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Abstract

Point-wise confidence intervals for a conditional probability density function are considered.
The confidence intervals are based on the empirical likelihood. Their coverage accuracy is
assessed by developing Edgeworth expansions for the coverage probabilities. It is shown that
the empirical likelihood confidence intervals are Bartlett correctable.
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§1. Introduction

Let (X1,Y1),---,(Xp,Y,) be an ii.d. sample from a population (X,Y) € RP x R?, and
6 = f(y|z) be the conditional probability density function of Y given X = z € RP. The double

kernel estimator!!:2] for f(y|z) at any given (z,y) € R? x RY is

A a*Pb*‘IZKl(x;X")Kz(y_E)

Flyle) = b
g a1 EKl(

, (L.1)

x—X,-)

where K;, i = 1,2 are kernel functions, and a = a,, and b,, are smoothing bandwidths. Strong
consistency and asymptotic normality of the estimator are studied in [1, 2].

This paper is concerned with the construction of point-wise empirical likelihood confidence
intervals for f(y|z) at any fixed (z,y) € RP x R? in conjunction with the double kernel estimator. It
is aimed at studying coverage accuracy of the confidence intervals based on the empirical likelihood
by developing Edgeworth expansions for the coverage probabilities. It is shown that the empirical
likelihood confidence interval is Bartlett correctable. Moreover, the empirical likelihood automati-
cally studentizes so that there is no need to estimate variances in the limiting distributions. These
results lead to a conclusion that, in the sense of coverage accuracy, empirical likelihood approach
suggested in the present paper is particularly competitive with the normal approximation methods
implied in [2].

A conditional density provides the most informative summary of the relationship between

independent and dependent variables. The conditional density function plays a pivotal role in
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financial econometrics (see [14]). The estimates and their asymptotic properties of the nonpara-
metric kernel estimates are investigated in [2] and [14], among others. Often confidence intervals
for f(y|z) are required, for instance, to test a hypothesis about f(y|z).

The paper is structured as follows. Section 2 describes the concept of empirical likelihood for
conditional densities, and presents results about Wilks’ theorem which can be used to construct the
empirical likelihood confidence intervals. The coverage errors of the empirical likelihood confidence
intervals are given in Section 3 by developing Edgeworth expansions, and the results for Bartlett
correction are obtained in Section 4. Simulation results are reported in Section 5. Some proofs are

given in the Appendix.

§2.  Empirical Likelihood Confidence Intervals for f(y|z)

Use g(+,-) and h(-) to denote the joint probability density function of (X,Y") and the probability
density function of X, respectively. We first introduce some notations and assumptions.

We assume the following regularity conditions:

(i) g and h have continuous partial derivatives up to the r-th order in a neighborhood of (x,y)
and x respectively, and g(x,y) > 0, h(z) > 0;

(ii) For i = 1,2, K; are compactly supported kernels which satisfy

P
, . 1, Z Ji = 0;
/“{1 - ugr Ky (u)du = =y
0, 1< Z 7i<r—1,
i=1
q
, _ 1, Z Ji =05
/“{1 - vpr Ky (v)de = =g
0, 1 S Z ], S T — 1,
i=1
where u = (u1,--- ,up)”, v = (v1,---,0q)7, Js (s =1,2,--- ,max{p,q}) are non-negative integers;

(iii) @ = 0, b — 0 and naPb®! — oo as n — oo;

(iv) naP*27b? — 0, naPb?*2" — 0 as n — oo.

Remark 2.1 We will use Conditions (i) to (iv) to prove a Wilks Theorem for the empirical
likelihood ratio statistic (defined below). Let us compare these conditions with those employed in
[2] to obtain the asymptotic distribution of the double kernel estimator. In [2], only the situation
that r = 2, p = ¢ = 1 is considered. In this situation, it can be seen that our conditions are weaker
than those in [2] in some degree.

Define w;(0) = K1((z — X;)/a){b "K2((y — Y;)/b) — 6} with § = f(y|z) and, for positive
integers 7, .

wj = (na?)~! ;1 w©0),  nj=E@;).

