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Abstract

In this paper, we investigate the ruin probability of a discrete-time risk model, in which the
surplus of an insurance business is currently invested into a risky asset. Using a purely probabilis-
tic treatment, we establish explicit asymptotic relations for the infinite-time ruin probabilities,
hence we extend a recent result of Tang and Tsitsiashvili (2003) to the infinite-time case.
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§1. Introduction

Following Nyrhinen (1999), Tang and Tsitsiashvili (2003), and Chen and Xie (2005), we
consider a discrete-time risk model, in which the surplus of the insurance company is currently
invested into a risky asset which may lead to a negative return in each year. Denote by A, €
(—00,00) the net income (the total incoming premium minus the total claim amount) within year
n and by r, € (—1,00) the return rate at year n, n = 1,2,---. Let the initial surplus be z > 0.
Hence, if we assume that the net income A, is calculated at the beginning of year n, then the

surplus accumulated till the end of year n, characterized by S,,, satisfies the recurrence equation
So=2>0, S,=14r,)(Sn-1+ A4n), n=12---; (1.1)

alternatively, if we assume that the net income A,, is calculated at the end of year n, then the

surplus accumulated till the end of year n, characterized by T, satisfies the recurrence equation
To=2>0, T,=0Q+7r)Th 1+ An, n=12---. (1.2)

Throughout the paper, we assume that the net incomes A,,, n = 1,2, - -, constitute a sequence
of independent, identically distributed (i.i.d.) random variables (r.v.’s), that the return rates r,,
n =1,2,---, also constitute a sequence of i.i.d. r.v.’s, and that the two sequences {A4,,n =1,2,---}

and {r,,n =1,2,---} are independent.
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Write
1

Xn=-A Y, =
n ns n 1+7’n,

n=1,2,--. (1.3)

The r.v. X, is the net payout during year n and the r.v. Y}, is the discount factor from year n to
yearn —1,n =1,2,---. In what follows, we write by X and Y the generic r.v.’s of the sequences
{Xp,n=1,2,---} and {Y,,,n =1,2,--- } and write by F and G the distribution functions (d.f.’s)
of the r.v.’s X and Y, respectively. Clearly, the r.v. Y is strictly positive. We assume that the
tail probability F(z) = 1 — F(z) = P(X > z) satisfies F(z) > 0 for any real number z. In the
terminology of Norberg (1999) and Tang and Tsitsiashvili (2003), we call X the insurance risk and
Y the financial risk.

Corresponding to the surplus processes (1.1) and (1.2), we define the ruin probabilities within

finite time n = 1,2, and infinite time as
Ys(z,n) = P(Og}clgnsk <0|So = :c), Yr(z,n) = P(Og}sgnTk < 0T = m), (1.4)
respectively,
vs) =P(,gin S <O =2),  vr@ =P( gin Te<Ob=z). (9

In this paper we are interested in the asymptotic behavior of these probabilities.

Hereafter, all limit relationships are for x — oo unless stated otherwise; for two positive
functions a(z) and b(x), we write a(z) < b(z) if limsupa(z)/b(z) < 1, write a(z) 2 b(x) if
liminf a(z)/b(z) > 1, and write a(z) ~ b(z) if both.

Nyrhinen (1999) investigated the asymptotic behavior of the ruin probability ¥g(z). In terms
of the model described above, we can obtain a combination of Theorems 3.3 and 3.4 of Nyrhinen
(1999) as follows: if (1) w = sup{t|EY"* < 1} € (0,00), (2) EY? and E|X|* are finite for some t > w,

(3) F(0) > 0, and (4) some of the convolution powers of the distribution of log Y has a non-trivial

absolutely continuous component, then the relation
Yg(z) ~ Cz™v (1.6)

holds for some positive, but implicit, constant C.

The objective of the present paper is to establish explicit asymptotic relations for the ruin
probabilities ¥s(z) and ¥ (x) under some other assumptions on the tails of the r.v.’s X and Y.
In the proof, we will use a recent result of Tang and Tsitsiashvili (2003), who investigated the
finite-time ruin probabilities ¢s(x,n) and ¥ (x,n) under the assumptions that F is heavy tailed
and that the tail G is dominated by the tail F. We will also apply some results obtained by Vervaat
(1979) in the literature of stochastic difference equations.

