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Abstract

The present paper is devoted to the problem of assessing local influences in a multivariate ¢-
model with uniform structure. The effects of some minor perturbation on the statistical inference
are considered based on Cook’s curvature measure. This leads to the largest curvature direction
which is the statistic mainly concerned in the local influence analysis. As an application, a
common covariance-weighted perturbation is thoroughly discussed.
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§1. Introduction

It is well known that, if there exists the minor perturbation in some factors of the statis-
tical model, then it is the influence analysis to demonstrate how to evaluate the effects of the
minor perturbation on the statistical inference. Hampel (1974) reduced the above perturbation
to originate from the relevant distribution function, changing from F' to F' + AF, this resulted in
a series of essential statistics such as the influence function et al. Furthermore, if the perturba-
tions is explicit, regardless of the distribution, we often start from the likelihood function. In the
statistical inference, to describe concretely the influence of all kinds of perturbation schemes are
vital. Cook (1986) introduced the concept of curvature measure into the local influence analysis,
which proclaimed that the differential geometry had permeate into some aspects in the statistics.
By applying Cook’s method, some authors studied some statistical model including the classical
linear regression and growth curve model etc. (Bai, 1999). The random error in the above model
is usually assumed to be normal. However, the assumption of normality is no longer reasonable
in some situations. For example, as pointed out by Joarder and Ali (1997), a lot of economic and
business data, e.g., stock return data, exhibit fat tailed distribution, and the multivariate ¢-model
accommodates thin failed as well as fat tailed distributions. These models have attracted consid-

erable attention in the recent literature (Joarder etc., 1997, Lange etc., 1989). In this paper, the
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model considered is a multivariate ¢t-model which can be given as follows:
Y = XBZ" + E, (1.1)

where X is a ¢ X p known design matrix, B is a p X m unknown parameter matrix, ¥ is a ¢ X n
response matrix, rk(X) = p and rk(Z) = m, respectively. Furthermore, the ¢ x n error matrix E
is assumed to have gn-variate t-distribution t,, (7,0, I, ® X), i.e., the density of E is determined
by

F((7 + TL(])/2) |E|—n/2

fler, €2, ,€n) T (y/2)mma/2

—(v+nq)/2 .
) ’ €j€Rq,Z=1,"',n, (12)

n
(1 + E 6?27161'

i=1
where v > 0 is a known degree of freedom and ¥ is an unknown ¢ X ¢ positive definite matrix
(Wang, 1987). Among the all structures of ¥, this paper focuses attention on the following special

structure:

S = o?[(1~ ), + p1,17). (13)

where 02 > 0 and p € (=1/(g — 1),1) are unknown, 1, = (1,---,1)T € pu(X) = {Xt : t € RP}.
The structure (1.3) is referred to as the uniform structure (US). The main objective of this paper
is to use Cook’s curvature measure to assess the influences of minor perturbation on the statistical
inferences in the multivariate ¢-model (1.1) and (1.2) with US (1.3). The remainders in this paper
is organized as follows. In section 2, we briefly restate some preliminaries which are needed in the
sequel. The main results obtained in this paper will be provided in section 3. As an application,
the consequences are used to discuss special covariance-weighted perturbation in section 4 and a

simulation calculation is made in section 5.

§2.  Some Definitions and Lemmas

In this section, some definitions and lemmas will be present which are needed in the sequel.

