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Abstract

In this paper, we present a nonlinear statistical model which describes directly the interaction
relationship between stock’s return and itself historical volumes and prices and other stocks’ volumes
and prices. Further, we prove that a sequence of the returns can converge in distribution to an
exponentially Lévy stable distribution or Lévy stable distribution, depending on different value of
parameter.
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§1. Introduction

There is an extensive research into the theoretical and empirical aspects of the stock
price and trading volume relationship (see Gallant et al. (1992)). Theoretical models,
such as the “MDH” (mixture of distribution hypothesis) model of Tauchen (1983), “SIEF”
(the sequential information flow) model of Copeland (1976), bivariate model of Glosten
(1985), and so on, suggest that volume and price are jointly determined. Relying on the
motivation of these models, most of the empirical literatures (see Gallant et al. (1992),
Chordia et al. (2000)) test and consistently find evidence for a positive contemporaneous
correlation between volume and the price variability. These studies using trading volume
all employ some measure of nonevent related normal trading in order to isolate and analyze
abnormal trading activity.

Most of these models use indirect variable to explain the price-volume relationship,
and therefore, the original data are fully changed in these models.

Recently, Chen (2003) give a model to show price-volume relationship directly:

Ti+1l = T§ + CU;Ty + €541 (1.1)
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where r; is the return of the ith day, v; denotes the relative rate of the volume change of
the ith day, and the residues, &; ~ N(0,0%). However, the model (1.1) considers that the
return depends on only one day’s volume. It is not consistent with practical situation.
We know that the price-volume relation should base on the amount accumulation of the
volumes. Based on the model (1.1), Qiu and Han (2005) present the following model:

1
Tigl1 = T3 + CESZ'T’Z' + €it+1 (1.2)

i
where s; = > v; and ¢ is a constant which represents the influence strength of rate of the
J=1
average volume change on tomorrow’s return.

The model (1.2) improves the model (1.1) in two aspects. First, substituting average
value of v;, i v; /i for v;. Second, making the hypothesis that v; and ¢; is subject to the
Lévy stable]dilstribution, respectively.

We know that the distributions of financial data hold the “fat tail” property, this can
be tested by a large number of empirical results (see Peters (1994)). Qiu and Han (2005)
also give a test by the data of the trading volume per day of the index of Shanghai stock
market from January 1998 to December 2002. The results show that the exponent of v;
closes to 1.7 (positive tail), and the exponent of €; closes to 1.5 (positive tail).

It is well-known that a stock’s price can be effected not only by itself historical volumes
and prices, but also by the other stocks’ volumes and prices, which is true of securities
market’s practical situation. So we put forward a general non-linear statistical model, and
study the asymptotic distribution of a sequence of the return by analyzing the relationship
between the return, relative rate of trading volume and its residues. Next section, we
describe the model and main results. The proof of several Lemmas and Theorem 1 will
be given in section 3. In section 4, we present two special examples. We closed our paper
with a problem in section 5.

§2. The Model and Main Results

For a portfolio composed by N stocks, let rl(j ), Vi(j ) denote jth stock’s return and
trading volume at ith day (or week), respectively, and vl(] ) = (Vl(ﬂ — VZ-(J )) / V;(] ) denote
(7)

the rate of trading volume of jth stock. We assume that the distributions of v;”’ are

subject to the stable laws, this is, vfj ) are sequence of i.i.d. stable random variable, and
write UZQ) ~ L(oj), o € (1,2] where L(c;) denotes the Lévy stable distribution with the
characteristic exponent «;.

According to the theory of stable distribution (see Uchaikin (1999)), we know that

the density function px(x) and distribution function Fx(x) of a stable random variable
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X satisfy
(o.¢]
1—Fx(z) = / px(s)ds ~ cx™?, px(z) = Fx(z) ~ caz™! (2.1)

as x — 00, where the parameter « is the characteristic exponent of X, and c is a positive
constant.
We put forward the following model:

R(n+1)=R(n)+CR(n) + E(n+1)

where
T’g) 8gll)
7”%2) 6%2)
R(n) = . ) E(n) = )
T’SLN) {-:%N)
y )
3 agicnsn 0 0
- g: (i)
0 CLiQCnSnZ e 0
C = i=1
= (i)
0 0 s Y aiNCasy
i=1
Its jth component is
rg}rl — ) = (aljcnsg) + agjcnsg) +--+ aNjcnsq(lN))r,gj) + 5&11 (2.2)
where 5,(3 ) denote the residues, sg) = > vj(-i) are the cumulative sums of the
j=n—[1/cn]+1

rate of trading volumes, a;; denotes the influence strength of ith stock’s cumulative rate
of trading volumes to jth stock’s return, ¢, denote the structure factors which satisfy
[1/cn] < n, where [z] is the biggest integral smaller than x. Especially, when ¢, = 1/n,

denotes the ith stock’s average rate of trading volumes. We suppose that
¢n = f(n+1) = f(n) +o(1) (2.3)

trend to zero decreasingly, and f(n) satisfies the following condition:
There exist 0 < § <1 and the integrable function g(n) such that

Fn)— (k) = (% )n? (24)

n
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and
f(n) = 0(n”). (2.5)
Next, we mention the main theorem of this paper.
Theorem 2.1  Suppose that vz(j) ~ E(aq()j)), agj) ~ E(agj)), 1=1,2,---, N, af,()j) €
(1,2), ad) e (1,2), and P(w; ng)( ) =0) =0. Let E’UZQ) =19, pi = 1+a;p™ +ag,;u® +
4 alNu( ) and apin = mln(ag ), ozq(JQ), . ,agN)), Lin = {i|a7(f) = Qin }-
(i) If |pj] > 1, then

(Y (15 o) "™ Jip] Lo} 26)

|p]|n ie[min

: n )\ Vot
where AY) = ( > (g(k/n)nﬁ)"‘"] ) , and « 47 denotes the convergence in distribu-
k=1
tion, as n — +o0.

(ii) If |pj] < 1, p; # 0, then

. d ]_ 1/0&5;3) .
i) 4, (1—|!”> L(al)). (2.7)
(iii) If |pj| = 1, then
(7) i 1/Olmin
G (] ’1/AnJ > exp{<. ; |aij|06m1n) E(Oémin)} —¢ (2.8)
1€ min

in distribution, this is, F,(z) := P(|rn+1]1/‘4]) <z) < F(x):=P( <), as n — oo.
Remark This Theorem shows that the limit distributions of a sequence of the
returns have different forms in different parameters. When |p;| > 1, the limit distribution
of r, is of exponential Lévy stable distribution. For N = 1, (2.6) can be rewritten as
Pyl ~ plela/plAnLion) . — pneﬁ(al)A
r, if t = kh, as h — 0, the return ¥ = (1 + Th)k — €™, The conclusion of Theorem

2.1(i) can be regarded as its general case with risk and random interest rate £(c;). So do

. We know that if the rate of return of riskless is

comprehension when |p;| < 1.

83. The Proof of Theorem

We only prove Theorem 2.1 in the case of N = 2 since the theorem can be proved
similarly in other cases. Fixed j = 1, the model (2.2) can be rewritten as

7(11421 = (1 + a1608Y + ag1e,s@)rH) + 5( ) (3.1)
Further, for writing more simply in the following proof, let us suppose a = a1, b = as1,
and Oéq()) =aq;,1=1,2, agl) = a3.

To prove Theorem 2.1, we first give several lemmas.
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Lemma 3.1 (i) (1/4,) > g(k/n)n’(vj — p) 4, L(«), where « is of the charac-
k=1

n

teristic exponent of stable random variables v, and p = E(v;), A, = (Z (g(k:/n)nﬁ)a) 1/a,
(i) A, = O(nl/*+P). -
Proof The idea of the proof is analogous with Qiu and Han (2005)’s. lem(]
Lemma 3.2 Let 6 > 0 such that [p| —J > 1, then
P(wi A U lejar(@)] > (ol = 87) =0
k=1j=k
where ¢; are stable random variables with characteristic exponent a.

Proof See Qiu and Han (2005). lemO

Lemma 3.3 Under the assumption of Lemma 3.2,

n n

Ent1+ D e [T(1+ acjs§1) + bcjsg-Q)) 1/An
k=2  j=k
1+ - — 1 a.s..
r%l) ' (1+ acjsg-l) + bcjs§2))

7=1

(1)

J

(2)

Proof Let w; = acjs ; and

+ bejs

n

enit+ O en [1(1+acist! +bejs?) e+ 3 e T (1+w))
U — k=2 j=k _ k=2 =k (3.2)

rgl) [T+ acjsg-l) + bcjs§2)) 7“%1) [T+ wy)
j=1 i=1

then, by |1 4+ U, |4 = exp(log |1 + Uy|/A,), we only need to prove log|1 + U,|/A, — 0
a.s..
Since
P(w; rgl)(w) =0) =0, (3.3)
(#)

and, by the law of large numbers, cj(sj — [1/¢j]pi) — 0, so when j — oo,

I+w; = 1+ acjsgl) + bcjs§.2)