It can be shown, by Taylor expansion, Conditions (i) and (ii), a — 0 and b — 0, that

=0 +b7),  pp= b’q{f(m,y)/Kf(u)K%(v)dudv + 0(1)}. (2.1)
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By Central Limit Theorem,
\/nal’ugl/z(wl —p1) =4 N(0,1), VnaPb31(wy — p2) = Op(1). (2.2)

In this paper, the empirical likelihood method is used to construct the confidence intervals for
6. The empirical likelihood, introduced by Owen[®*, is a computer intensive statistical method
like the bootstrap. However, instead of using an equal probability weight n~! for all data values,
the empirical likelihood chooses the weights, say p; on the i-th data points (X;,Y;), by profiling a
multinomial likelihood under a set of constraints. The constraints reflect the characteristics of the
quantity of interests. A review of the empirical likelihood is given in Hall and Scalal®!.

Let p1,---,pn be nonnegative numbers adding to unity. The empirical likelihood at 6, is
defined as

n
L(#)=  sup II pi
3 pia (=0 7

After using a Lagrange multiplier to find the optimal p;, the log empirical likelihood ratio is
n
£(0) = —2log{L(6)n"} = 2 3 log{1 + A(O)w:(0)},
i=1

where () satisfies

5 wil6){1+ AO)wi(0)} ™ = 0. (2.3)

i=1

An empirical likelihood confidence interval with nominal coverage of a, denoted as I, is
Ia,el = {0|Z(9) < Coc}7 (24)

where ¢, is the ath quantile of the x? distribution. A special feature of the empirical likelihood
confidence interval is that no explicit variance estimator, like the one in [2], is required in its
construction as the studentizing is carried out internally via the optimization procedure.

To evaluate the coverage of I, ;, we notice from (2.3) that

" " W2(6)
2“0 =20 2 T 6 9)

=0. (2.5)
Put Z, = max; |w;(8)| = O(b~?), a.s.. Then

[A(0)]

T+ @)z, ~ "

It is clear that Z, = O(b~%) almost surely, @, = O,{(na?b?)~'/? + a" + b"} and Wy = po +
0,{(na?b®?)~1/2} from (2.1) and (2.2). Then combining with Conditions (iii) and (iv)

AB) = O, [b%{(naPb?) /2 + a" +b7}].

From (2.5), we have A\(§) = (@2) '@ + Op[{(na?b?)~1/? + a” 4+ b"}?]. Thus,

£(0) na?uy '@? + Op[naP{(naPb?) /2 + a” + b"}7

na?)'" (@1 — p)py ' + (na?) 2 py 2 1} + Oplna?{(na?b?) /2 + a” + b7}
2 2 P
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Now Conditions (iii), (iv) and (2.2) imply that £(8) is asymptotically x3.
In summary, we have the following Wilks’ Theorem for the empirical likelihood statistic:
Theorem 2.1 TUnder Conditions (i) to (iv),

£(0) —a X3

From this result, we can see that the empirical likelihood confidence interval I, ¢; has asymp-

totic coverage probability a.

§3. Coverage Accuracy

In studying the coverage accuracy of the confidence intervals, we assume an extra condition

(v) na?/logn — oo, nb® — 0 for some t > 0.

The derivation deferred until the Appendix shows that the coverage probability of I, ¢; admits
the following Edgeworth expansion:

Theorem 3.1 Under Conditions (i) to (v),

o /1 1 B
P{o€lnu} = a- {na”ufuz T+ (§u2 “pa = 315 3#3)(%”) l}cad)(ca)
+0{(na?)(a®" + b*") + (naPb?)~%}, (3.1)

where ¢(-) is the the probability density function of the standard normal random variable.

Now, we investigate the optimal bandwidth choice. Put
K1 =/ w Ky (ug, -+ yup)du, 1<1<p, K2 =/ vgKo(v1,--- ,vg)dv, 1<s<q.
RP Ra
It can be shown that

P 0 q 0
— _1\" (-1 T i T -~ o
M1 ( 1) (,r) {a E K1 811/[ +b E Ks2 v }g(ua v)|u-z,’v-y

=1 s=1 s
P 0
—(=1)"()a" Y ki1 m—h(u)|u=s + o(a” +b")
=1 Ouy

= &Ga' + &V +o(a” +b7),
i = b {g(e,y) [ K@K @)dudv +o(1)} 2670+ o(b7),

pe = v {gla,y) [ K@K @)dudo +o(1)} 267+ 0o(b2)
p = v {glay) [ K@K @)dudo +0(1)} 2657+ o)
Therefore, the dominant coverage error term in (3.1) becomes
PLY T \2¢—1 172 1732 qrq\—1
{nab(Gra + &7 + (5676 — 56 °6) na’s) ! fead(ca). (3:2)
If we take a = b = h, then the dominant coverage error term is

{6+ &re an e 4+ (3626 - 36°6) h* ) Jeaglea) (33)
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In this case, The optimal h that minimizes (3.3) is

. (p+q) (%53—155 _ %53_262) 1/[2(p+g+7)]
4Tl rat+2n)(E+6)?

