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Abstract

The empirical likelihood method under stratified random sampling is used for getting es-
timators of finite population parameters, we show in this paper that the empirical likelihood
approach is well-suited to incorporate auxiliary information and can accommodate this informa-
tion contained in the population size for each stratum quite naturally. Our results show that it
can lead to efficient estimators.
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§1. Introduction

In sample surveys, auxiliary information on the finite population is regularly used to increase
the precision of estimators. The empirical likelihood method, introduced by Owen (1988, 1990)
in the context of independent identically distributed random variables, provides a systematic non-
parametric way of utilizing auxiliary information in making inference about the parameters of
interest. Hartley and Rao (1968) presented a similar method in the sample survey context, using
their “Scale-load approach”. Under simple random sampling, they obtain the empirical maximum
likelihood estimator of ¥ when only X is known. Chen and Qin (1993) propose an empirical like-
lihood method to make effective use of auxiliary information in simple random sampling without
replacement (srswor). Zhong and Rao (2000) used empirical likelihood to deal with the case of
stratified simple random sampling when only X is known, they, in essence, obtain estimators of
the finite population mean by estimating the strata population distributions.

In this paper, we are devoted to develop an empirical likelihood method to estimate the whole
finite population distribution directly, which is suitable for both stratified sampling and post strat-
ification. In section 2, we give a brief review of empirical likelihood in finite population. In section

3, first, we naively apply the empirical likelihood method of Chen and Qin (1993) to stratified
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random sampling, the resulting estimator cannot be the best one, sometimes it would be bad. As
in Chen and Sitter (1999), considering the fact that we have the additional information contained
in the strata population sizes, we develop an empirical likelihood method which effectively incor-
porate auxiliary information and accommodate this information contained in the population size
for each stratum. In section 4, we derive the empirical maximum likelihood estimator (EMLE)
for the parameters of interest when auxiliary information in the form Ex{u(z)} = 0 is known. In

section 5, we establish the Large-sample properties of EMLE.

§2. Empirical Likelihood Estimation in Finite Population

Suppose a finite population U, consists of N distinct units with values Z; = (y;,2;)%, i =

1,---,N. Denote the population means and distribution function of (y;,2;) by (Y n, Xn), Fn =

N

(1/N) > dz;, respectively. Now suppose the sample, S, is, a simple random sample without
i=1

replacement (srswor). The log-empirical likelihood is defined as

1= logp, (2.1)
ics

N
where p; = P(Z = Z;). For auxiliary information of the form Exy{u(z)} = (1/N) } u(z;) = 0,

i=1
where u(-) is known, the problem then reduces to maximizing (2.1) subject to

> pi=1, > piu(zi) =0, (0<pi <1). (2.2)
ics ics
For example, u(z;) = z; — X . Using the lagrange multiplier method it is easily show that, for any
finite population parameters that can be written as 6 = 6(F), the resulting empirical maximum
likelihood estimator (EMLM) is é\n = H(ﬁn), ﬁ'n = Y pidz;, where dz; is the point measure at z;,

i€s
i = 1/[n{1 + Au(z;)}], for i € S, and the lagrange multiplier A is the solution to

u(x;) B
2T () 23)

Chen and Qin show that the empirical likelihood method indeed has some desirable properties in
this context.
Theorem 1 Suppose that as v — 00, the population size N, sample size n, and N —n go

to infinity, and

1 1
Su@)P + -+ [u@n)PY, g+ + laun)P)},
N N

have an upper bound independent of v. Then

1/2(p _
()
Oy
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where 02 = (1—n/N)(a§—a§u/03), ag =[1/(N-1)] é{g(yz) g}, o2 =[1/(N-1)] éuQ(m),
Oou = [1/(N = 1)] i {9(ws) — Fhules), and g=(1/N) ﬁ o(0).

§3. EMLE in Stratified Sampling

In stratified sampling, the population of N units is partitioned into nonoverlapping sub-
populations called strata, of size Ny, --- , Ng units, respectively. For the purpose of illustration,
suppose we have obtained srswor { Zp;,i € Sy} with Zh; = (ypi, zn;)? from stratum h, and that the
samples are selected independently across the strata. Asin Chen and Qin (1993), the log-empirical

likelihood for the above sampling scheme is defined as

H

=2 > logpni, (3.1)

i=14€Sy

where pp; = P(Z;, = Zy;). We consider the problem of estimating § = 6(Fx) = Enx(g9(v))
with auxiliary information Exy{u(z)} = 0. suppose we naively apply the method in section 2

without considering the fact that we have the additional information contained in the knowl-