Definition 2.1 (Wei etc., 1991) The perturbation model satisfied the following regulations
is referred to as w-model.

a. Suppose that the log-likelihood function of random matrix Y corresponding to the postu-
lated model M is denoted by L(6), where 6 € © is an unknown distribution parameter vector and
O C R’ is open.

b. Suppose that w = (w1,w2, -+ ,w;)? € Q is a vector describing the perturbation factors,
where  is open subset of R!. Let M (w) stand for the perturbed model and L(f|w) be the log-
likelihood function corresponding to M (w). Further, assume that L(#|w) has the continuous partial
derivatives of the second degree in © x Q.

c. There is a point wy € Q such that M(wo) = M, thus, L(f|we) = L(6) for all 8 € ©.
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d. Suppose that 8 and 8(w) are the MLEs of § € © corresponding to M and M (w), respec-
tively, so that 8(wp) = 8.
For the w-model in the Definition 2.1, Cook (1986) proposed the following definition.
Definition 2.2 If 6 can be partitioned as 8 = (67,01)T € © C R®, where 6; € R is
interest and 6y € R®~*! is nuisance, then the likelihood displacement on the interested vector 6,
is defined as follows:
LD, (w) = 2[L(6) — L(Ow))], (2.1)

where 6(w) = (01(w)",0:(@)")" (BL(w) € R™, Go(w) € R*=™), § = (wo) = (07,07, O(w) =
(01 ()T, 62(61 (w))T)T and 62(6;) is the MLE of 6, with 6; given corresponding to the postulated
model M, i.e.

L((67,65(61)")T) = max L((6,63)"). (22)

02€02

It is clear the likelihood displacement function z = LD(w) versus w (so-called influence graph)
contains the essential information about the influence of the minor perturbation scheme on the
inference of 6,. It can be shown that z = LD4(w) attains its local minimum value 0 at wy and its
first derivatives along every direction at wqy vanishes (Cook, 1986). Therefore, we choose its second
derivatives along every direction evaluated at wy, i.e., its curvatures along every direction evaluated
at wg, to measure the sensitivities to the minor perturbation scheme. According to Definition 2.1,
we easily establish the following lemma.

Lemma 2.1 (Cook, 1986) For the w-model, the curvature Cy of the influence graph z =

LD4(w) along the unit direction d € R? at wo can be written as
Cq = 2|dT Fd), (2.3)

where F' = GTHT.HG which is known as Hessian matrix,

~ I
061 (w) ~t
G = 0T lw—wy’ H=1 06,(6:)
007 016,
and
OL((67,03)") 9L((61,67)")
i 82L(0)‘ _ 96,007 86,067
00007 lo=p | O°L((67,03)") 9%L((61,67)")
06,007 00200F 0—3
From Lemma 2.1, we know that the maximum influence curvature is
Crmax = 2 max |[dT Fd|, 2.4
o = 2 max |d" Fid (24)

and the direction dpax € R corresponding to Crayx is the unit eigenvector corresponding to the
largest absolute eigenvalue of F', which is the statistic we concern mainly in local influence analysis

(Cook, 1986) and referred to as the maximum influence curvature direction (MICD).
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Corollary 2.1 (Bai, 1999) If §; € ©; C R, then

961 (w)

T (2.5)

dm ax

wW=wo

Unless stated otherwise, for an interested object ¢ in the w-model, the notation ﬁ‘¢, Gy,
Hy and l"L¢ stand for the matrices ', G, H and L defined by Lemma 2.1 corresponding to ¢,
respectively.

The following lemma establishes an important property of the Hessian matrix F defined by
Lemma 2.1.

Lemma 2.2 (Bai, 1999) Suppose that n = f(61) is a one-to-one measurable transformation
from 6; to 7, where n € H C R®', then Fy, = ﬁ‘n.

It is remarked that Lemma 2.2 implies the Hessian matrix F' defined by Lemma 2.1 and
the direction dmax corresponding to the largest absolute eigenvalue of F' are invariant under an

one-to-one measurable transformation of the interested parameter vector 6.