= 1+ aps + bus + ac; (sgl) — [clj] ,u1> + be; (s§-2) - [clj} /LQ) —p, as. (34)

P(w;1+wj(w) =0,Vj>0)=0, a.s..
There exist two zero measure sets, Ny and Ny, such that Vw € Q — Ny, rgl)(w) # 0 and
VweQ—Ny, 1+wj(w)#0, Vj>0.
Similarly, it follows from Lemma 3.2 and 1+w; — p a.s. that there exist two zero mea-

sure sets N3 and N4 such that Vw € Q — N3, 3K (w), such that Vj > K;(w), |gj41(w)| <
(|p] = 6) and Vw € Q — Ry, I Ky(w), such that Vj > Ko(w), |14+ w;(w)| > |p| — 6.
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~ 4 ~
Let Q =Q — U N; and K(w) = max{K;(w), K2(w)}. Then Vw € §, we have
i=1

[Un(e)
enia@) /[ 10+ ws)]| +

n—1

en(@) / [P @) TL(1 +w;(@))] |

=1

<

et oot /[0 T+ ()|
1

!“p‘—d)"/ [7‘5”<w> ﬁ (14 w5 (@) (o] — 8"~ F1],

IN

K(w ) 1
(1+w;(@)) (o] - 0)] |

]—1

/[
+ @)/ [r§”<w> 1] 1wy + - [ea) /[P >jri[1<1+wj< @)

K(w)-1

= (= K@)+ D] (pl =0y [V ) T 1+ )]
e/ [ T @4 uston] + -+ eato) /[0 TL0 + ]
Let
M(w) :max{ (|p|;f) ) Z_el-(w) 1=2,3 K(W)},
A T 0w 1@ T+ )

then |U,(w)| <n-M(w) and

log |1+ Uy (w)] < log(1 + |Uy(w)]) < log(1 4+ nM(w))
Ay - Ay - Ay .

Because log(1 4+ nM(w)) = O(logn), A, = O(n'/**P), we have

log |1+ Up(w)| 0 Ve 0

An

that is ozl 4 U
Og\A-i-n| —0 a.s.. 0

n+1

Lemma 3.4 Let 7“7(11421(;)) = > p”“_kag), then

k=2
W) () o)
n o 3)s

i 1 —|pes

where |p| < 1.
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Proof By Stability Theorem (see Uchaikin et al. (1999)) and the definition of the
characteristic function, it can be proved easily. lcm[]

Lemma 3.5 Ve >0, z, ~ L(«a), then |z,| < n®, a.s. n — oc.

Proof When n is large enough,

“+o00 —nt
P(’xn’ > nE) ~ / G-’L'_(a—i_l)dm —|—/ a(—x)_(a+l)dx — 22711_6& — 0,

e — 50 «
so |zp| < nf, as.. lemO

Lemma 3.6 The density function f(x) of U, in (3.2) is bounded, and

—nE

11+ U,| >eT, a.s. n — 0o
n
where 0 < e <1/aj; + 3, k> 2.
Proof If |f(z)| < M, then
P(l+ U <) =3 p " .y e
1 < ) - (- 1- <U, < -1 )
Se(ruls o) -2 g SUnS -1+
N —1+e™ n€ /n N efnE N
- 2/ fadr<aM s S <o s L <o
n=1J—1—e " /nk n=1 N n=1"T

this has denoted that when n — oo, P(|1+U,| < e~ /n*) — 0, thisis, [14+U,| > e~ /n*,
a.s..
Let
Up = 5,(H)1+ Zs,(c) IT
k=2 j=k

)]/ ) = 5 feen /1040,

by (3.3), equivalently, we only need to prove that the density function f(x) of U, is
bounded.
Let F(y) is the distribution function of U,,.

