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Abstract

In this paper, a bisexual Galton-Watson branching process with the law of offspring distri-
bution dependent on the population size is investigated. Under a suitable assumption on the
offspring distribution, for the supercritical case, the limit behaviours on almost sure convergence
of the process are established.
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§1. Introduction

The bisexual Galton-Watson process was first introduced by Daley (see [1]) as a two-type
branching model which is a modification of the standard Galton-Watson branching process. This
model has received much attention in the literature (see for example [2]-[6]). In Daley’s model the
offspring reproduction laws are independent and identical distribution. Recently, Xing and Wang
(see [9]) have introduced a bisexual Galton-Watson process whose offspring reproduction laws
depend on the size of population, i.e. population-size-dependent bisexual Galton-Watson process
(PSDBP). The biological background is that population size governs the reproduction laws. The
mathematical model can be described as follows:

Definition 1.1 A bisexual Galton-Watson process {Z,}5°, is called population-size-de-

pendent bisexual branching process if it satisfies that

Zo =N, (1.1)
Zn
Zn Zn
(Fn+17Mn+1) = 2:1 (gg,,z )7,’727;' ))7 n= 07 1727 Tty (12)
i=
Zn+1 :L(Fn-l-IJMTH-l); n=0,1,2,---, (13)

where N is a positive integer, the empty sum is regarded as (0,0), and we make assumption that

(§,(1kz),nflkl)) (n=0,1---; k,i=1,2,---) are independent of each other, and for each ¥k =1,2,-- -,
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(§£Lk2 :777(1 Z)) has the same distribution as (§(()k1) ,n((, 1)) for all n,s = 1,2,---, and the mating function

L: Rt x Rt — R7 is assumed to be non-decreasing in each argument, integer-valued for integer-
valued arguments with L(z,y) < zy.

Intuitively, when the population size in the nth generation Z, is given, then ¢ (Z1) and n(Z")
represent the respective numbers of the female and the male produced by the ith matmg unit in
the nth generation which depend on population size in the nth generation. Fj, and M, denote
the respective numbers of the female and the male in the nth generation. By some mating rule,
they produce Z, mating units (Z, = L(F,, M,)) and then each mating unit produces the new
generation independently.

It is easy to check that {(F, M)}, and {Z,}52, are Markov chains with stationary tran-
sition probabilities and 0 is an absorbing state.

Definition 1.2 A PSDBP is called superadditive if for all positive integers n > 1, the mating

function L(-,-) satisfies

n n n
L(Eu’%E?h) 2 ZL(xz,y,), $i7yi€R+7 Z:]v , . (14)
i=1 i=1
As usual, we assume L is superadditive throughout this paper.
In this paper, we shall consider the supercritical PSDBP with superadditive mating function
and investigate the asymptotic behaviour under the following Assumption A i.e. research the

almost sure convergence of the sequences {r="Z,}2%,, {r "F,}5>, and {r "M, }°2

§2. Basic Assumptions and Preliminaries

In this section, we make the following assumption and state some preliminary results on the

sequence of bivariate random variables {( (()kl) ) n(()kl) Ve

Assumption A The sequence { (& l,n(()kl))}k satisfies

k k k k
Eg( (g,1+1)777((),1+1)) < Eg( ((),1)777[(),1))7 k= 07 17 e (21)

for every bounded component-wise increasing function g(-, -).
Under Assumption A, the following results (see e.g. [7]) are useful for our later purpose.
Proposition 2.1 There exist random variables (£(), n(R))* (k+1) pk+1)yx and (¢(kk+1),
n{#k+1)) defined on the same probability space, with the former two bivariate random variables

having the same respective distributions as (fo 1,77(()k1) ) and ( (kH),n((]ka 1)) such that

(£, n)* = (gWH) ptyx g (glbkt) bty -k =0,1,- (2.2)
for non-negative integer-valued random variables (£(k:k+1) p(k.k+1)y

Next, by an abuse of notation, we will use (¢*), (%)) instead of (¢*), n*))* and use {Z,}2,

instead of the process { ZX}2, corresponding to the sequence (€*),7(¥))*. Thus we have
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Proposition 2.2 Under Assumption A, we have that

(1) {(¢®),n(*))}, is a monotonic non-increasing sequence and converges almost surely to a
pair of nonnegative, integer-valued random variables (&, 7).