§3. Application to Multivariate t-Model

The main results obtained in this paper will be presented in this section.
Theorem 3.1 For the multivariate t-model (1.1) and (1.2) with US (1.3), if there exists
some perturbation such that 1, € u(X(w)) = {X(w)t:t € RP} and B, o? and p are respectively

of interest, then the Hessian matrix F in Lemma, 2.1 can be expressed as

S~ ~ ~
Fp = _Ww{(ﬂz) ® X7 Py, + Tlqu)X]}w s’ (3.1)
while the MICD dyax o> and dmax, in Corollary 2.1 are given by
052 (w) Ip(w)
dmax0'2 T w:wo, dmaxp ‘W w:wo’ (32)
where
B(w) = (X(w)"X (@) ' X (@)Y (@) Z@)[Z@) " ZW)]
§(w) = Lt(P1, (W),
nw) = q _71) tr[(Iy = Px(w))Y (@)Y (W) + (Px() — P1,)S(w)],
1 1 ¢€(w)

X(w), Y(w) and Z(w) are the matrices in the w-model corresponding to X, ¥ and Z in the

multivariate ¢t-model, respectively. While the notation P4 denotes the p x p orthogonal projection
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matrix on the space spanned by the columns of the p x ¢ matrix A = (a;;)px, and Vec(A) stand for

a pg-dimensional column vector with the (j—1)p+i-th component be a;;,¢=1,--- ,p, j =1,--- ,q.
Proof It follows from (1.1) and (1.2) that the log-likelihood function of Y is given by
_ L((v+ng)/2)] n
2 Z"q In{1 + t[(Y — XBZT) 5=1(v — XBZT)]}, (3.3)

where X is of the US (1.3). Note that ¥ can also be rewrite as
Y =&P, +nQ,, (3.4)

where ¢ and 7 are determined by

=1+ (¢ —1)p],
=01+ (¢—1)p] (3.5)
n=0*(1-p).
It is easy to from (3.4) that
STH=¢PL, 407 01, B =60 (36)

Substituting (3.6) into (3.3) to obtain the log-likelihood function of ¥ as

%] +50nE™) + (g = Din(y™)]

—% In{1 + te[(Y — XBZT

L(B,& ') = ln[
) (€7 Py, +17'Q,)(Y — XBZT)]}, (3.7)

which shows that the first derivatives of ¥ with respect to Vec(B), £~! and n~! are given by

(AL Vec[XT(¢ 1Py, +11Q1,)(Y — XBZ1)Z]
v = (Y +ng) T ;
dVec(B) 1+tr[(Y = XBZT)' (¢1Py, +171Q1,)(Y — XBZT)]
J oL _n, _y+ng tr{(Y - XBZT)' P, (Y — XBZT)) 59
ogt 2 2 1+t[(Y —XBZD) (€ 1Py, + 1 1Q1,)(Y — XBZT)] '
OL _ (¢—Dn__ y+ng tr[(Y — XB2Z7T)" Q1,(Y — XBZT)]
G 2 2 14t(Y = XBZT)'(6-1Py, +171Qu,)(Y — XBZT)]
Solving the equation group with respect to Vec(B), £~ and 71,
oL _,
dVec(B)
oL _,
65*1 T
L _y
on—t 7
to obtain the MLEs of Vec(B), ¢! and n~ ! as
Vee(B) = Vec[(XTX) 'XTYZ(ZT2) ],
=l
- ytr(P,S)’ (3.9)
71— (g—1)n 1

Y tr[(Iq —Px)YYT+ (PX —qu)S],
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where S = Y (I, — P;)YT. Note that, from (3.5) we have

o? = §[£+ (¢ — 1),

) | € j (3.10)
P 1lerq-n b
hence, the MLEs of o2 and p is given by
= —[é“ + (¢ — D)),
B & (3.11)

ﬁ:q—l[&(q—lm_l]'

Further, the second derivatives of L with respect to Vec(B), £~! and 5! can be derive from
(3.8) as

