On the Limit Behaviour of the Population-Size-Dependent Bisexual Branching Processes*

MA SHIXIA

(Department of Applied Mathematics, Hebei University of Technology, Tianjin, 300401)

Wang Yongjin

(School of Mathematical Sciences, Nankai University, Tianjin, 300071)

Abstract

In this paper, a bisexual Galton-Watson branching process with the law of offspring distribution dependent on the population size is investigated. Under a suitable assumption on the offspring distribution, for the supercritical case, the limit behaviours on almost sure convergence of the process are established.

Keywords: Bisexual Galton-Watson branching processes, population-size-dependent branching processes, almost sure convergence.

AMS Subject Classification: 60J80

ξ1. Introduction

The bisexual Galton-Watson process was first introduced by Daley (see [1]) as a two-type branching model which is a modification of the standard Galton-Watson branching process. This model has received much attention in the literature (see for example [2]-[6]). In Daley's model the offspring reproduction laws are independent and identical distribution. Recently, Xing and Wang (see [9]) have introduced a bisexual Galton-Watson process whose offspring reproduction laws depend on the size of population, i.e. population-size-dependent bisexual Galton-Watson process (PSDBP). The biological background is that population size governs the reproduction laws. The mathematical model can be described as follows:

Definition 1.1 A bisexual Galton-Watson process $\{Z_n\}_{n=0}^{\infty}$ is called population-size-dependent bisexual branching process if it satisfies that

$$Z_0 = N, (1.1)$$

$$Z_0 = N,$$

$$(F_{n+1}, M_{n+1}) = \sum_{i=1}^{Z_n} (\xi_{n,i}^{(Z_n)}, \eta_{n,i}^{(Z_n)}), \qquad n = 0, 1, 2, \cdots,$$

$$(1.2)$$

$$Z_{n+1} = L(F_{n+1}, M_{n+1}), \qquad n = 0, 1, 2, \cdots,$$
 (1.3)

where N is a positive integer, the empty sum is regarded as (0,0), and we make assumption that $(\xi_{n,i}^{(k)},\eta_{n,i}^{(k)}) \ \ (n=0,1\cdots;\ k,i=1,2,\cdots) \ \text{are independent of each other, and for each } k=1,2,\cdots,$

^{*}Supported by the Natural Science Foundation of China (Grant No. 10131040). Received 2004. 11. 23. Revised 2006. 3. 9.

 $(\xi_{n,i}^{(k)}, \eta_{n,i}^{(k)})$ has the same distribution as $(\xi_{0,1}^{(k)}, \eta_{0,1}^{(k)})$ for all $n, i = 1, 2, \dots$, and the mating function $L: R^+ \times R^+ \longrightarrow R^+$ is assumed to be non-decreasing in each argument, integer-valued for integer-valued arguments with $L(x, y) \leq xy$.

Intuitively, when the population size in the *n*th generation Z_n is given, then $\xi_{n,i}^{(Z_n)}$ and $\eta_{n,i}^{(Z_n)}$ represent the respective numbers of the female and the male produced by the *i*th mating unit in the *n*th generation which depend on population size in the *n*th generation. F_n and M_n denote the respective numbers of the female and the male in the *n*th generation. By some mating rule, they produce Z_n mating units $(Z_n = L(F_n, M_n))$ and then each mating unit produces the new generation independently.

It is easy to check that $\{(F_n, M_n)\}_{n=0}^{\infty}$ and $\{Z_n\}_{n=0}^{\infty}$ are Markov chains with stationary transition probabilities and 0 is an absorbing state.

Definition 1.2 A PSDBP is called *superadditive* if for all positive integers $n \ge 1$, the mating function $L(\cdot, \cdot)$ satisfies

$$L\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right) \ge \sum_{i=1}^{n} L(x_i, y_i), \qquad x_i, y_i \in \mathbb{R}^+, \ i = 1, \dots, n.$$
 (1.4)

As usual, we assume L is superadditive throughout this paper.

In this paper, we shall consider the supercritical PSDBP with superadditive mating function and investigate the asymptotic behaviour under the following Assumption A i.e. research the almost sure convergence of the sequences $\{r^{-n}Z_n\}_{n=0}^{\infty}$, $\{r^{-n}F_n\}_{n=0}^{\infty}$ and $\{r^{-n}M_n\}_{n=0}^{\infty}$.