Choosing a = b = h = O(n~Y/(P+4+7)) then the optimal coverage probability of the empirical
likelihood confidence interval I, ¢ is P{6 € I i} = a — O(n—r/(ptatn)y,

) (3.4)

§4. The Bartlett Correction

The results in the last section show that the optimal coverage error of I, . is at the order
of O(n~"/(P+a+7)) What we are going to show in this section is that the coverage error of the
empirical likelihood confidence interval can be reduced by Bartlett correction.

The Bartlett correction is a novel and elegant property of classical parametric likelihood. A
simple adjustment in the mean of the likelihood ratio statistic will improve the coverage accuracy
of the likelihood ratio based confidence intervals by one order of magnitude. It has been shown
by DiCiccio, Hall and Romanol®!, Chenl#9] and Chen and Hall'® that the empirical likelihood
possesses the Bartlett property for wide range of situations. Thus far the only known case where the
empirical likelihood does not admit the property is that found by Jing and Wood*!! by restricting
the distributions within the exponential family.

We will show that in the current situation the empirical likelihood admits the Bartlett prop-

erty. It may be shown that
E{¢(60)} = 1+ (na”) ™' B + o{ (na”) (a® +b*") + (na?b?) "'},
where 6 is the true value of the parameter and
_ 1 _ 1 _
B=pz" (na"m)” + Shz"pa — gz 3. (4.1)
Notice that § appears in the leading coverage error term in (3.1). Based on (3.1) and choosing
a="b=h=0(n""EPret")) we have
P[£(6) < ca{l + B(nh?)1}]
= P < cafl+B(nh?)~}]
—(nh?) 1 Bel/2{1 + B(nhP) T} 2p[c {1 + B(nhP) T} + O{(nhP)RPT + (nhPT1) 2}
= PO} < ca) + O{(nh?)R®" + (nhP+9)72} = a + O(n=2r/(PFatr)y, (4.2)
Therefore, the empirical likelihood is Bartlett correctable in the current case.
Let I peer = [0]€(0) < co{l+ B(nh?)~'}] be the Bartlett corrected empirical likelihood confi-
dence interval. From (4.2), we see that I, pce; has coverage errors of n—2r/(p+a+7) if B is chosen to
be O(n_l/ (p+‘1+r)). In practice, the Bartlett factor 8 has to be estimated which in turn requires

estimation of u; for j = 1,2,3 and 4. Estimators for p;, j > 2, can be defined as

i = ey 3 K (225 oom (2 - )

=1 a
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§5. Simulations

We conducted a small simulation study on the finite sample performance of normal approxi-
mation and empirical likelihood based confidence intervals on f(y|z), with (X;,Y;)’s generated by

the process

1+ ,BQ.XZ
X; ~N(0,1 Y: —t

i~ N(0,1), Y g )
We generated 1,000 random samples of data {X;,Y;,4 =1,--- ,n} for n = 60, 120 and 180

from the above model. For nominal confidence level 1 —a = 0.95, using the simulated samples, we

X~ N(ﬂlXi;

evaluated the coverage probability (CP) and the average length of the interval (AL) of the normal
approximation based (NA), empirical likelihood based (EL) and Bartlett correction based (BC)
intervals.

Throughout we use two fourth-order kernel (i.e. r = 4),

1

W6 — sy —wp2, i <1,
Ki(u) = Ko(u) = ¢ 64

0, otherwise.

We take h = ¢ xn~'/6 for ¢ = 0.5, 1 and 1.5. Table 1 reports the simulation results for f(y|z)
at (z,y) = (0,0). It is seen that the coverage probability (CP) for NA, EL and BC increases with
n, approaching the nominal level 0.95; The performance of EL. and BC confidence interval’s is
significantly better than that of NA.