( O*L — v+ )(ZTZ) @ [XT(ETP, +1771Q1,)X] L _2r+ng)
dVec(B)dVec(B)T TTng 1+ tr(W) [+ tr(W)]2
Ve[ XT (67 Py, + 7' Q1, ) UZ]Vec X (67 Py, + 7' Q1)U Z]",
0%L — v+ )Vec(XTquUZ) v+ ng
aVec(B)ae-1 T "V T a(w) [+ te(W)]2
tr[UT Py, UVec[XT (¢ Py, +771Q1,)U Z),
0’L Vec(XTquUZ) v+ ng
v = (v +ng) - 5
OVec(B)dn 1+ tr(W) [1 4 tr(W)]
tr[UTQ1,UlVecXT (¢ Py, + 77 1Q1,)UZ],
7621] = _252 + Y + ng [tr(UTplq U) :| 2
E-19E-1 2 2 1+te(W) 1’
62L 0 + ng tI'[UTP]_q U]tr[U qu U]
deton~t 2 [1+ tr(W)]? ’
92L :_(q—l)nn2+7+nq [tr(UTquU)]Q
L Onp—1onp—1 2 2 1+tr(W) 1~

(3.12)
where U =Y — XBZY, W = (Y = XBZT)T (¢ 1Py, + 17 1Q1,)(Y — XBZ™), which implies from
(3.9) that the (pm + 2) x (pm + 2) matrix I, in Lemma, 2.1 can be written as

Z’ll Z’12 El3
Lp = Lyy Lay Lag
L3y L3y L33
(ZTZ) ® [XT( 1P1 +’l7 1Q1 ) ] 0 0
0 nly+ (¢ —1)n] 5 (g —1)n? (9= Dn” g
== 2y +qn), 2y +am) [B13)
0 (g=1n°~  (g=Dn(y+n)_,
- 1
2(y +qn) 2(y +qn)

If B (i.e., Vec(B)) is of interest, then let L/0¢ 1 =0 and OL/On ! = 0 in (3.8) we can get
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the MLEs of ¢! and n~! with B given as

n 1

" yu[(Y - XBZT)TP, (Y — XBZT)]
(¢—1n 1

v (Y = XBZT)TQ1,(Y - XBZT))’

which shows that

OVec(B

“Y(B) 2n Vec(XTPy,(Y — XBZ")Z)
BVec(B) "y {t[(Y - XBZT)TP, (Y — XBZT)]}?’
o' (B) _2(qg—1)n Vece(X1Q.,(Y — XBZ™)Z)

(B)

y {trf[(Y = XBZT)TQ,,(Y — XBZT)]}?’

Thus, from (3.9), the matrix Hp in Lemma 2.1 can be expressed as

Ipm
0E~(B) fom
Hp = W = 0 . (3.14)
on~'(B)
6V€C(B)T Vec(B)=Vec(B)
Note that N
dVec(B(w))
_ 1
GB BwT w=wo’ (3 5)

where Vec(B(w)) is the MLEs of Vec(B) in the w-model corresponding to the model (1.1) and
(1.2) with US (1.3). It is similar to get (3.9), we have

Vec(B(w)) = Vec[(X (w)" X (@) ' X (@)Y () Z(@)(Z(w)" Z(w)) "],

ie.,

Bw) = (X(@)"X (@) "' X (@)Y (@) Z(@)(Z(@) " Z(w) ™" (3.16)

It follows from (3.13), (3.14) and (3.15) that the Hessian matrix £ in Lemma 2.1 can be

written as

Fp = GLHLLpHpGp=GLL.,Gp
dVec(B(w))T o OVec(B
= —’Y%{(ZTZ) ® [XT(§ IPI,, +17 lqu)X]}% w:wo, (3.17)

which implies that (3.1) holds.
If o2 or p is of interest, then note that it is similar to (3.9) and (3.11), the MLEs of 62 and p

in the above w-model can be obtained as
~ 1~ ~
0% (w) = EEM + (¢ — D(w)],

~9 _ 1 qg(w)
& | @) + (¢ - DAw)

-1

)

’