H Nh H Nh
edge of N1,--+,Nu. Let g = N~* hZ > 9(yni), and of = [1/(N = 1] > 3 {9(yn:) — 7}*,
=11i=1 h=1i=1

=[1/(N-1)] E Z 2(@hi), Ogu =[1/(N=1)] E Z{g(yh,) gYu(zpi). Then from Theorem

=11=1 =11i=1
1 we have

H
Corollary 1 Suppose that as v — oo, N, n = > np, N —n go to infinity, and both

h=1
1 H N H N
N 2 E Ju(zni), Z Z lg(yni)|®s
h 1i= h 1i=

have an upper bound independent of ». Then
0, (6 - 6) 5 N(0,1),

where o, = (1/n)(1 —n/N)(o; —0},/0z), N = E Ny, 6is the EMLE of 6.
Obviously, this can not be a good method. To see why we call this application of Theorem 1

naive, note that Fiy = ZWhFNh, where Fyy, = (1/Ny) Z 02,;» Wp=Np/Nforh=1,--- ,H. So

Zn = /ZdFN = E Wh/ZdFNh and / z)dFN = 0 can be written ZWh/ (z)dFn, = 0.
This knowledge ofhthle form of Fiy contained in W}, should be incorporated in constructing the
EMLE. The empirical likelihood method is well-suited to incorporate auxiliary information and
can accommodate this information contained in the population size for each stratum quite naturally.
To see this, let Z; = (y;,v}) for i = 1,---, N, where v; = (u(;), vii, - ,vmi)? and vy = 1 if

i € Sy and 0 otherwise. Then Ox = (0,W1,---,Wx)? is known. the problem then reduces to
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maximizing (3.1) subject to

H
> pri=Wy, for h=1,--- H, and >3 priu(xpi) =0, (3.2)
iE€Sh, h=14€S),

~ H ~ ~
and using the resulting pp; to get Fi, = > > ppidz,,, and thus § = 6(F;,,) a EMLE of 0§ =
h=11i€Sy
0(Fn). When no auxiliary information beyond the stratum sizes is available, the resulting EMLE

of the population mean is the usual unbiased estimator of the mean ¥y ,. Suppose, instead, that
H N,

Evu(z) = (1/N) > > u(zp;) = 0is also known. In this case, the empirical likelihood (3.1) should
h=1i=1

be maximized with restriction

H H
> pri=Wy for h=1,--- H, and >3 priu(zpi) = Y Whiay =0, (3.3)
iESH h=11i€Sy h=1

with Wrup = > priu(zr;). Then, how do we solve it numerically? We have the following simple
i€EShH
numerical method.

§4. Numerical Method for Stratified Random Sampling

Let up, be a group of numbers such that > Wyu, = 0. Using the lagrange multiplier method,
h
we maximize (3.1) subject to

> Phi = Wh, > priw(Thi) = Whtp, h=1,--- ,H.
i€ESh 1€Sh

The solutions are
Wi,

nh{l + )\h(uhi — ﬂh)}’

DPri =

with A\, satisfying ( )
Wi (uni — up

i€S, Ph{l + An(uni — Un)}

where up; = u(zy;). Clearly, the maximum of the original likelihood (3.1) equals

=0, (4.1)

H H H
= > > log{l+Xu(uni—un)} — > > lognn+ > > logWh,

h=1i€Sh h=14i€S h=14i€Sy

with the best choice of feasible values of uy. Hence, the problem reduces to maximizing

H
— > > log {1+ Ap(un; —4n)},
h=1i€Sy

H

with respect to the @p’s under the restriction Y wpup = 0. Note that, in this problem, Ay is a
h=1

function of uy, defined by (4.1). Using the lagrange multiplier method, we get the function

H H
iy, i, t) = = Y % log{1+ M(uns — @n)} — ¢( 3 Waiin).
h=14i€Shn h=1
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Taking derivatives with respect to uy and setting to zero, we get
_ Z /\(uhi — ﬂh)

i&8, {1+ An(uni — an)}

where A} = O\, /0uy. Hence, we obtain A, = (W}, /ny)t and

—tWpy =npAp — tWy =0,

Wh -
TR 2)
=0 4.2
. Wh - ’
i€Sh _n P
{1 +1 - (uhg uh)}
for h=1,---,H. The other equation is
H
Wyaup, = 0. (4.3)
h=1

For each given ¢, uy takes a different value and thus we denote it as up(t). It can be obtained

H

from (4.2) easily. In addition, it is simple to show that ) Wy (t) is a monotone function of ¢.
h=1

Hence, numerically, we need only increase or decrease the size of t to determine the existence of

the solution and the uniqueness is a simple consequence of the monotonicity.