F(y)="P //pv 1Gdacl), §2)€dx§),j_1,2, 7)5(Z%Sy>

k=1
where By, = H ( + ac; Z 3:( ) + be; Z x ) Since ¢, are the sequence of i.i.d. stable
J=1 =1
random variable, there ex1sts a random variable € with the same distribution as € such

that

oL~

3

Z": Ekrl d €
k=1 Bk B,

So the density function f(z) of U,

f( / /pv 1 €dx -1),11]('2) € dx§2)7j =12, ,’I’L)Enps(ény).
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Since pe(+), pu(-) are the density function of stable random variable, they are abso-
lutely continuous. When z is large enough, p(z) = O(z~(@*1). So

f(y) < / ’ '/~ < Mlps(ény)pv(’l)](-l) S dl’él))* : pv(’l)](-2) S d$§2))*

+ /~ ’B ‘ps( n?/)pv( J( ) € diB( )) pv( (2 ) S dx@))
‘Bn|>M1

The first term is bounded, and the second term is of equivalence to O(z~ Z(O‘vahra&)) —
0, so f(y) is bounded. lemO

Now we can prove the Theorem 2.1.
Proof of Theorem 2.1(i) By (3.1) and (3.4), we have

P =V Ha+wﬂ>+m(b+%ﬂ+§%%jnu+mwﬁ+mwﬁ) (3.5)

and

1+ w; = 1+ acjs§1) + bcjs§-2) = p[l + %cj (sgl) — [l} M1> + ch (sgg) - [l‘}ﬂz)]a

Cj €
] = I 2o (4 [ (57 - [ )
ol r{ 2 e M) T T g 1

‘1+[( 1+Z€ jﬁk(l+wj)}/[r§1)jﬁ1(1+wj)”'

It follows from Lemma 3.3 that

(1) 1) 1/ An
1 [ e T vu] /[0 Tasw)] [ =1 as
j=k j=1
Furthermore, by Lemma 3.3 and Lemma 3.1(ii), we have
Ve,  [rPw)4 - 1. (3.6)
The remain task is to show the convergence of the following
n a (1) 1 b (2) 1 1/An
(- () st ] e
jl[ p I\ e p I\ L (37)

When a; < a9, for all 1 < r < oy, Elvj(-l) — p1|" < o0 and E]v]@) — po|" < oo. For our
purpose, we fix r € (2aq /(a1 + @16+ 1), 7). By Marcinkiewicz-Zygmund’s strong law of
large numbers (see Chow (1988)), we have

cj (55-” — [é}m) = o([clj] 1/r_1> — 0, a.s. 1=1,2,
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" & = %cj (s§~1) - [ 1};11) + ﬁcj (sf) - [i}ug) — 0, a.s.

and

Since 2/r —1 < 1/a1 + 8, A, = O(nY/*1+P) thus (1/A4,) - Z g2 —0.

<

Therefore

Lot 20 = ol — iy, 5 =) —[1/ejlus = > o, i=1,2, then

1=
&
/~
»
Sl
S
N2
|
| —
—_
—_
=
N
N—

.
Il
—

(fG+1) = FGNEY +28, —a)

I
M=

<.
Il
—_

FG+ 18— FG)EY — r G+ 1ol

I
NIE

.
Il
—

_ G - Do _ S™ pei gl

= f(n+1)3, J()o; Zf(]+ )Uj+1

n+l1 ==

= f(n+1) > U, _Zf(])j
j=n+1—[1/cpnt1]+1 Jj=1

n+1

= S (fn+1) - fR)ey - X )

k=1 j=1

n+1 . n+1—[1/cn+1]
_ 5()
;g(n+1)(n+1) Uk =1

Since
ntl-=[1/cp 1]

J; @5’) = ggzi—)l-l—[l/cmrl] = 0((77, + 1)1/ai)

and f(n) = O(n?), so

n+1—[1/cy 1} 1)1/ea+8
[ 2 ) )fnJrl}/A - <(T)L(+1/Zn+ﬂ) )_0(1)‘

Ugi)f(n +1) +o(1).

(3.10)

(3.11)
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By Lemma 3.1 and a1 < a9

(5 o) o 0] e = [ ( ) e ] foren e
O((n + 1)1/0248)  O((n + 1)1/ +8)
CO((n+ 1)/ertB) " O((n)l/er+h)
Let

[n—i—l

S o(=) o+ 1P fO((n+ 1)),

then, by Lemma 3.1, x, 4, L(ag), therefore, by Lemma 3.5, |z,| < n°. Taking 0 < € <
1/a; — 1/ag, then

n+1 k

[Eg( +1)n+1ﬁ (2)}/14 ~.0. (3.12)

So, by (3.11) and (3.12)

o nd = g [e( = [Clm)+ e = [m)]
_ Lo ok a5, bRE 6-(2)
_ fn-ﬁk§19<m)(n+l) +2 Zg( +1)(n—|—1) o +o(1)]
- ;:Zgig<rj_l)(n+l)ﬁ (0 4 (1)].