§ 2. Basic Assumptions and Preliminaries

In this section, we make the following assumption and state some preliminary results on the sequence of bivariate random variables $\{(\xi_{0,1}^{(k)}, \eta_{0,1}^{(k)})\}_k$.

Assumption A The sequence $\{(\xi_{0,1}^{(k)}, \eta_{0,1}^{(k)})\}_k$ satisfies

$$\mathsf{E}g(\xi_{0,1}^{(k+1)},\eta_{0,1}^{(k+1)}) \le \mathsf{E}g(\xi_{0,1}^{(k)},\eta_{0,1}^{(k)}), \qquad k = 0, 1, \cdots \tag{2.1}$$

for every bounded component-wise increasing function $g(\cdot,\cdot)$.

Under Assumption A, the following results (see e.g. [7]) are useful for our later purpose.

Proposition 2.1 There exist random variables $(\xi^{(k)}, \eta^{(k)})^*$, $(\xi^{(k+1)}, \eta^{(k+1)})^*$ and $(\xi^{(k,k+1)}, \eta^{(k,k+1)})$ defined on the same probability space, with the former two bivariate random variables having the same respective distributions as $(\xi_{0,1}^{(k)}, \eta_{0,1}^{(k)})$ and $(\xi_{0,1}^{(k+1)}, \eta_{0,1}^{(k+1)})$, such that

$$(\xi^{(k)}, \eta^{(k)})^* = (\xi^{(k+1)}, \eta^{(k+1)})^* + (\xi^{(k,k+1)}, \eta^{(k,k+1)}), \qquad k = 0, 1, \cdots$$
 (2.2)

for non-negative integer-valued random variables $(\xi^{(k,k+1)}, \eta^{(k,k+1)})$.

Next, by an abuse of notation, we will use $(\xi^{(k)}, \eta^{(k)})$ instead of $(\xi^{(k)}, \eta^{(k)})^*$ and use $\{Z_n\}_{n=0}^{\infty}$ instead of the process $\{Z_n^*\}_{n=0}^{\infty}$ corresponding to the sequence $(\xi^{(k)}, \eta^{(k)})^*$. Thus we have

《应用概率统计》版权所有

Proposition 2.2 Under Assumption A, we have that

- (1) $\{(\xi^{(k)},\eta^{(k)})\}_k$ is a monotonic non-increasing sequence and converges almost surely to a pair of nonnegative, integer-valued random variables (ξ, η) .
- (2) $\{ \mathsf{E}g(\xi^{(k)},\eta^{(k)}) \}_k$ is a monotonic non-increasing sequence and converges to $\mathsf{E}g(\xi,\eta)$, where $g(\cdot,\cdot)$ is defined as above in Assumption A, where the bivariate random variables $(\xi^{(k)},\eta^{(k)})$ have the same distribution as $(\xi_{0,1}^{(k)}, \eta_{0,1}^{(k)})$.

Let $\mu_1^{(k)} := \mathsf{E}\xi^{(k)}, \ \mu_2^{(k)} := \mathsf{E}\eta^{(k)}$ and $\mu_1 := \mathsf{E}\xi, \ \mu_2 := \mathsf{E}\eta.$ Take g(x,y) = x, or y, then we have that

$$\lim_{n \to \infty} \mu_1^{(n)} = \mu_1, \qquad \lim_{n \to \infty} \mu_2^{(n)} = \mu_2.$$

An important factor in the study of PSDBP is the mean growth rate per mating unit, which was defined in [5] for the bisexual Galton-Watson process, by $r_k := (1/k) \cdot \mathsf{E}[Z_{n+1}|Z_n = k], \ k = 1/k$ $1, 2, \cdots$.

Under Assumptions A, Xing and Wang [9] proved that $r:=\lim_{k\to\infty}r_k$ exists and showed that $\mathsf{P}(Z_n\to 0)+\mathsf{P}(Z_n\to \infty)=1$. Moreover, if r<1, then $\mathsf{P}(Z_n\to 0|Z_0=j)=1$; and if r>1, then $P(Z_n \to 0|Z_0 = j) < 1, j = 1, 2, \cdots$

A PSDBP defined by (1.1), (1.2) and (1.3) is called subcritical, critical, or supercritical respectively according to r < 1, = 1, or > 1.