(2) {Eg(¢™,nM)}, is a monotonic non-increasing sequence and converges to Eg(¢,n), where
g(,-) is defined as above in Assumption A, where the bivariate random variables (€*), (*¥)) have

the same distribution as (E(gkl) , nékl))

Let ,ugk) = E¢k), ugk) = En® and p; := E€, py := En. Take g(z,y) = x, or y, then we have

that
Jim u™ =, Jim s = po.

An important factor in the study of PSDBP is the mean growth rate per mating unit, which
was defined in [5] for the bisexual Galton-Watson process, by ry := (1/k) - E[Zp41|Zn = k], k =
1,2,---.

Under Assumptions A, Xing and Wang [9] proved that r := kll)r{.lo ri, exists and showed that
P(Z, — 0) + P(Z, — o0) = 1. Moreover, if < 1, then P(Z,, = 0|Zy = j) = 1; and if » > 1, then
P(Z,—0Zy=j)<1,j=1,2,---.

A PSDBP defined by (1.1), (1.2) and (1.3) is called subcritical, critical, or supercritical respec-

tively according tor <1, =1, or > 1.

§3. The Almost Sure Convergence of the Normed Sequences

In this section, we aim to investigate the a.s. convergence of the sequences {r "Z,}5°, and
{r "Fo}olo ({r "Mp}il, as well).

Let
! 1 k
Ty == EEI:L( Z (gn,ia nn,i))] >
i=1
where (,,i,Mn,:) (i =1,2,---; n=0,1,---) are i.i.d. nonnegative, integer-valued random vari-

ables and have the same probability distribution as (£,%), ((£,n) is the same as that of Proposition
2.2(1)). Let e, ;=71 —1), k=1,2,---, then g — 0 as k — oo. Define W,, :==r "Z,.
o0
Theorem 3.1 If | > 0 and {|e;|}32, is a decreasing sequence satisfying > k™ 'lex| < oo,
k=1
then
(1) a:= lim E[W,] exists and 0 < a < oc;
n—oo
(2) there exists an a.s. finite random variable W such that ILm W,=W as.
Proof (1) Clearly,

E[Wn-‘rllfn] = T_(n+1)E[Zn+1|Zn] =Wy — p(ntl) Zn€z, a.8., (3.1)
where F,, :=o(Zo,--+ ,Zn), n=0,1,---, then we have

E[Wni1] = E[Wn] — r~ (FDE[Zne 7 ). (3.2)
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Define
g(l') = |81|I[071)($) + .’L‘_l (|61| +/ 6(t)dt)][1700) (SL'),
1

where (t) := |e1|1[0,1)(t) + |[g/[1,00) (t), of which [z] is the largest integer not greater than z and
I4(u) is the indicator function.

It is verified that |e,| < &(n), Z n~'2(n) < oo and z&(x) is a concave function on RT. It

follows immediately from (3.2) and Jensen s inequality that
|E[Wit1] — E[W,]| < r~"YE[Z,8(Z,,)] < 7 E[W,]E(E[F"W,)).

By Proposition 2.2

E[L(é&i’fzaZn(k))] % [z (me,Enm)]

This shows r, > r},, since rj, > r{, let a = irl%f r, then
ElZot1] = ElZarz,] > aE[Z4] > 0™ Z0 > ()" N >0,  n=0,1,---

So E[W,] = E[r"Z,] > 0, n = 0,1,---, which satisfy the conditions of Lemma 1 in [8], so
a:= lim E[W,] exists and a > 0 by Lemma 1 and Theorem 5 of [8].

n—oo

(2) Let Y1 =Wy +r71 Z Wiez,, n=0,1,---, then we have from (3.1) that
k=0

n n—1
E(Vni1|Fn) = EWnga|[Fo) + 771 3 Wiez, = Wo+171 Y Wiez, =Y.
k=0 k=0
Hence {Y,, Fn}22, is a martingale.
To prove a.s. convergence of {W,,}°2,, we shall discuss the martingale {Y,}52,. Due to
concavity of z€(x) we have that |[EW,ez, | < EW,E(E[r"W,]). By Lemma 1 in [8], we have, from
o0
convergence of the series ) €(n)/n and bound of {EW,},, that
n=1
EZ|W€Z | = ZE|W52|< ZEW&( [r"W,]) < o0
n=0 n=0
This implies that
o0
> | Whez,| < 00 a.s..
=0