Thus, by applying Lemma 3.1 and the properties of characteristic functions, we know
when a1 < as, (2.6) hold.
When a = a1 = as, vi(l) ~ vz@, then

i -+ 5 :iig(nj:_1>(n+l)5 w2 nilg( — )P o1 (313)

Since the characteristic function of aYj + bY> is

favirovs (t) = flat) - f(bt) = f(&)19° f(£)I" = fg)el™+PI%)

and it is also the characteristic function of (|a|® + |[b|*)Y*L(a), so by (3.12), we can

immediately obtain (2.6).

Proof of Theorem 2.1(ii) To (3.5), by Lemma 3.4, we only need to prove 7“7(11_31 —

2421( ) — 0, as..
Let p and a be two constants such that |p| < |p] < 1 and
5> 1 _ 1 -0
log(1/]pl) ~ —log|p|
Again let

n' =[(a+ 1)logn], (3.14)
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then
1 1 1 n
’EH)—I —T(ll(P) = oV H1(1 + acjs; s )+ch 5 ))
j
- i [51(61) [T +ac s( )+ bejs 5 )) Sl(fl)pn+1—k:|
k=2 =k
oL 5l(cl) [ [T+ aijS‘g»l) + bcj5§2)) _ pn+1fk]
k=n—n’+1 j=k
= Iy(n) + Ii(n) + Ly(n).
(I) Since 1+ ac;s; O bejs; )N ap1 + by = p a.s., we can find a zero measure

set N; such that Vw E Q- Nl, there exists a number Kj(w) such that Vj > Kj(w),
11+ acjs§1)(w) + bcjs§2) (w)] < [p] < 1. By (3.3) we have a zero measure set RNy such that
Vwe Q- Ry, 1Y (w) # 0. Thus, for Yw € © — Xy URy, we have
Tom)| = [ri" @) TT(+ e (@) + bess ()
]:

Kl(w)
Y (w) I (14 acjsi (@) + beys® (@) - 1175 0, - oo

IN

W nml<’s ) H<1+acjs§-”+bcjs§2)>\+kg e oI+,

by the property of the stable laws

o o, ¢] 1
Pe(1)>k:O — | < o0,

so we can find a zero measure set N3 such that Vw € Q — N3 there exists a number Ka(w)
such that V& > Ks(w), \E,gl)(w)] < k. Let K(w) = max{K;(w), Ko(w)} and

K&y, K@) (1) @)
M) = 3 @ TT 1+ acss ) + besal? @)

j=k
Then Vw € Q2 — Xy U N3, we have

n—n' 1 n 9
3 16 @) TL 1+ acjs; (@) + bessy” @)

j=k
K(w) K(w)
< % @I+ acis; @)+ besy” @) - o
= ‘7:
+ gl
k=K (w)+1
< M@EF@ 4 kg
k=K (w)+1
~n/+1
< M(w”man(w) + |p| (n_n/)‘

1—1p]
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Because of |p|" t1(n —n') < |p|" - n = exp(n/log|p])n = exp(—n'log(1/|p])) - n, by
(3.14) we have

exp(—n’log%) n = exp<_[(a+;)10gn]510g’1m> -n
= (1+0(1))exp(— <1+;i)2ilog|l;logn> ‘n
= (1+o(1) “ —0

n(1+1/a)alog(1/[p])
and M (w)|p|" K“) =0, so
kZQ et ku +acss (W) + bejsP (W) = 0 as.
= ]:
Similarly, we have

n—n' (1) Lk
Sole Mt =0 a.s..
k=2

(III) As we know that {ES) } is a sequence of i.i.d. random variables, by the strong
law of large numbers we can find zero measure set Ny, Vw €  — Ny,

[ > 621)(W)}/n’—>u3- (3.15)

k=n—n/+1

Note that & = (a/p) - ¢;(s\) — [1/c;lm) + (b/p) - (s — [1/¢;luz) = o(51/7~1) — 0,

n

1 _

L) < X W] prh
k=n—m/+1

[1(1+8) 1]
j=k

n
= % e o

ra+o( > &)

k=n—n'/+1 k<i<j<n
n 1 ] no_
= (o) el S0 5
k=n—n/+1 =k
< (L+om) X ferl-lpl" T (n =)
k=n—n'+1
) (')
< (1 1 - le| -
= ( + O( )) k:ngnl_i_l n/ | | (TL _ n/)lfl/r
and therefore, by n’ = O(logn) and (3.15),
n (1) n2
x| el - () 0 a.s..