ξ3. The Almost Sure Convergence of the Normed Sequences

In this section, we aim to investigate the a.s. convergence of the sequences $\{r^{-n}Z_n\}_{n=0}^{\infty}$ and $\{r^{-n}F_n\}_{n=0}^{\infty} \ (\{r^{-n}M_n\}_{n=0}^{\infty} \text{ as well}).$

$$r_k' := rac{1}{k} \mathsf{E} \Big[L \Big(\sum\limits_{i=1}^k (\xi_{n,i}, \eta_{n,i}) \Big) \Big],$$

where $(\xi_{n,i},\eta_{n,i})$ $(i=1,2,\cdots;\ n=0,1,\cdots)$ are i.i.d. nonnegative, integer-valued random variables and have the same probability distribution as (ξ, η) , $((\xi, \eta))$ is the same as that of Proposition (2.2(1)). Let $\varepsilon_k:=r-r_k,\ k=1,2,\cdots,$ then $\varepsilon_k\to 0$ as $k\to\infty.$ Define $W_n:=r^{-n}Z_n.$

Theorem 3.1 If $r'_1 > 0$ and $\{|\varepsilon_k|\}_{k=1}^{\infty}$ is a decreasing sequence satisfying $\sum_{k=1}^{\infty} k^{-1} |\varepsilon_k| < \infty$, then

- (1) $a := \lim_{n \to \infty} \mathsf{E}[W_n]$ exists and $0 < a < \infty$;
- (2) there exists an a.s. finite random variable W such that $\lim_{n\to\infty} W_n = W$ a.s..

$$\mathsf{E}[W_{n+1}|\mathcal{F}_n] = r^{-(n+1)}\mathsf{E}[Z_{n+1}|Z_n] = W_n - r^{-(n+1)}Z_n\varepsilon_{Z_n} \qquad \text{a.s.}, \tag{3.1}$$

where $\mathcal{F}_n := \sigma(Z_0, \dots, Z_n), \ n = 0, 1, \dots$, then we have

$$\mathsf{E}[W_{n+1}] = \mathsf{E}[W_n] - r^{-(n+1)} \mathsf{E}[Z_n \varepsilon_{Z_n}]. \tag{3.2}$$

Define

$$\widehat{arepsilon}(x) := |arepsilon_1|I_{[0,1)}(x) + x^{-1}\Big(|arepsilon_1| + \int_1^x arepsilon(t)\mathrm{d}t\Big)I_{[1,\infty)}(x),$$

where $\varepsilon(t) := |\varepsilon_1| I_{[0,1)}(t) + |\varepsilon_{[t]}| I_{[1,\infty)}(t)$, of which [x] is the largest integer not greater than x and $I_A(u)$ is the indicator function.

It is verified that $|\varepsilon_n| \leq \widehat{\varepsilon}(n)$, $\sum_{n=1}^{\infty} n^{-1} \widehat{\varepsilon}(n) < \infty$ and $x \widehat{\varepsilon}(x)$ is a concave function on R^+ . It follows immediately from (3.2) and Jensen's inequality that

$$|\mathsf{E}[W_{n+1}] - \mathsf{E}[W_n]| < r^{-(n+1)} \mathsf{E}[Z_n \widehat{\varepsilon}(Z_n)] < r^{-1} \mathsf{E}[W_n] \widehat{\varepsilon}(\mathsf{E}[r^n W_n]).$$

By Proposition 2.2

$$\frac{1}{k} \mathsf{E} \Big[L \Big(\textstyle\sum_{i=1}^k \xi_{n,i}^{(k)}, \textstyle\sum_{i=1}^k \eta_{n,i}^{(k)} \Big) \Big] \geq \frac{1}{k} \mathsf{E} \Big[L \Big(\textstyle\sum_{i=1}^k \xi_{n,i}, \textstyle\sum_{i=1}^k \eta_{n,i} \Big) \Big].$$

This shows $r_k \geq r_k'$, since $r_k' \geq r_1'$, let $\alpha = \inf_k r_k$, then

$$\mathsf{E}[Z_{n+1}] = \mathsf{E}[Z_n r_{Z_n}] \ge \alpha \mathsf{E}[Z_n] \ge \alpha^{n+1} Z_0 \ge (r_1')^{n+1} N > 0, \qquad n = 0, 1, \cdots.$$

So $\mathsf{E}[W_n] = \mathsf{E}[r^{-n}Z_n] > 0$, $n = 0, 1, \dots$, which satisfy the conditions of Lemma 1 in [8], so $a := \lim_{n \to \infty} \mathsf{E}[W_n]$ exists and a > 0 by Lemma 1 and Theorem 5 of [8].