§5. Asymptotic Properties

We now study the asymptotic properties of the empirical maximum likelihood estimator 9.

Let

1 Nn — —
Ohgu = 777 2= (9Wni) — Gn)(uni — Un),
h i=1

2 1 G2
%hg = N, 1 i;(g(yhi) - Gn)%,
1 Ny —
h > (uni — Un)?,

g = —
hu
Nh_]'i:l

— Nh — Nh
where G, = (1/Np) > g(yni), and Uy = (1/Np) Y uni. Let gy, @, Sﬁg, Sz, and Spg, denote
i=1 i=1
the corresponding sample versions. Suppose that there is a sequence of finite populations indexed

by v such that when v — o0:
(i) N, mp go to infinity, ny/Nj goes to zero, max {n; "Wy} = O(n™!);

H
(ii) 0<e1 <Y, Whop, <2 < 005
h=1
H Ny 3
(i) N71 3 3 funil” = O(1);
h=11i=1

H N 3
(iv) N7t 35 32 [g(yna)” = O(D).

h=1 hi=1
Theorem 2 TUnder conditions (i)—(iv) above, and the stratum size information is incorpo-

rated, we have

o, (0 -6) -5 N(0,1),

v
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where 02 = hé; Wi(n,' — Ny Yop, — {[ Z Wi (ny, h_l)ahgu]2/[ i Wi (" — Nh_l)o-?zu] }

Proof Forany h=1,---,H, we have

> %(Uhi—ﬂh) =t {[%(Uhi—ﬂh)]2/[1+t%(uhi—ﬂh)]}a

i€S, Th i€Sy L Th np
and hence
H - H Wh _ 9 Wh B
PR — t n L 1 t_ o -
h2=:1 Nh zs: (uns = in) h.z::1 ieZS:h {[nh (i uh)] /[ * np (uni “h)]}
So we have

o< (04 ) {5 22 5 )| /[ 5 2 5 - ]

h €S, h=1 M &S,
where u* = max{|up;| : ¢ € Sp}. Since

H - H . H
0= E Whup = E Wh(uh —ﬂh) + Z Whuy,.
h=1 h=1 h=1

H
Note that the second term has mean zero and variance Y W2(n;, ' —N; ")o2, = O(maxn; 'W;,) =
h=1

O(n~1') by assumption (i), (ii). Thus the second term is of order n
H H

first term is of the same order, i.e. | 3. (Wx/np) 32 (wni —@n)| = | S Wh(tn —an)| = O(n='/2).
h=1 i€Sh h=1

Applying this to the inequality for |¢|, we find t = O,(n~'/2). The third moment condition implies

—1/2 and, consequently, the

u* = 0,(n'/?). Hence t(Wy/ns)(uni — up) = 0,(1) uniformly over sampled units. We therefore

get

t = [hf:l Wh (@ —ﬂh)]/[hil Wing'SE,| + op(n='/?)

H 1
( > Wf“ﬁlsiu) Ust + Op(”71/2)a
h=1

H

where Uy = > Wyny,. With this expansion for ¢ and the relation pp; = (Wp/np) /{1 + t(wn /1)
h=1

-(up; — Up)}, we obtain

~ H . H Wy Wh, ~
= igWYni) = 2, — i) [ |1+ —t(uni —
0 = X 5 Buiglun) = 2 ot 3 {gln) [ [1+ TEtuns — )]}
H W H _ -1 W ~ _
= © o E S {1 (X W' Sh) e (s — ) o (omi) + op(n )
h=1 Mh ieS, h=1 Np

_ = d e 1\ & 2 —1 — —1/2
= 9st — hzl Wing, Shy hzl Wyny, Shgu JUst + op(n )

H —1r H
= Gu= [ X Whn! = Ny o] [ X Wi = Ny ongu [T + opn 1)

Using the central limit theorem established by Bickel and Freedman (1984), we prove the
theorem. #
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This result shows that, whenever there is any auxiliary information, the asymptotic variance
of § with respect to stratified srswor is always smaller than or equal to Var (g,,). We also note that
the reduction of the asymptotic variance depends on the relevance of the auxiliary information.
The larger the correlation between u(X) and g(Y), the greater the gain in precision. In particular,
when g(y) = vy, u(z) = z — Xn, the EMLE of Y is asymptotically equivalent to the optimal

linear estimator given by Rao (1994).
2

There can be many ways to estimate o;,. However, one might apply resampling variance
estimators such as the jackknife, bootstrap and balanced repeated replications (see Shao and Wu
(1989) and (1992), Chen and Qin (1993), Shao (1994)) directly to 8, recalculating the py; for each
resample. These may perform better for finite samples since they are applied directly to 6. As an
example, we consider the jackknife estimator of o2. A result on its large sample property is given
in the following theorem.