Iy
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where

~

_7
@) = Lulpy, S@)),

nw) = @ jl)ntr[(fq = Px())Y @)Y ()" + (Px(w) = P1,)SW)],

S(w) =Y (W) In = Pz(w))Y ()7,
by which and Corollary 2.1, we known that (3.2) is true. The proof is completed. #

Theorem 3.2 Under the assumptions of Theorem 3.1, if (62, p) and (B, 02, p) are respec-

tively interested, then the Hessian matrices }'7"(027,,) and ﬁ’( B,o2,p) Can be written as

~ ~ —~ ~

B - __M {7 + (¢ = 1Dn 0¢(w) 8¢(w) _ (¢—1)n (af(w) oi(w) | Onw) 3£(w))
S ) & 8w OwT & \ow 0wl | Bw dwT
(¢ = 1)(y +n) 0n(w) I(w)
TR B BT s (3-18)
Eip o2 ) = Fp + Bl p), (3.19)

where F is given by (3.1).
Proof If (¢ 1,n71) is of interest, then let L/0Vec(B) = 0 in (3.8), we can obtain the MLE
of Vec(B) with ¢! and ! given as

Vee(B(E~1,n™) = Vee[(XTX)"'xTy 22" 7)Y, (3.20)

which implies that the matrix H-1 ;-1) in Lemma 2.1 is given by

1 10
Hg-19-1) = 0 t =|lo 1]. 321
oVec(B(&~ ") OVec(BE~!, ") -
aE! O~ (€=t~ 1)=E1,771)
Further, note that the matrix G(¢-1 -1y and f‘(ﬁ—l,n—l) in Lemma 2.1 are given by
ag—l(w) 1 9¢(w)
—— z T
Groot v = | 0T = | &w)? o 3.22
(€=%n=h) 877_01] (w) 1 on(w) ’ (3:22)
OwT™ w=wo nw)? owt /..
and
Lyy Las Lo
Lg-1p-1y = | Ls2 L3z Ls
Ly L1z L
n(y+(@=1n) (¢—1)n’ ~
oy = Jn) S 0
2(y +qn), 2(y +¢qn)
=—| _(g=1n & (g—Dn(y+n) 0 .(3.23)
2(y+qn) 2(y+qn)

0 0 VZTZ) @ (XT(E Py, +77Q1,)X)
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Thus, from (3.21), (3.22) and (3.23), we know that the matrix F‘(E—l,n—l) in Lemma 2.1 is
given by
)
T T 7
= Gl Hig- g Ligr o Hig=r ) Gierin)

EZQ E23
T
= Gle-14m1) ( i )G(E‘l,n‘l)

32 ff33
N B 4E (g = 1)n 0é(w) ¥(w) (g—1)n (aaw) Bii(w) | 07(w) aE(w))
 2(y+gqn) 2 Ow OwT & 0w OwT 0w OwT
(g = 1)(y +n) i(w) IA(w)
+ = o }w:wo. (3.24)

Note that the transformation from (6~1,77!) to (02, p) defined by (3.5) is one-to-one measur-
able, hence by Lemma 2.2, we have

Flo2,0) = Flg-1,5-1y,

which and (3.24) mean that (3.18) holds.
Next, if (B, £71, 1) is of interest, then the matrices ﬁ(3’6—1m—1), Hp¢-1,-1)and G(p ¢-1,,-1)

in Lemma, 2.1 are respectively

. . Gp
Lpg-1m-y=Lp,  Hperg-0) = Imi2s  Goe-rg-) = ( ) ’
which shows from (3.17) and (3.24) that the matrix F'( B,¢-1,y-1) in Lemma 2.1 can be written as

F(B,ﬁ_lw_l) = G(B,g_l,’U_I)H(B,E_l,T[_l)L(ng_l7"7_1)H(37€_17n_1)G(Ba€_la77—1)