(2) Let
$$Y_{n+1} = W_{n+1} + r^{-1} \sum_{k=0}^{n} W_k \varepsilon_{Z_k}$$
, $n = 0, 1, \dots$, then we have from (3.1) that

$$\mathsf{E}(Y_{n+1}|\mathcal{F}_n) = \mathsf{E}(W_{n+1}|\mathcal{F}_n) + r^{-1} \sum_{k=0}^n W_k \varepsilon_{Z_k} = W_n + r^{-1} \sum_{k=0}^{n-1} W_k \varepsilon_{Z_k} = Y_n.$$

Hence $\{Y_n, \mathcal{F}_n\}_{n=0}^{\infty}$ is a martingale.

To prove a.s. convergence of $\{W_n\}_{n=0}^{\infty}$, we shall discuss the martingale $\{Y_n\}_{n=0}^{\infty}$. Due to concavity of $x\widehat{\varepsilon}(x)$ we have that $|\mathsf{E}W_n\varepsilon_{Z_n}|\leq \mathsf{E}W_n\widehat{\varepsilon}(\mathsf{E}[r^nW_n])$. By Lemma 1 in [8], we have, from convergence of the series $\sum_{n=1}^{\infty}\widehat{\varepsilon}(n)/n$ and bound of $\{\mathsf{E}W_n\}_n$, that

$$\textstyle \mathsf{E} \sum_{n=0}^{\infty} |W_n \varepsilon_{Z_n}| = \sum_{n=0}^{\infty} \mathsf{E} |W_n \varepsilon_{Z_n}| \leq \sum_{n=0}^{\infty} \mathsf{E} W_n \widehat{\varepsilon} (\mathsf{E}[r^n W_n]) < \infty.$$

This implies that

$$\sum_{n=0}^{\infty} |W_n \varepsilon_{Z_n}| < \infty \quad \text{a.s..}$$

On the other hand, since

$$\sup_{n} \mathsf{E}|Y_n| \leq \sup_{n} \mathsf{E} W_n + r^{-1} \mathsf{E} \sum_{n=0}^{\infty} |W_n \varepsilon_{Z_n}| < \infty,$$

the martingale convergence theorem shows that $\{Y_n\}_{n=0}^{\infty}$ converges a.s. to a finite random variable Y. Thus $\{W_n\}_{n=0}^{\infty}$ converges a.s. to $W=Y-\sum\limits_{n=0}^{\infty}W_n\varepsilon_{Z_n}$, and by Fatou's lemma $\mathsf{E}[W]\leq \lim\limits_{n\to\infty}\mathsf{E}[W_n]<\infty$.

Remark 1 If the mating function L(x, y) = x, then

$$r_k = \frac{1}{k} \mathsf{E}[Z_{n+1} | Z_n = k] = \frac{1}{k} \mathsf{E}\Big[L\Big(\sum_{i=1}^k (\xi_{n,i}^{(k)}, \eta_{n,i}^{(k)})\Big)\Big] = \frac{1}{k} \mathsf{E}\Big[\sum_{i=1}^k \xi_{n,i}^{(k)}\Big] = \mathsf{E}[\xi_{n,i}^{(k)}] = \mu_1^{(k)}$$

from Proposition 2.2(2), we get that $\mu_1^{(k)}$ is a monotonic non-increasing sequence and converges to μ_1 , so $|\varepsilon_n| = \mu_1^{(k)} - \mu_1$ is a decreasing sequence.