On the other hand, since
o
sup E|Y,| < supEW,, +r 'E Y [Wyez, | < oo,
n n n=0

the martingale convergence theorem shows that {Y,,}52, converges a.s. to a finite random variable
o)
Y. Thus {W,}32, converges a.s. to W =Y — 3 W,ez,, and by Fatou’s lemma E[W] <

n=0
lim E[W,] <oco. #

n—oo
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Remark 1 If the mating function L(z,y) = x, then

= FE(Zua|Z0 = 1) = LE[L( S €)= 1] 3 ] = el =

from Proposition 2.2(2), we get that pgk) is a monotonic non-increasing sequence and converges to

pi1, 50 Jen| = p?

Lemma 3.1 Under Assumption A, for the sequence {(5( ):771 )) :i=1,2,---;k=0,1,---}

of independent bivariate random variables with finite expectation, for ¥ = 0,1,---, {(g,?’“),nf’“))}

— p7 is a decreasing sequence.

has the same distribution as {(¢®),n(®))}, for all i = 1,2,--- and a mating function L satisfies the
superadditivity condition (1.4), then

- (26(’“) En(’“’) — lim KTUL(KEE KEn)  as.
= r(E¢ En),

where E§ = hm E§(k) En = hm En(k), t=1,2,---.
Proof For every m > 1 applylng Lemma 2.3 in [2], we have

1 (& m) & (m o m m
L(E&z( )a > 771( )) — khm k 1L(k,ug ) k,u( )) a.s.
=1 — 00

=1
= (™, ™),

where u(m) = Eg(m) m) = Enlm), i=1,2,---
By Proposition 2.2, the continuity of (z,y) in every (z,y) (see Proposition 3.2 in [3]) shows
that
lim r(u™, u5™) = v, p2) = lim k' Likpn, bpez), (3:3)

m—»00
- 1 (m) _ ge. 1 (m) _ g s _
where = lim py™" = B&, pp = lim py™ =By, i =1,2,
For each k > 1, by Proposition 2.2, it is easy to check

- (z &b, 2 ) > L( > & z ). (3.4)
From (3.4) and (3.3), we have

llmlnf _L ( ) ”( ) > llm k L kll ,klljz a.s.
k—o0 k

k—o0

= r(p1, p2). (3:5)

On the other hand, for every m > 1, Proposition 2.2 implies that

A

llmsupkL(Z§(k) Zn(k)) < hm L(Zg(m) Zn(m))

k— oo k—oo k
= lim EL(k™ kpl™)  as.

= (™, us™).
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Let m — oo and by (3.3) we deduce that

k
lim sup ;L( Z §§k), > nz(k)) < lim k' Lk, kps) a.s.

k—oco i= i=1 k—o0

r(u1, p2)- (3.6)

Then the result of the lemma follows from (3.5) and (3.6). #

Proposition 3.1 On the event {Z,, — o0}

liminf Z;' Z, 41 > 1 a.s..

n—o0

Proof By Lemma 3.1 we see that
— i L ¢® ®\] = e L
r(ul,uz)—klggok[fl(zz m,En )] = lim o L(kps, kpz)  as.

Let r(z,y) = klgrolo (1/k) - L(kx, ky). Since the function r(z,y) is continuous in every non-
negative valued (z,y), so if r > 1, i.e. r(ui,p2) > 1, then there exists a,b € R* such that
# = r(E[éo1 A a],E[o.1 AD]) > 1. Now we define the sequence {Z,} in terms of the given process
{Zn} by

Zo = Zo, o1 = (Z(ﬁ(z)/\anz)/\b)) n=0,1,---.