Table 1 Confidence interval coverage probability (CP) and average length (AL)
for f(y|z) at (z,y) = (0,0)

(B, B2) n CI | CP(c=05,1,15) | AL (c=0.5, 1, 1.5)

(B1,B2)=(1,1) | 60 | NA | 0.885,0.905, 0.901 2.26, 2.31, 2.27
EL 0.906, 0.911, 0.914 2.27,2.28, 2.10

BC 0.923,0.917, 0.918 1.95, 1.89, 2.00

120 | NA | 0.891,0.912, 0.915 2.21, 2.27, 2.31

EL 0.927, 0.934, 0.938 1.87,1.90, 1.95

BC 0.930, 0.937, 0.928 1.65, 1.69, 1.50

180 | NA | 0.931,0.941, 0.935 2.15, 1.98, 1.83

EL 0.949, 0.938, 0.944 1.90, 1.87, 1.56

BC 0.946, 0.941, 0.954 1.05, 1.23, 2.10

(B1,B2)=(1,2) | 60 | NA | 0.905, 0.886, 0.890 2.13, 2.01, 2.11
EL 0.931, 0.956, 0.934 2.12, 1.87, 1.32

BC 0.930, 0.948, 0.933 1.93, 2.10, 1.75

120 | NA | 0.935,0.942, 0.950 1.31, 2.32, 2.28

EL 0.947, 0.940, 0.951 1.16, 0.91, 1.36

BC 0.944, 0.948, 0.961 1.01, 0.86, 0.95

180 | NA | 0.946, 0.945, 0.952 2.17, 2.20, 1.57

EL 0.949, 0.953, 0.948 1.21, 1.53, 1.12

BC 0.948, 0.947, 0.934 0.85, 0.73, 0.64
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§6. Appendix: Derivations
Derivation of (3.1) Note that
A(0) = 0,[b*{(na”b?) /% + a” +b7}].

Similar to (A1.3) in Chen and Halll*?], we obtain the following Taylor expansion of £(8).

2 1
0e) = (nap){w,;lwf + gwg%gw? + (@—5@3 - 5554@)5‘1‘

8
+(8a;%354 — 8@, "ws — 352—555)w§}
j .
+na? Y Rttt 4 Op[na?{(na?b?) /% 4 4" + b7,
k=5

(2k—1)

where Ry denotes @, multiplied by a polynomial in @s, - -+ , W41, with constant coefficients.

As in Chen and Halll'®! we may write

0(6) = {(na?)'/28}}?,

where
_ 1
S = @y @+ 5oy mewt + (8 W - 0w )@
112 49 44 Ny S
+( — W, %W+ —w, "Wy — — W, 4w5)w‘f + 3 Tkw’f} +U;
27 12 5 =
= Sj + Uj,

where U; = O,[{(na?b?)~/2 + a” + b"}3+1], and T}, denotes @ ¥~ multiplied by a polynomial
in Wy, --- ,wy with constant coefficients. Noting that na® — 0, nb? — 0 for some ¢t > 0, a little

additional analysis shows that by choosing j sufficiently large we may ensure that,

P{IU;| > (na?)~>/*} = O{(na?)*}. (6.1)
Observe that S; is a function of @y,--- ,w;. Denote that function by s;. Put p = E(wy),
B = (#17"' 7/l‘j)T7 u = (u17"' 7uj)T7 Vk = Wg — Mk, V= (ViJ 7‘/]')T7

6
p(u) = sj(p) + X (mH~! > Ay, o Wy ™ ** Uk -
m=1 ki, km€{1,--,5}

Let ki, ko, - - - be the cumulants of (nh®)'/2p(V), and k?+" +*» denote the p-th order multivari-
ate cumulants of V = (V4,---,V;)T. Our next step is to calculate ki, ka2, - - - .
It is clear, from (2.1), that

dy = 'u2—1/2

d = 0> +b>), for [ >3,

2 _ 1 _
+ 51z psp + 0@ + 877, dy = =5y i + 0@ +57),
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2 _ 1 _
din = gy s + 0@ + 17, diz = =5y + 0@ +b7),
dim = O(a™ +b7), for all other second derivatives,
8 _ 3 _ 5 _ o
din = gh2 9/2H§ L 7/2M4 +0(a" + "), dy1 = —gh 7/2H3 +O(a" +b7),
2 _ 3 _
d113 = g/1125/2—|—O(a"'—|—b7‘)7 d122=Zu25/2+0(ar+b7‘),

dijrk = O(a” +b7), for all other third derivatives.