Lemma 3.1 Under Assumption A, for the sequence $\{(\xi_i^{(k)}, \eta_i^{(k)}) : i = 1, 2, \cdots; k = 0, 1, \cdots\}$ of independent bivariate random variables with finite expectation, for $k = 0, 1, \dots, \{(\xi_i^{(k)}, \eta_i^{(k)})\}$ has the same distribution as $\{(\xi^{(k)}, \eta^{(k)})\}$, for all $i = 1, 2, \cdots$ and a mating function L satisfies the superadditivity condition (1.4), then

$$\frac{1}{k}L\left(\sum_{i=1}^{k}\xi_{i}^{(k)},\sum_{i=1}^{k}\eta_{i}^{(k)}\right) \rightarrow \lim_{k\to\infty}k^{-1}L(k\mathsf{E}\xi,k\mathsf{E}\eta) \quad \text{a.s.}$$

$$= r(\mathsf{E}\xi,\mathsf{E}\eta),$$

where $\mathsf{E}\xi = \lim_{k \to \infty} \mathsf{E}\xi_i^{(k)}$, $\mathsf{E}\eta = \lim_{k \to \infty} \mathsf{E}\eta_i^{(k)}$, $i = 1, 2, \cdots$. **Proof** For every $m \ge 1$, applying Lemma 2.3 in [2], we have

$$\frac{1}{k}L\left(\sum_{i=1}^{k}\xi_{i}^{(m)},\sum_{i=1}^{k}\eta_{i}^{(m)}\right) \rightarrow \lim_{k\to\infty}k^{-1}L(k\mu_{1}^{(m)},k\mu_{2}^{(m)}) \quad \text{a.s}$$

$$= r(\mu_{1}^{(m)},\mu_{2}^{(m)}),$$

where $\mu_1^{(m)} = \mathsf{E}\xi_i^{(m)}, \ \mu_2^{(m)} = \mathsf{E}\eta_i^{(m)}, \ i = 1, 2, \cdots$

By Proposition 2.2, the continuity of r(x,y) in every (x,y) (see Proposition 3.2 in [3]) shows that

$$\lim_{m \to \infty} r(\mu_1^{(m)}, \mu_2^{(m)}) = r(\mu_1, \mu_2) = \lim_{k \to \infty} k^{-1} L(k\mu_1, k\mu_2), \tag{3.3}$$

where $\mu_1 = \lim_{m \to \infty} \mu_1^{(m)} = \mathsf{E}\xi_i$, $\mu_2 = \lim_{m \to \infty} \mu_2^{(m)} = \mathsf{E}\eta_i$, $i = 1, 2, \cdots$. For each $k \ge 1$, by Proposition 2.2, it is easy to check

$$\frac{1}{k} L\left(\sum_{i=1}^{k} \xi_i^{(k)}, \sum_{i=1}^{k} \eta_i^{(k)}\right) \ge \frac{1}{k} L\left(\sum_{i=1}^{k} \xi_i, \sum_{i=1}^{k} \eta_i\right). \tag{3.4}$$

From (3.4) and (3.3), we have

$$\liminf_{k \to \infty} \frac{1}{k} L\left(\sum_{i=1}^{k} \xi_i^{(k)}, \sum_{i=1}^{k} \eta_i^{(k)}\right) \ge \lim_{k \to \infty} k^{-1} L(k\mu_1, k\mu_2) \quad \text{a.s.}$$

$$= r(\mu_1, \mu_2). \tag{3.5}$$

On the other hand, for every $m \geq 1$, Proposition 2.2 implies that

$$\limsup_{k \to \infty} \frac{1}{k} L\left(\sum_{i=1}^{k} \xi_{i}^{(k)}, \sum_{i=1}^{k} \eta_{i}^{(k)}\right) \leq \lim_{k \to \infty} \frac{1}{k} L\left(\sum_{i=1}^{k} \xi_{i}^{(m)}, \sum_{i=1}^{k} \eta_{i}^{(m)}\right) \\
= \lim_{k \to \infty} k^{-1} L(k\mu_{1}^{(m)}, k\mu_{2}^{(m)}) \quad \text{a.s.} \\
= r(\mu_{1}^{(m)}, \mu_{2}^{(m)}).$$

Let $m \to \infty$ and by (3.3) we deduce that

$$\limsup_{k \to \infty} \frac{1}{k} L\left(\sum_{i=1}^{k} \xi_{i}^{(k)}, \sum_{i=1}^{k} \eta_{i}^{(k)}\right) \leq \lim_{k \to \infty} k^{-1} L(k\mu_{1}, k\mu_{2}) \quad \text{a.s.}$$

$$= r(\mu_{1}, \mu_{2}). \quad (3.6)$$

Then the result of the lemma follows from (3.5) and (3.6).