Obviously, Z, > Zy, forn =0,1,---
For Ve > 0,let A, = {|Z; Zp41 —7] <€}, n.=0,1,- -, then it suffice to show that

P(limiann) >P(Zy, = 00) for 0<e<i—1. (3.7)

n—oo
But, by Lemma 3.1, and an analogous argument as Proposition 3.1 in [10]), shows (3.7), and the

proof is complete. #

Theorem 3.2 On the event {Z, — oo}

lim Z,; Fn+1 1 a.s..

n—oo

Proof First we define sequence {Z,}5°, via {Z,}2°,:

_ _ Zn
ZOZNa Zn+1:L(Z(§n,iJnn,i))7 TLZO,].,Z,"',
i=1
where (§n,i;Mn,:) (0 = 1,2,---; n = 0,1,---) are i.i.d. nonnegative, integer-valued random

variables and have the same probability distribution as (£,n). By Proposition 2.2 we have that

Z: (Z") > Z fnz a.s..

Then on {Z,, — oo} we have that

Rl e
liminf ZL—— > lim =L =1, a.s., (3.8)

n—o0

n n
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where the last equality follows from Proposition 3.1 and Theorem 3.2 in [10] without immigration

of mating units. #

Next, we define one more sequence {Z, }22, in terms of the process {Z,}°%,.

For each m > 1, let

Z0:N7 Zvﬂ+1_ (E(ﬁ(zmi”:))), n:071527"'5

1=

where (§£an1)”77(1”:)) (i =1,2,---; n =0,1,---) are i.i.d. nonnegative, integer-valued random

variables for fixed m. Then for m > 1, by Proposition 2.2 we see on {Z,, — oo} that

E ) 5 €l

lim sup ST < lim & = ugm) a.s.,

n—oo Zn, n—00 n

where the above equality is due to the same reason as in (3.8).

Let m — oo, we deduce that

Z §(Z n)
linisup 1T < 1, a.s.. (3.9)
n o0 n
From (3.8) and (3.9), we obtain that
E €(Z n)
lim = — b, a.s. on {Z, — oo}.
n—oo n

By a similar way, one can show that, on {Z, — oo}, the sequence {Z,, 1 M1}, converges
a.s. to w2 as n — 0.
Corollary 3.1 On {Z,, —» o}

lim Z,'Z, 1 =7 a.s..
n—oo

Proof Let {Z,}%2, and {Z,}°2, be defined as above. Theorem 3.2 and the continuity of

the function r(z,y) allow us to conclude that

Z;17n+1 = ZglL(Zn(Zglfn—H), Zn(Z;1Hn+1))

= (i, o) =7 a.s. on {Z, — oo}.

Since Zpy1 > Zpy1, n=0,1,---, then we have that, on {Z, — oo},
Z Z
liminf 22 > lim 22 — g (py, pp) =7 a.s..
n—00 n n—oo  Lp

Similarly, we have

77 Iy = 27 L(Zn(Zy Fas), Zn(Z7 M 1))

S o™ u™y as on {Z, - ool
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Note that Zy11 < Zng1, n =0,1,---, then we have that, on {Z,, — oo},

Zn+1 < lim Zn+1 :T(N(m) (m))

lim sup — 1 M a.s..
n—oo n n—00 n
Hence, on {Z,, — oo},
Zn .
limsup 22 < lim (@™, 1$™) = r(pi,pe) =7 as..
n—00 n m—00

So the proof is completed. #

Corollary 3.2 On {Z, — oo}, both {F,1F, 1}, and {M, M, 1}, are a.s. conver-
gent to r.

Proof Note that forn =1,2,---
Fn_an—l—l = ZT:an—i-lZ;_llZnFn_lZn—l;

and
M, *Mpy1 = Z, ' My 2, 2, M Z,, .

Then the conclusions follow from Theorem 3.2 and Corollary 3.1. #

Proposition 3.2 On {Z,, — oo} the following assertions are equivalent:

(1) {r"Z,}n converges a.s. to W;

(2) {r—"F,}, converges a.s. to r~1u W;

(3) {r—™M,}, converges a.s. 7~ usW.

Proof It is enough to show that (1) and (2) are equivalent.

Suppose that {r~"Z,}22, converges a.s. to W. We are to prove that {r~"F,}32, converges
a.s. to r 1y W as n — oo:

By Theorem 3.2, since {r—"Z,}52, converges a.s. to W, we have, on {Z,, = oo},
rm VR = 2 E e 2y = e W as. as n — oo.

Thus (1) implies (2). Analogously, one can show (2) implies (1). #
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