N
k=n—n/t1 (n—n/)=1/r

Thus

T+l — Tnt1(p) — 0 a.s..
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Proof of Theorem 2.1(iii) Since |p| = 1, it follows from (3.5) that

1 ooy 2
e+ > W T+ wy)
k=2 j=k

1+

il = 1| T+ aesf? + begsl®)
J:

P T+ wy)
J=1

Apparently, (3.6) still hold, and we can prove by the same method with the proof of

n 1/An
Theorem 2.1(i) that | [ (1 +acjs(1) + bcjsgg))‘ possesses analogical result as Theorem

J

Jj=1
2.1(i). The remain task is to prove

n

1 D 5
sgll + kz_: 5,(6) I:Ik(l + wj) 11/A,
1+ Un| = |1+ 1‘2n = >1  as. (3.16)
Y TL0 +wy)
j=1
By Lemma 3.6,

log |1+ U,| > —n® —klogn — _pe /B
A, = pljaitB ’

when € — 1/a; — 8 <0, thisis, 0 < e < 1/ay + 3,

log [1 + U,| >0

A (n — 0),

so elo8[1+Unl/An > 1 this is (3.16).
This completes the proof of the theorem. O

84. Application of Theorem

We give two special examples.
Example 1 In the model (2.2), let C,, = 1/n, therefore st = > v](-i)/n are the
=1

average of rate of volumes. Since log(n + 1) —log(n) =log(1+ 1/n) = i/n +o(1/n), we
can take f(n) = log(n), then f(n) — f(k) = log(n/k) = —log(k/n). Taking g(k/n) =
—log(k/n), apparently, g(z) = —log(x) is of integrable function on interval [0, 1]. In the
situation, A, in the Theorem is

0= (8 ()

=1

i)

)Uagvﬁ

. n
Example 2 In the model (2.2), let C,, = 1/n%. When 6 = 0, s = > v =

v, The model (1.1) is its special case.
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For 0 < § < 1, since
(n4+1)' 0 —n!=0 =l =9[4+ 1/n) 0 —1] = ' °[(1 = 8)(1/n) + O(1/n?)] = (1—6)(1/n°),
therefore let f(n) = [1/(1 — 6)Jn'~?,
fn) = f(k) = [1/(1 = &))(n' 2 = k') = [1/(1 = &)]n' (1 = (k/n)'~°) = g(k/n)n'~°

where g(k/n) = [1/(1 —8)](1 — (k/n)*%), 0 < f=1—6 < 1. Apparently, g(z) = (1/5)
(1 — 2P) is an integrable function on interval [0,1], and f(n) = O(n?).

This model shows that we can only consider the influence of near n® days’ volumes
acting on the return. This is in accordance with the practice situation.

§5. Summary and Discussion

In the proof of Theorem 2.1(i), Agj ) play an important role. Generally, Ag ) can be

written as
| . - el
AP =] / g™ (@) o) T = Gt o)
0

where

) 1 . I/QLJ')
al) — [/0 gaij)(m)dm} .

ﬁ/ 2 e —T(aW) + 1)

SO _
ol

) n W1 g)j) ) . )
AY) = ( > (log & + 1> ) /o — F(aq()]) + 1)1/0‘2]) . nl/o"(f]>.
(3

n
i=1

A%j ) satisfies the power law.
Furthermore, when |p;| > 1 the stock price fluctuates more,

o g| n+1 EON (32 [y | min) L/ tmin - L(omin)
p; ] " |95
Qmin \1/®min
R G(]) _nﬁJrl/amin . (Z ’a’ij" ’ ) / _[’(amin)’
Pj

r9) | also satisfies the power law.
n+1
For |p| = 1, we can only give the lower boundary. When p =1, E(acysn a )—i—bcns(Q)) 0,

(1) (2)

acnSn’ + beysy,’ can be either positive or negative, so H (1 4+ acpsn, ( ) + bcns( )) trends to

n=1
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either 0 or co. From the proof of Theorem 2.1, we can know that when |p| > 1, the first

term of (3.5) 7“9) H (1+ acjs; s 4 bejs; 52 )) plays the important role and when |p| < 1, the

7=1
n n
behind part of (3.7) > 6,(61) [T+ ac S( )+ bejs; s )) plays the key role. We guess when
k=2 =k
|p| = 1, the two parts should all make effect.
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