Proposition 3.1 On the event $\{Z_n \to \infty\}$

$$\liminf_{n\to\infty} Z_n^{-1} Z_{n+1} > 1 \qquad \text{a.s.}$$

Proof By Lemma 3.1 we see that

$$r(\mu_1, \mu_2) = \lim_{k \to \infty} \frac{1}{k} \left[L\left(\sum_{i=1}^k \xi_{n,i}^{(k)}, \sum_{i=1}^k \eta_{n,i}^{(k)}\right) \right] = \lim_{k \to \infty} \frac{1}{k} L(k\mu_1, k\mu_2) \quad \text{a.s..}$$

Let $r(x,y) = \lim_{k \to \infty} (1/k) \cdot L(kx,ky)$. Since the function r(x,y) is continuous in every nonnegative valued (x,y), so if r > 1, i.e. $r(\mu_1,\mu_2) > 1$, then there exists $a,b \in R^+$ such that $\tilde{r} = r(\mathsf{E}[\xi_{0,1} \wedge a], \mathsf{E}[\eta_{0,1} \wedge b]) > 1$. Now we define the sequence $\{\tilde{Z}_n\}$ in terms of the given process $\{Z_n\}$ by

$$\widetilde{Z_0} = Z_0, \qquad \widetilde{Z}_{n+1} = L\Big(\sum_{i=1}^{Z_n} (\xi_{n,i}^{(Z_n)} \wedge a, \eta_{n,i}^{(Z_n)} \wedge b)\Big), \qquad n = 0, 1, \cdots.$$

Obviously, $Z_n \geq \widetilde{Z}_n$, for $n = 0, 1, \cdots$.

For $\forall \varepsilon > 0$, let $A_n = \{|Z_n^{-1}\widetilde{Z}_{n+1} - \widetilde{r}| < \varepsilon\}, \ n = 0, 1, \dots$, then it suffice to show that

$$P\left(\liminf_{n\to\infty} A_n\right) \ge P(Z_n \to \infty) \quad \text{for } 0 < \varepsilon < \widetilde{r} - 1.$$
(3.7)

But, by Lemma 3.1, and an analogous argument as Proposition 3.1 in [10]), shows (3.7), and the proof is complete. #

Theorem 3.2 On the event $\{Z_n \to \infty\}$

$$\lim_{n\to\infty} Z_n^{-1} F_{n+1} = \mu_1 \quad \text{a.s.}.$$

Proof First we define sequence $\{\overline{Z}_n\}_{n=0}^{\infty}$ via $\{Z_n\}_{n=0}^{\infty}$:

$$\overline{Z}_0 = N, \qquad \overline{Z}_{n+1} = L\left(\sum_{i=1}^{Z_n} (\xi_{n,i}, \eta_{n,i})\right), \qquad n = 0, 1, 2, \cdots,$$

where $(\xi_{n,i}, \eta_{n,i})$ $(i = 1, 2, \dots; n = 0, 1, \dots)$ are i.i.d. nonnegative, integer-valued random variables and have the same probability distribution as (ξ, η) . By Proposition 2.2 we have that

$$\sum_{i=1}^{Z_n} \xi_{n,i}^{(Z_n)} \ge \sum_{i=1}^{Z_n} \xi_{n,i} \quad \text{a.s.}.$$

Then on $\{Z_n \to \infty\}$ we have that

$$\lim_{n \to \infty} \inf \frac{\sum_{i=1}^{Z_n} \xi_{n,i}^{(Z_n)}}{Z_n} \ge \lim_{n \to \infty} \frac{\sum_{i=1}^{Z_n} \xi_{n,i}}{Z_n} = \mu_1, \quad \text{a.s.},$$
(3.8)

《应用概率统计》版权所有

where the last equality follows from Proposition 3.1 and Theorem 3.2 in [10] without immigration of mating units. #

Next, we define one more sequence $\{\widetilde{Z}_n\}_{n=0}^{\infty}$ in terms of the process $\{Z_n\}_{n=0}^{\infty}$.

