Ľ����һ�µ�.

�ؼ����� ���彻����Ȩ   ���Ͻ�����Ȩ   �ϰ�������Ȩ   ���̵���Ȩ  
Esscher�任.
  
Pricing of Extension of European Exchange Option under Esscher Transforms
Liu Guoxiang, Zhu Quanxin, Zhang Xiangqiang
School of Mathematical Sciences and Institute of Finance and Statistics, Nanjing Normal University
Abstract:

This paper studies the price of extension of the European
exchange option (including generalized exchange option; compound exchange option;
barrier exchange option; traffic-light option) with the geometric Brownian motion.
Firstly, the reflection principle and property of the Browian motion with drift
are given; Secondly, the definitions and properties of the Esscher transform of
multidimensional processes with stationary and independent increments and
two-dimensional Browian motion with drift are given by borrowing from the idea of
Gerber and Shiu (1994); Finally, using related theory of Esscher transform, pricing
formulas of extension of several European exchange options are obtained when the
price of the underlying asset follows the geometric Brownian motion.

Keywords:
�ո�����  �޻�����  ����淢������  
DOI:
������Ŀ:

ͨѶ����: ������
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��