The rest of this paper consists of three sections: Section 2 presents the main results after
recalling an important class of heavy-tailed distributions, Section 3 collects some lemmas, and

Section 4 proves the theorems.
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§2. Main Results

We will assume that the d.f. F' of the insurance risk X has a regularly varying tail, denoted
by F' € R. By definition, a d.f. F' concentrated on (—oo, 0c) belongs to the class R if there is some
o > 0 such that o

lim &Y _ o (2.1)
T—00 F(:L‘)

for any y > 0. For simplicity, we denote by F' € R_, the regularity property in (2.1). In this case

e F(z) = 2 %c(x)exp { /Z @dy} z>a (2.2)
a Y ’ ’ ‘

for some a > 0, where ¢(z) — ¢ € (0,00) and e(x) — 0; see Bingham et al. (1987, page 21). The

corresponding r.v. X satisfies
E(XT)? < oo for 0<p<a, E(XT)? =00 for p>a, (2.3)

where zt = max{z, 0}.

Under the assumptions that F' belongs to a heavy-tailed distribution class, which is slightly
larger than the class R, and that the tail G is dominated by the tail F (to be precise, EY? <
oo for some p larger than the upper Matuszewska index of the d.f. F), Tang and Tsitsiashvili
(2003, Theorem 5.1 and Remark 5.1) obtained precise asymptotic estimates for the finite-time ruin
probabilities ©¥g(z,n) and ¥r(x,n) for each fixed n = 1,2,---. The really applicable results of

their paper were obtained in the case that
FeR_, and EY?P < for some p>a > 0. (2.4)

In this case, it holds for each fixed n = 1,2,--- that

1—(EYo)n_
—— = F@); (2.5)

see Tang and Tsitsiashvili (2003, Theorem 5.2(3) and Remark 5.1).

If further we assume that

¢S($;”) ~

EY® < 1, (2.6)

then the term (EY'®)™ in relation (2.5) vanishes as n increases. Though relation (2.5) was only
proved by Tang and Tsitsiashvili (2003) to hold for fixed n, we intuitively believe that the infinite-
time ruin probability ¥ s(z) should satisfy
Us(@) ~ e T (@), (2.7)
The following result proves that this is true.
Theorem 2.1 Under assumptions (2.4) and (2.6), the asymptotic relation (2.7) holds.
Theorem 2.1 successfully establishes an asymptotic relation for the ruin probability 1g(x) in

a fully explicit form.
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As for the ruin probability 7 (z), we have a similar explicit asymptotic relation below.
Theorem 2.2 Under assumptions (2.4) and (2.6), it holds that

br(e) ~ e () 28)

§3. Some Lemmas

We first point out a simple relationship between the ruin probabilities indexed by S and those
indexed by T'.

Lemma 3.1 For the risk model introduced in Section 1, the ruin probabilities defined by
(1.4) and (1.5) satisfy the relations

s = [ wstelymGy,  n=12, (31)
0
and -
@)= | vsta/)G). 32)
0
Proof Iterating the recurrence equation (1.1) yields that
So=2, Sp=z H(1+TJ)+ZA H(1+TJ) n=12---. (3-3)
j=1 i=1 j=i

We write the discounted value of the surplus S, in (3.3) as

~ n n i—1 n i—1
S()Z.’E, STL:SHHE:‘IE—FEA%HY]::E_ZX’HYD
j= i=1 j=1 i=1 j=1

0
where [[ =1 by convention. It is clear that for each n =1,2,---,
i=1

1/15(w,n):P( max 3" X; H Y; >x) ws(x):P( max 30X, z]'[lY >:c) (3.4)

1<k<n ;=) 1<k<oo /=1 j=1

Similarly, it holds that

¢T(w,n):P( max EX HY >x) d)T(x):P< max 30X HY >a:) (3.5)

1<k<n ;= j= 1<k<0o0 j—1 j=1

Hence by the i.i.d. assumptions made in Section 1, relations (3.1) and (3.2) holds. #

The lemma below is a combination of several results of Vervaat (1979).
Lemma 3.2 Let {(X'n,f’n),n =1,2,---} be a sequence of i.i.d. random pairs with generic

random pair (X,Y). Consider the stochastic difference equation
Va=YyVnot1+Xn, n=12---. (3.6)