Theorem 3 Under the same conditions as Theorem 2, let é_kj be the estimator of § when

the jth unit from kth strata removed, and let

H

S3p = (1~ fing (i —1) ¥ (8 —6_4)

k=1 JESK

be the jackknife variance estimator, where f; = njy/Nj. Then S3 is consistent.

Proof The lagrange multiplier with jth unit from kth strata removed, ¢{_j; satisfying

g Wy Upi — Up Wi Upi — U _
P W, t 1.2 W, =0
~1i h ~ k=1, k ~
,’;7&,19 €5 1 +t7kjﬁ(uhz' — p) zz.e;fjkl‘f'tfkjn_k(ukj — )
Thus
g W Upi — Up + Wi 3 Ui — Uy,
h=1 Th ic8S, Wh ~ ng(ng — 1) ;&3 Wi ot
P+t g —— (un; — Up) P14t g — (uki — Ug)
ng Nk
Wi ~ Wi -
(o) [ =30/ (14 0y s =) =0,
and also,
- Wi Uni — U =0
h=1 Mh €S, 1+ t%(uhz’ _ ﬂh)
np
Therefore
H W,> (up; — wp)?
hz—:l ”_h 2:; Wh ~ Wh ~ (k=)
= t€5h [1 + t,kj—(uhi — uh)] [1 + t—(uhi - uh)]
np np,
_ Wi, 5 (uri — ur) _ ( Wi ) ( Upj — Uk ) (5.1)
= — W - - — ) .
n(nk — 1) i&5, ¢ b (s — i) =17\ +t—kjn_k(ukj i)
k
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Similarly

0—0_s;
f: Wh 5 9(Yni)

) w, ~
h=1 Th €8y 1+ t—h(uhi —Tp)
np

_{ i Wi s~ 9(Yni) + W s 9(Yr:) }
h=1Th i€Sn |1 1 ¢ Wh > nr — ligs, 14\ W
o [ + "”n_h(u’“ - uh)] iy 1t —kam—k(“kz — Up)
H W2 urig(Yni)
- s — it
= 1€ESh L .77 _ . — 77
[1 + t_k;j - (wps uh)] [1 +t - (wn; uh)]
Wi 9(Yrs) Wi, 9(Yk;)
_ . 2
nk(n Wi ~ + (nk—l)( Wy, ) (5.2)

—1) . ~
k1) s + ijn—k(ukz’ — ) 1+ ijn—k(ukj — )

Note that ¢ = O,(n~—'/2), and similarly it can be shown that ¢_j; = O,(n~'/2) uniformly. letting

H h
S2= 3 (W /m)Shes Sau= 55 (W3 /) Sngus we get
h=1 h=1
H W2 Uhi — m 2 .
RS> gl =Sl +0M),  63)
= 1COhn L L — = Pt
[1 + 1tk - (wni uh)] [1 +t - (wn; Uh)]
and
H I/V2 i)\ Uphi — u
> s aie)uns — 50 =S 4o,1), ()
= h

iS5 [1 + t_kaj—:(uhi - ﬂh)] [1 + tIZ/_:(Uhi - ﬂh)]

uniformly in (k, j). It is not difficult to show that replacing >~ {g9(yki)/[1+t—r; Wi /nk) (uri—0r)]}
€Sk

by E 9(yri) and g(yg;)/[1+t—k; (Wi /nk)ur;] by g(yk;) in the expression of 6— g,kj has negligible
eff(;cetsgn the jackknife variance estimator. By ignoring these higher order term and using (5.1) and
(5.2) we get
S2(t_pj —t) = —(ng — 1) Wi (ug; — ),
where @, = (1/ny) XS: ugi, and thus by (5.2) and (5.4),
€Sk

~

6 —0_1; = (n, — 1) " Wil(9(yrs) — Ti) — SouSy 2(ur; — )],

where g, = (1/ng) > 9(yki).- Therefore

i€ESy,
S 3 (1= ) — T 5 ((glun) =) — SuSi sy )P
JE—k:1 k (g — 1) & 9\Ykj 7 quSy ~ (Ukj D%

Which implies the desired result.
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