= GLELuGE + Gl ( ;” ;23 )G(g_l,,,_l)
32 Lss
= Fp+ Fe-1,-1. (3.25)
Note that the transformation from (B,£~1,n71) to (B, 0?2, p) is one-to-one measurable, hence
by Lemma 2.2, we can obtain
F(B,Gz,l)) = 1.7"(375—1777—1),
Thus, the proof is completed. #

§4. Covariance-Weighted Perturbation Scheme

In this section, we focus our attention on assessing the local influence of some special pertur-
bation on the multivariate t-model (1.1) and (1.2) with US (1.3). Without loss of generality, we

consider only the covariance-weighted perturbation scheme, which is made up of the follow form

E~ tqn(’)’,O,Q@E), (41)
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where Q = diag(w;,ws, -+ ,wn), w = (Wi, ws, -+ ,wp)T € R" (w; > 0,i=1,---,n). It is equivalent
to

EQ™ Y2 (7,01, ® %), (4.2)
where Q~1/2 = diag(wfl/Q, - ,wﬁlﬂ). Obviously, wg = 1,, € R™ stands for that there is no any

perturbation in the model (4.2). For the covariance-weighted perturbation model (4.1) and (4.2),
since YQ~1/2 = XB(Q~'/22)T + EQ~'/2, hence

Bw) = (XTX) 1 XxTyQ 2z(zTa 1z) 1, (4.3)
and
£w) = Ltr[Py, S(w)),
R n ~y Cor (4.4)
N(w) = = 1)ntr[(Iq - Px)YQ'Y" + (Px — P1,)S(w)],
where S(w) =Y[Q ! - Q- 1Z(zTQ1z)"1zTQ-1]yT.
It follows from (4.3) and (4.4) that
WD)\ — (2721 2| o [(XTX) KTV (I~ POYDar (45
W=wo
W) __ vy W) o
50 lucws = ndlag(Ml), B e~ (g 1)nd1ag(M2), (4.6)
where D,, is a n? x n matrix whose the (( — 1)n + i, k)-th elements is 8;,0;1, (i,4,k =1,2,--+ ,n)

(Bai, 1999), and §;; denotes the Keronecker sign, My = (I, — PZ)YTquY(In — Py), My =
YT(Iq - Px)Y + (In — Pz)YT(PX — P]_q)Y(In - Pz) and dlag(A) = ((111,022, ree ,ann)T € R™
(A = (aij)nxn), which imply that

~

962 (w) 1 (0¢w) on(w) __
o w:wo—a{ =+ g }w:wo——q—ndlag<M1+M2), (4.7)
and
) a0 3® )
Ow  lw=wo g — 10w \E(w) + (g — 1)j(w)/ w=wo
1 R 1 —1)p

Following Theorems 3.1 and 3.2 and (4.5) ~ (4.8), we can obtain the following conclusions.
Theorem 4.1 For the covariance-weighted perturbation scheme (4.1) or (4.2), if B, 0% and

p are respectively of interest, then

Fp =Pz ®{(In— P2)YT[E Py, +7 (Px — P1,)]Y (In — Pz)}, (4.9)
and
. . N 1+(g—1)p
Arnax o2 || diag(M; + Ma), dmax p ‘ dlag((l —p)M; — %Mz) (4.10)




F RIRME AR RAYAH LM S A - BEGHEYrhs AT 397

Theorem 4.2 For the covariance-weighted perturbation scheme (4.1) or (4.2), if (¢2, p) and

(B, 02, p) are respectively of interest, then

.. v v+ (g—1n .. . T yt+n oo . T
Flpapy = — diag(M; )diag(M TN diag(Ms)diag(M:
(o) e (M) diag(My)T + T diag (Mo diag (M)
2n , . . . .
—?(dlag(Ml )diag(M>)T + diag(M,)diag(M; )T)}, (4.11)
7
and
F(B,a'g,p) =Fp+ F(a2,p). (4.12)

where A ® B denotes the Hadamard product of the matrices A and B (Bai, 1999). Theorems 4.1
and 4.2 show how to calculate the Hessian matrix E corresponding to the interest parameter in a
covariance-weighted multivariate ¢-model with US. Consequently, we need to calculate the MICD
of F', which indicates the most sensitive direction of the multivariate t-model for the covariance-

weighted perturbation.