If —co < ElogY < 0 and E(log |X|)* < oo, then the r.v.’s V,, converges in distribution to some

real-valued r.v. Vi, which is invariant in distribution for all initial r.v.’s %.
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Proof By Theorem 1.6(b, ¢) of Vervaat (1979), the stochastic equation
V=YV + X, V is independent of (X,Y), (3.7)

has a solution, where =¢ denotes equality in distribution. Then, by Theorem 1.5(i) of Vervaat
(1979), this solution is unique in distribution and V,, defined by (3.6) converges in distribution
to some Vio(Vo), say, for any initial r.v. Vp. Since, by Lemma 1.1 of Vervaat (1979), any limit
r.v. Vio(Vo) should be a solution of equation (3.7), we prove that for all Vg the r.v.’s Voo (Vo) are

identical in distribution. #

The following lemma is well known and is from Proposition of Feller (1971, p. 278) or Lemma
1.3.1 of Embrechts et al. (1997).
Lemma 3.3 Let F; and F; be two d.f.’s concentrated on [0, 00). f F; € R_, and F5 € R_,
for some a > 0, then their convolution F} * Fy € R_, and F} * Fy(z) ~ Fi(z) + Fa(x).
The following lemma is from Breiman (1965).
Lemma 3.4 Let X and Y be two independent r.v.’s distributed by F' and G, respectively,
where Y is nonnegative. If d.f. F' € R_,, for some 0 < a < 00 and EY? < oo for some p > a, then
. P(XY >z .
EILH;O ﬁ =EY“.

§4. Proofs of the Main Results

4.1 Proof of Theorem 2.1
From (3.4) and (2.5), it is clear that for each n =1,2,---,

vs(a) 2 vs(@m) ~ o VP,

It follows that for each n =1,2,---,

lim inf ¢_S(m) > 1 - (BV?)
T—00 F(m) 1—EY«

Letting n — oo on the right-hand side,

1 —

Ys(x) 2 F(z). (4.1)

~1—-EY«

It remains to derive a corresponding asymptotic upper bound for the ruin probability ¢¥s(x).
To this end, from (3.4) we derive that

0 i—1
bs(@) gp(zx; Y; >x). (4.2)
i=1 j=1
For eachn =1,2,---,00, set
n i—1
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By the i.i.d. assumptions, it is easy to see that for each n =1,2, -,

n n
Un =2 X;F ] Yj="Va, (4.3)
i=1 Jj=i+1

n
where [] Yj isequal to 1 by convention. Clearly, with Vi = 0, the sequence {V,,,n =1,2,---}
Jj=n+1
satisfies the recurrence equation

Vo =Y, Vo1 + X5 for n=1,2,---. (4.4)

Now we check the convergence in distribution of the sequence {V,,,n =1,2,---}. By assump-
tion (2.6) we easily understand that —oo < ElogY < 0 should hold since the function f(t) = EY?
is convex in t € [0,a] and f} (0) = ElogY. Hence by Lemma 3.2, V,, converges in distribution to
ar.v. Vo, say, which is invariant for all V. In view of (4.3), this actually proves that Uy is finite
almost surely and is equal to V4 in distribution. Specifically, we choose V4 to be independent of
the sequences {X,,,n =1,2,---} and {Y,,n=1,2,---}.

Knowing F' € R_,, we announce that
P(Ux > ) =P(Voo > z) <PV > ), x>0, (4.5)

for some nonnegative initial r.v. V5 with a d.f. from the class R_,. For this purpose, we choose
a nonnegative r.v. Z independent of the sequences {X,,,n =1,2,---} and {Y,,,n =1,2,---} such
that P(Z > ) ~ c¢F(x) for some positive constant ¢, which will be specified later. By Lemma, 3.4
we know that the d.f. of the r.v. Y¥;Z belongs to the class R_, and P(Y1Z > z) ~ cEY°F(z);
by this and Lemma 3.3 we further know that P(Y1Z + X; > z) ~ (cEY® + 1)F(z). Hence, if we
choose ¢ > 0 sufficiently large such that cEY* + 1 < ¢, then there is some constant 2y > 0 such
that for all z > zo, P(Y1Z + X{" > ) < P(Z > ). By this inequality we can prove that for all
z >0,

PMiZ + X{" > |Z > x0) <P(Z > 2|Z > x0). (4.6)
In fact, for 0 < z < =g, inequality (4.6) trivially holds since P(Z > z|Z > z¢) = 1; for = > xo,

inequality (4.6) can be verified in the following way:

PMViZ+X{ >2,Z>x)  PMZ+X{ >1)

PMWiZ + X > 2|7 > o) <

P(Z > xo) P(Z > xo)
< % =P(Z > z|Z > ).

We identify the initial r.v. Vp such that it is independent of the sequences {X,,n =1,2,---} and
{Y,,n=1,2,---} and is equal in distribution to the r.v. Z conditional on (Z > z¢). Hence,

c —
It follows from (4.6) that for all z > 0,

PWVi>z)=PWMiVo+ X" >2)=PMW1Z+ X >2|Z > z0) < P(Vp > ).
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Successively,

PVa>z) = PYVVi+ XS >z) <PWaW+XS >z)=PWiVo+ X{ > 1)
= P(Vi >z) <P(Vp > xz).