For each $m \geq 1$, let

$$\widetilde{Z}_0 = N, \qquad \widetilde{Z}_{n+1} = L\left(\sum_{i=1}^{Z_n} (\xi_{n,i}^{(m)}, \eta_{n,i}^{(m)})\right), \qquad n = 0, 1, 2, \cdots,$$

where $(\xi_{n,i}^{(m)}, \eta_{n,i}^{(m)})$ $(i=1,2,\cdots;\ n=0,1,\cdots)$ are i.i.d. nonnegative, integer-valued random variables for fixed m. Then for $m \geq 1$, by Proposition 2.2 we see on $\{Z_n \to \infty\}$ that

$$\limsup_{n \to \infty} \frac{\sum\limits_{i=1}^{Z_n} \xi_{n,i}^{(Z_n)}}{Z_n} \leq \lim_{n \to \infty} \frac{\sum\limits_{i=1}^{Z_n} \xi_{n,i}^{(m)}}{Z_n} = \mu_1^{(m)} \qquad \text{a.s.}$$

where the above equality is due to the same reason as in (3.8).

Let $m \to \infty$, we deduce that

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^{Z_n} \xi_{n,i}^{(Z_n)}}{Z_n} \le \mu_1, \quad \text{a.s..}$$

$$(3.9)$$

From (3.8) and (3.9), we obtain that

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{Z_n} \xi_{n,i}^{(Z_n)}}{Z_n} = \mu_1, \quad \text{a.s. on } \{Z_n \to \infty\}.$$

By a similar way, one can show that, on $\{Z_n \to \infty\}$, the sequence $\{Z_n^{-1}M_{n+1}\}_n$ converges a.s. to μ_2 as $n \to \infty$.

Corollary 3.1 On $\{Z_n \to \infty\}$

$$\lim_{n \to \infty} Z_n^{-1} Z_{n+1} = r \quad \text{a.s..}$$

Proof Let $\{\overline{Z}_n\}_{n=0}^{\infty}$ and $\{\widetilde{Z}_n\}_{n=0}^{\infty}$ be defined as above. Theorem 3.2 and the continuity of the function r(x,y) allow us to conclude that

$$Z_n^{-1}\overline{Z}_{n+1} = Z_n^{-1}L(Z_n(Z_n^{-1}\overline{F}_{n+1}), Z_n(Z_n^{-1}\overline{M}_{n+1}))$$

$$\to r(\mu_1, \mu_2) = r \quad \text{a.s. on } \{Z_n \to \infty\}.$$

Since $Z_{n+1} \geq \overline{Z}_{n+1}$, $n = 0, 1, \dots$, then we have that, on $\{Z_n \to \infty\}$,

$$\liminf_{n \to \infty} \frac{Z_{n+1}}{Z_n} \ge \lim_{n \to \infty} \frac{\overline{Z}_{n+1}}{Z_n} = r(\mu_1, \mu_2) = r \quad \text{a.s.}.$$

Similarly, we have

$$Z_n^{-1}\widetilde{Z}_{n+1} = Z_n^{-1}L(Z_n(Z_n^{-1}\widetilde{F}_{n+1}), Z_n(Z_n^{-1}\widetilde{M}_{n+1}))$$

$$\to r(\mu_1^{(m)}, \mu_2^{(m)}) \quad \text{a.s. on } \{Z_n \to \infty\}.$$

Note that $Z_{n+1} \leq \widetilde{Z}_{n+1}$, $n = 0, 1, \dots$, then we have that, on $\{Z_n \to \infty\}$,

$$\limsup_{n\to\infty}\frac{Z_{n+1}}{Z_n}\leq \lim_{n\to\infty}\frac{\widetilde{Z}_{n+1}}{Z_n}=r(\mu_1^{(m)},\mu_2^{(m)}) \qquad \text{a.s.}.$$

Hence, on $\{Z_n \to \infty\}$,

第四期

$$\limsup_{n \to \infty} \frac{Z_{n+1}}{Z_n} \le \lim_{m \to \infty} r(\mu_1^{(m)}, \mu_2^{(m)}) = r(\mu_1, \mu_2) = r \quad \text{a.s.}.$$

So the proof is completed.