§5.  Simulation Study

In this section, a simulative calculation is made based on the results obtained above.
Theorem 5.1 For the model (1.1) and (1.2) with the US (1.3). Let

tan ©1
tan ©4
cos O
Vec(E) = (I, ® T1/?) : 18l <G, i=12, g, (5.1)
tan Opg
ng—1
I cos®;
i=1
where X!/2 denotes the unique symmetric root of $(Ni,1982), then, ©1,--- ,0,, is determined
uniquely by E and are independent, and ©; has the density
L((y+14)/2) 42 L
(0 = ) l<cZ 4=1..--.n0. 2
hi(6:) T+ = 1)/2)mi cos 0;, 16;] < 50 i=1,,ng (5.2)
Proof It is obvious that the transformation from © = (01,--- ,0pn,)T to Vec(E) is one-to-

one. Note that the Jacobian Jivec(m)—e) of the transformation is given by

1
_ - 0 ... 0
cos2 0,
tan 6; tan 6, 1 0
. cos 6, cos 0; cos? 6,
Jvec(myso) = |(In®E'?) : :
tanf; tanf,, tanftanb,, 1
ng—1 ng—1 o ng—1
IT cosé; I cosé; cos?0pq [ cosb;
=1 i=1 =1

ng .
|[7/2 [] cos™ (mat2-0) g, |6;] < g, i=1,---,ngq. (5.3)
i=1
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On the other hand,

ng
L =[] cos®6;. (5.4)

n .
1+ Z eiTE_lez- =1
=1

By combination (1.2), (5.3) and (5.4) to yield the density of (©1,---,Opn,)7 as

T((y+ng)/2) 74
D(y/Dmmal i

which implies that ©1,--- , 0y, are independent and the density of ©; is given by (5.2).

h(ela"' Jenq) = COS’Y+i72 01’; |ez| < g: 1= ]-7 ,ng,

This theorem shows that, once generating nq independent random variable ©;, i =1,--- ,nq
in (5.1) which have the same type of distribution, we can simulate the multivariate tmodel (1.1)
and (1.2) with the US (1.3).

Note that, if the density of random variable (€ (—n/2,7/2)) is given by

then making the transformation 7' = sin®((©+7/2)/2), which is easy know that T'~ Beta(y/2,v/2).
Therefore, in order to obtain ©1,---,0y, in (5.1), we need only generate ng independent
random variables which have the Beta distribution (Mao, etc., 1998).

In the simulative calculation, let n =30, m=1,gq=4,p=2,7=2,02 =3, p=2/3 and

246 8\ 1 L2
qup:<1 1 1 1) , BpXm:<2>7 Fnim = ’ ’

1y
we obtain some data in following tables.