Applying the mathematical induction method we know that for all n = 1,2,--- and all > 0,
PVp,>z) <---<P(Va>2) <PV >z) <PV > x).
Since V,, converges in distribution to V,, taking n — oo yields that for all z > 0,
PUw > ) =P(Voo > z) < P(Vy > ),

as announced in (4.5).
We continue the proof of Theorem 2.1. For any € € (0,1) and any n = 1,2,---, we split the
probability on the right-hand side of inequality (4.2) into two parts as

Ys(z)

IA

P(gjlxjjliyj > (1-e)z) + P(i:%lxj;liyj > )

Ii(z,e,n) + Ix(z,e,n).
Clearly, from (2.5) and (3.4) with X; being replaced by X;", we obtain that

1— (EYe)"

Ii(z,e,n) ~ T_Eve F((1-e¢)zx).

Since Vo is independent of the sequences {X,,,n =1,2,---} and {Y,,n =1,2,---},

L(z,e,n) = P(( § Xt z.]:[1 Y})j]jle>ax)=P<Voo ljle>sx)

i=n-+1 j=n+1 J
n c(EY®)™ _
< P(VO jl;ll Y] > E.Z') ~ WF(S-’E)?

where in the last step we applied relation (4.7) and Lemma 3.4. Thus, for any ¢ € (0,1) and any

n=12---,
1— (EYe)n_ c(EY )™ —
<~ 7 F((1 -
Us() S T rpa F(1—)r) +

It follows from F € R_, that

) ¥s(z) 1— (Eyo)” F((1-g)z) c(EY*)" | F(ex)
PR TFe S T PR TP BT
1— (EY®)" c(EY®)"

= 71_ -« -~ @
e ) Rz’

—Q

Since n and € are arbitrary and EY'* < 1, first letting n — oo and then letting ¢ — 0 lead to the

desired result that
1 _
< —— F(x). 4.
¥s(@) S T F @) (48)
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Combining (4.1) and (4.8) we obtain (2.7). This ends the proof. #

4.2 Proof of Theorem 2.2

Introduce a survival d.f. Rs by Rs(x) = (1 —%s())1(;>0), Which is a standard d.f. concen-
trated on [0, 00) with a mass Rg({0}) =1 —¢5(0) at 0. Theorem 2.1 has proved that Rs € R_.
Hence, applying Lemma 3.4 to relation (3.2) yields that

Yr(z) ~ BY “g(z) ~ 1E%F(ﬂc)-

This ends the proof. #

References

[1] Bingham, N.H., Goldie, C.M., Teugels, J.L., Regular Variation, Cambridge University Press, Cam-
bridge, 1987.

[2] Breiman, L., On some limit theorems similar to the arc-sin law, Theor. Probability Appl., 10(1965),
323-331.

[3] Chen, Y., Xie, X., The finite time ruin probability with the same heavy-tailed insurance and financial
risks, Acta Math. Appl. Sin. Engl. Ser., 21(1)(2005), 153-156.

[4] Embrechts, P., Klippelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance,
Springer-Verlag, Berlin, 1997.

[6] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1I, Second edition John
Wiley & Sous, Inc., New York-London-Sydney, 1971.

[6] Norberg, R., Ruin problems with assets and liabilities of diffusion type, Stochastic Process. Appl.,
81(2)(1999), 255-269.

[7] Nyrhinen, H., On the ruin probabilities in a general economic environment, Stochastic Process. Appl.,
83(2)(1999), 319-330.

[8] Tang, Q., Tsitsiashvili, G., Precise estimates for the ruin probability in finite horizon in a discrete-
time model with heavy-tailed insurance and financial risks, Stochastic Process. Appl., 108(2)(2003),
299-325.

[9] Vervaat, W., On a stochastic difference equation and a representation of nonnegative infinitely divis-
ible random variables, Adv. in Appl. Probab., 11(4)(1979), 750-783.

AR B T o — A B st

bR B ERE  OWMAE
(FBRFHI SRR, T8)  (CRTUKFLFERER, M, 510090)

FEASCA, FMTHFIE T — 1 ORGP 2 . ZE I KRR o, R A
A VAT T AT R E . TR (T3 AU A0 v S T T R R B P R A 0 2%,
W\ Tang 1 Tsitsiashvili (2003) JERIE0 — G554 T MR HE .

x & 9: ¥nhEsX, ENARME, SEAE, LR

2R 4 %5 0211.3.