Corollary 3.2 On $\{Z_n \to \infty\}$, both $\{F_n^{-1}F_{n+1}\}_{n=0}^{\infty}$ and $\{M_n^{-1}M_{n+1}\}_{n=0}^{\infty}$ are a.s. convergent to r.

Proof Note that for $n = 1, 2, \cdots$

$$F_n^{-1}F_{n+1} = Z_n^{-1}F_{n+1}Z_{n-1}^{-1}Z_nF_n^{-1}Z_{n-1},$$

and

$$M_n^{-1}M_{n+1} = Z_n^{-1}M_{n+1}Z_{n-1}^{-1}Z_nM_n^{-1}Z_{n-1}.$$

Then the conclusions follow from Theorem 3.2 and Corollary 3.1.

Proposition 3.2 On $\{Z_n \to \infty\}$ the following assertions are equivalent:

- (1) $\{r^{-n}Z_n\}_n$ converges a.s. to W;
- (2) $\{r^{-n}F_n\}_n$ converges a.s. to $r^{-1}\mu_1W$;
- (3) $\{r^{-n}M_n\}_n$ converges a.s. $r^{-1}\mu_2W$.

Proof It is enough to show that (1) and (2) are equivalent.

Suppose that $\{r^{-n}Z_n\}_{n=0}^{\infty}$ converges a.s. to W. We are to prove that $\{r^{-n}F_n\}_{n=0}^{\infty}$ converges a.s. to $r^{-1}\mu_1 W$ as $n \to \infty$:

By Theorem 3.2, since $\{r^{-n}Z_n\}_{n=0}^{\infty}$ converges a.s. to W, we have, on $\{Z_n \to \infty\}$,

$$r^{-(n+1)}F_{n+1} = r^{-1}Z_n^{-1}F_{n+1}r^{-n}Z_n \to r^{-1}\mu_1W$$
 a.s. as $n \to \infty$.

Thus (1) implies (2). Analogously, one can show (2) implies (1).

References

- [1] Daley, D.J., Extinction conditions for certain bisexual Galton-Watson processes, Z. Wahr., 9(1968), 315 - 322
- [2] Daley, D.J., Hull, D.A., Taylor, J.M., Bisexual Galton-Watson branching processes with superadditive mating funtions, J. Appl. Prob., 23(1986), 585-600.
- [3] Molina, M., Mota, M., Ramos, A., Bisexual Galton-Watson branching process with population-sidedependent mating, J. Appl. Prob., 39(2002), 479-490.
- [4] González, M., Molina, M., Mota, M., Limit behaviour for a subcritical bisexual Galton-Watson branching process with immigration, Stat. Probab. Letts., 49(2000), 19-24.

- [5] Bruss, F.T., A note on extinction criteria for bisexual Galton-Watson processes, J. Appl. Prob., **21**(1984), 915–919.
- [6] Alsmeyer, G., Rosler, U., The bisexual Galton-Waston process with promiscuous mating: Extinction probabilities in the supercritical case, Ann. Appl. Prob., 6(1996), 922-939.
- [7] Kamae, T., Krengel, U., O'brien, G.L., Stochastic inequalities on partially ordered spaces, Ann. Prob., **5**(1977), 899–912.
- [8] Klebaner, F.C., Geometric rate of growth in population-size-dependent branching processes, J. Appl. Prob., 21(1984), 40-49.
- [9] Xing, Y.S., Wang, Y.J., On the extinction of one class of population-size-dependent bisexual branching processes, J. Appl. Prob., 42(2005), 174-185.
- [10] González, M., Molina, M., Mota, M., On the limit behaviour of a supercritical bisexual Galton-Watson branching process with immigration of mating units, $Stoch.\ Anal.\ Appl.,\ \mathbf{19} (2001),\ 933-945.$

人口数相依的两性分支过程的极限性质

马世霞

王永进

(河北工业大学应用数学系, 天津, 300401) (南开大学数学学院, 天津, 300071)

本文研究了后代分布依赖于人口数的两性 Galton-Watson 分支过程, 在对后代分布的适当 假设下,对于上临界的情况,我们研究了有关过程的几乎处处收敛的极限性质.

关键词: 两性的 Galton-Watson 分支过程,人口数相依的分支过程,几乎处处收敛.

学科分类号: O211.65.