Table 5.1 The response matrix Y in the model (1.1) generated by simulation

) 1 2 3 4 i 1 2 3 4

1 | 8.4640 10.4582 12.3123 14.2050 || 16 | 7.0669  9.0669 11.0665 13.0665
2 | 7.6227 9.4913 11.4903 13.4837 || 17 | 7.0629  9.0628 11.0623 13.0619
3 | 73384 9.3378 11.3344 13.3301 || 18 | 7.0596  9.0595 11.0595 13.0595
4 | 7.2967 9.2966 11.2750 13.2723 || 19 | 7.0575  9.0572 11.0564 13.0564
5 | 7.2337  9.2264 11.2261 13.2260 || 20 | 7.0554  9.0554 11.0553 13.0553
6 | 7.2041 9.2041 11.2022 13.2005 || 21 | 11.0540 15.0533 19.0533 23.0532
7 | 7.1783 9.1687 11.1684 13.1681 || 22 | 7.0491 9.0470 11.0469 13.0469
8 | 7.1436 9.1364 11.1346 13.1336 || 23 | 7.0456  9.0455 11.0455 13.0454
9 | 7.1192 9.1155 11.1143 13.1129 || 24 | 7.0433  9.0432 11.0432 13.0431
10 | 7.1051 9.1051 11.1043 13.1031 || 25 | 7.0401  9.0400 11.0400 13.0400
11 | 7.0959 9.0935 11.0933 13.0928 || 26 | 7.0397  9.0397 11.0396 13.0396
12 | 7.0904 9.0904 11.0903 13.0902 || 27 | 7.0390 9.0388 11.0388 13.0385
13 | 7.0896 9.0896 11.0894 13.0892 || 28 | 7.0378 9.0378 11.0378 13.0378
14 | 7.0849 9.0849 11.0839 13.0804 || 29 | 7.0372  9.0370 11.0370 13.0369
15 | 7.0719 9.0711 11.0703 13.0703 || 30 | 7.0358  9.0357 11.0357 13.0357
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Some of the measurements developed in the preceding sections are calculated and displayed

in Table 5.2.
Table 5.2 The diagnostic statistics dpax for the unknown parameters

i dmax B drax o2 Amax p Arax(o2,p) Armax(B,02,p)
1 0.2369 0.2333 0.2218 -0.2118 0.0789
2 0.0952 0.0378 0.0346 -0.0317 -0.0065
3 0.0626 0.0167 0.0167 -0.0168 -0.0074
4 0.0545 0.0126 0.0125 -0.0125 -0.0079
5 0.0447 0.0085 0.0085 -0.0086 -0.0078
6 0.0405 0.0070 0.0070 -0.0070 -0.0076
7 0.0352 0.0053 0.0053 -0.0053 -0.0072
8 0.0296 0.0037 0.0037 -0.0037 -0.0065
9 0.0259 0.0029 0.0029 -0.0029 -0.0060
10 0.0240 0.0025 0.0025 -0.0025 -0.0057
11 0.0223 0.0021 0.0021 -0.0021 -0.0054
12 0.0217 0.0020 0.0020 -0.0020 -0.0053
13 0.0215 0.0020 0.0020 -0.0019 -0.0053
14 0.0206 0.0018 0.0018 -0.0018 -0.0051
15 0.0184 0.0015 0.0014 -0.0014 -0.0047
16 0.0177 0.0014 0.0013 -0.0013 -0.0046
17 0.0170 0.0013 0.0012 -0.0012 -0.0045
18 0.0165 0.0012 0.0011 -0.0011 -0.0044
19 0.0161 0.0011 0.0011 -0.0011 -0.0043
20 0.0158 0.0011 0.0011 -0.0010 -0.0042
21 -0.9569 0.9713 0.9742 -0.9765 0.9965
22 0.0145 0.0009 0.0009 -0.0009 -0.0039
23 0.0142 0.0009 0.0008 -0.0008 -0.0039
24 0.0138 0.0008 0.0008 -0.0008 -0.0038
25 0.0133 0.0008 0.0007 -0.0007 -0.0036
26 0.0132 0.0008 0.0007 -0.0007 -0.0036
27 0.0131 0.0007 0.0007 -0.0007 -0.0036
28 0.0129 0.0007 0.0007 -0.0007 -0.0036
29 0.0128 0.0007 0.0007 -0.0007 -0.0035
30 0.0125 0.0007 0.0006 -0.0006 -0.0035

Amax -2.9167 - - -6.3971 -8.8315

It is obvious from Table 5.2 that the 21-th individual is influential on B, o2, p, (02, p) and
(B,0?,p). Tt may be caused by the the fact that the observations of the 21-th individual are

relatively larger than those of others.
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