Noting that u; = a; PEw!(6), we can obtain that

k' = (na?) ™ (p2 — aPui), k'? = (na?) ™ (us — P pa),
k' = (na?) ™' (us — aPpips), k*? = (na?) ™" (na — aP ),
kM = (na?) 2(us — 3aPp1 e + 2P i3),

(na?)~*(
k" = (na?) " (ps — 2aP pps + 26”7 pips — aPp3),
(na”) = (

“2(us — 20P paps — aP ppa + 207 pa i),

MY = (na?) =3 (us — 3aPp?) + O{(na?) 3aPu, },
k"2 = (naP) "% (us — 40P paps) + O{(na?) "> aPpu, }.
According to the results given by James and Maynel'?], it follows that
1 _ _
by = nl/ZSj (#)GP/Q _ 6“2 3/2H3a1 p/2n—1/2 + 0{(nap)—1/2(ar + br) + (napbq)—3/2}7

1 13
ke = 0% + (51 s — 5o 43 ) (na?) ™! + O{(na?) M (a” +b7) + (na?b") 2},

where

1 .
o’ =1+ 5#52/13/»1 +0(a® +b7),

k3 = O{(na?) ™ *(a” + V") + (na?) ™}, ks = O{(na?)~*(a” +b7) + (na”b?) "},
k= O{(na?)~(=2/2} for 1 > 5.
Thus we could develop a formal Edgeworth expansion for the distribution of (na?)'/?p(V'):
P{n'/2a?*p(V) < t}

1 - _ . _ _
= O(t) = 5 (na”) {6uz " (naPp)? + 3uzpa — 203 }4(1)
+ (even polynomial in t)¢(t) + O{(na?)(a®" + b%") + (na?b?) %},

which, in turn as in [10], gives the Edgeworth expansion for £(6) in (3.1).

References

[1] Zhao, L.C. and Liu, Z.J., Strong consistency of the kernel estimators of a conditional density function,
Acta. Math. Sinica (New Ser.), 4(1985), 314-318.



50 P g A g it F—t+=z=%

[2] Xue, L.G. and Guo, L.Z., Asymptotic distributions of dpuble kernel estimators for conditional densi-
ties (in Chinese), J. Engineering Math., 6(1989), 59-65.
[3] Owen, A., Empirical likelihood ratio confidence intervals for a single functional, Biometrika, 75(1988),
237-249.
[4] Owen, A., Empirical likelihood ratio confidence regions, Ann. Statist., 18(1990), 90-120.
[5] Hall, P. and La Scala, B., Methodology and algorithms of empirical likelihood, Internat. Statist. Rev.,
58(1990), 109-127.
[6] DiCiccio, T.J., Hall, P. and Romano, J.P., Bartlett adjustment for empirical likelihood, Ann. Statist.,
19(1991), 1053-1061.
[7] Chen, S.X., On the coverage accuracy of empirical likelihood confidence regions for linear regression
model, Ann. Inst. Statist. Math., 45(1993), 621-637.
[8] Chen, S.X., Empirical likelihood confidence intervals for linear regression coefficients, J. Mult. Anal.,
49(1994), 24-40.
[9] Chen, S.X., Empirical likelihood for nonparametric density estimation, Biometrika, 83(1996), 329—
341.
[10] Chen, S.X. and Hall, P., Smoothed empirical likelihood confidence intervals for quantiles, Ann.
Statist., 21(1993), 1166-1181.
[11] Jing, B-Y. and Wood, A.T.A., Exponential empirical likelihood is not Bartlett correctable, Ann.
Statist., 24(1996), 365-369.
[12] James, G.S. and Mayne, A.J., Cumulants of functions of random variables, Sankhya, Ser. A, 24(1962),
47-54.
[13] Hall, P., The bootstrap and Edgeworth Ezpansions, New York: Springer-Verlag, 1992.
[14] Fan, J. and Yim, T.H., A crossvalidation method for estimating conditional densities, Biometrika,
91(2004), 819-834.

FUHEEEEXENESRE

&R R
(PSRRI, B, 541004)

AR URITIETE T R F R EE KRR E . @33 S5 Edgeworth J#
FRETLEMREFXEWERERE, FEHER T &% EN2RMUREFXEE Bartlett
B IEME.

x @17 EREXE, 2RO, WEKMGT, Bartlett \BERE

FRASES 0212





