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Abstract
In this paper we consider a multi-chart for detecting a unknown shift in the mean of an

identically distributed process. It is shown that the multi-chart has usually two advantages: one is

in that it can much reduce computational complexity compared to the GLR (generalized likelihood

ratio) and GEWMA (generalized exponentially weighted moving average) control charts when the

in-control ARL (average run length) is large; the other is that it can quickly detect the size of the

mean shift. Moreover, the numerical simulations show that the multi-chart can not only perform

better than its constituent charts which consist of the multi-chart in the sense that the average of

the ARLs of the constituent charts is large than that of the multi-chart, but also be superior on

the whole to a single CUSUM, EWMA, EWMA multi-chart and GLR control charts in detecting

the various mean shifts when the in-control ARL is not large.
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§1. Introduction

Statistical process control (SPC) techniques such as the cumulative sum (CUSUM)
charts and exponentially weighted moving average (EWMA) charts have been studied ex-
tensively in statistics and engineering (see Lai (1995) and references therein). It has been
shown by Moustakides (1986) and Ritov (1990) that the performance in detecting the
mean shift of the one-sided CUSUM control chart with the reference value δ is optimal
if the real mean shift is δ in terms of the average run length (ARL). In fact, we rarely
know the exact shift value of a process before we detect the mean shift. That is to say,
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the performance of the CUSUM chart in detecting the mean shift depends heavily on the
given reference value which is the magnitude of a mean shift to be detected quickly. By
the same reason the detecting performance of many control charts such as the EWMA, the
optimal EWMA and cumulative score (Cuscore) is closely related to the given reference
value or reference pattern. Many studies on the three control charts have been done by
Crowder (1987, 1989), Lucas and Saccucci (1990), Montgomery and Mastrangelo (1991),
Baxley (1995), Mastrangelo and Montgomery (1995), Reynolds (1996a and 1996b), Box
and Luceno (1997), Ramirez (1998), Hawkins and Olwell (1998), Luceno (1999), Mas-
trangelo and Brown (2000), Jiang, Tsui and Woodall (2000), Jones, Champ and Rigdon
(2001), and Shu, Apley and Tsung (2002).

To solve the problem of detecting the unknown mean shift of the process, Siegmund
and Venkatraman (1995) presented a CUSUM-like control chart, called the GLR chart,
and Han and Tsung (2004) proposed a generalized EWMA (GEWMA) control chart, these
charts do not depend the reference value. However, the two charts require a complex
computing and thus it not easy to use them in the real on-line problems in practice.

Another method to solve the problem of detecting the unknown magnitude of the
change is to use a family of control charts. The pioneering work on this issue was done
by Lorden (1971) and Lorden and Eisenberger (1973) on charting a set of CUSUM statis-
tics. Dragalin (1993, 1997) investigated the design and analysis of a combination of two
CUSUM charts. Sparks (2000) further explored this idea and studied a combination of
three CUSUM charts in particular via simulation. On the other hand, Willsky and Jones
(1976) introduced the window-limited GLR scheme, which was theoretically investigated
by Lai (1995, 1998) and by Lai and Shan (1999). Although the window-limited GLR
scheme and the GLR control chart have good performance in detecting the unknown
magnitude of the changes, their computational complexity and lack of a capability in di-
agnosing the possible magnitude of the changes restrict their application in real on-line
problems. To make the GLR scheme practicable, Nikiforov (2000) proposed a subopti-
mal recursive approach that is based on a collection of L parallel recursive χ2-CUSUM
charts and established a direct relation between the efficiency of the detection scheme
and its computational complexity. However, the charts mentioned above are all consist of
likelihood ratio statistics.

In this paper we will consider a general multi-chart and prove that the ARL of the
multi-chart over a range is smaller than the average of ARLs of its constituent charts.

In the next section, we present a definition of the multi-chart and discuss its properties
related to the CUSUM, EWMA and GLR control chart. Theoretical comparison of the
multi-chart with its constituent charts is given in Section 3. Section 4 shows the simulation
results of ARL’s of the two-sided CUSUM, EWMA, CUSUM multi-chart, EWMA multi-
chart and the GLR charts. Conclusions and problems for further study are discussed in
Section 5.
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§2. A Multi-Chart

Let Xi, i = 1, 2, · · · be random variables with a known common probability distri-
bution Pµ0 , where µ0 is the mean of Xi. Suppose that at some time period, τ , which is
usually called a change point, the probability distribution of Xi changes from Pµ0 to Pµ,
in other words, from time period τ onwards Xi has the common distribution Pµ, that is,
the mean of Xi undergoes a persistent shift of size µ − µ0, where µ0 and the standard
deviation of Xi, σ are known and without loss of generality, it is assumed that µ0 = 0 and
σ = 1. Now we give the definition of a multi-chart in the following.

Definition 2.1 Let ∆m = {δk : 1 ≤ k ≤ m}, Cm = {ck : 1 ≤ k ≤ m} be two sets
of numbers, where m ≥ 2, δk is the known reference value and ck > 0 is a control limit
which depends usually on δk, and fn(δ, x1, · · · , xn), n ≥ 1, a series continuous functions
on the set of real numbers, δ, x1, · · · , xn. Then the following minimum stopping time

T ∗(∆m, Cm) = min
δk∈∆m

{min{n > 0, |fn(δk, X1, · · · , Xn)| > ck}} (2.1)

is called a multi-chart.

Obviously, the T ∗(∆m, Cm) can be rewritten as

T ∗(∆m, Cm) = min(T (δ1, c1), T (δ2, c2), · · · , T (δm, cm)), (2.2)

where T (δk, ck) = min{n > 0, |fn(δk, X1, · · · , Xn)| > ck}.
From the definition we know that the multi-chart is different not only from the mul-

tivariate chart (Hotelling (1947), Lowry, Woodall, Champ and Rigdon (1992), Mason,
Champ, Tracy, Wierda and Young (1997), and Apley and Tsung (2002)) but also from the
multihypothesis test (Chernoff (1959), Baum and Veeravalli (1994), Dragalin, Tartakovsky
and Veeravalli (1999), and Lai (2000)). Note that the multi-chart can be constituted by
different forms of the test statistic functions, fn(δ, x1, · · · , xn). In this paper we only
consider such a multi-chart which consists of a certain number of control charts with
identically form.

When {Xn} is a process of independent observations distributed normally and the
test statistic functions fn(·;X1, · · · , Xn) are taken in the following form

fn(δ,X1, · · · , Xn) = max
1≤k≤n

δ[Xn + · · ·+ Xn−k+1 − δk/2]

or equally

f0 = 0, fn(δ,X1, · · · , Xn) = max{fn−1(δ,X1, · · · , Xn−1) + δ(Xn − δ/2), 0}

and

f0 = 0, fn(δ,X1, · · · , Xn) = max{fn−1(δ,X1, · · · , Xn−1)− δ(Xn + δ/2), 0},
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and
f0 = 0, fn(δ,X1, · · · , Xn) = rXn + (1− r)fn−1(r,X1, · · · , Xn−1)

where the reference values δ > 0 and 0 < r ≤ 1, we can obtain the one-side CUSUM and
EWMA multi-chart, T ∗C(∆m, Cm) and T ∗E(Rm, Dm) respectively, as follows

T ∗C(∆m, Cm) = min
δi∈∆m

{
min

{
n : max

1≤k≤n
δi[Xn + · · ·+ Xn−k+1 − δik/2] > ci

}}

and

T ∗E(Rm, Dm) = min
ri∈Rm

{
min

{
n :

n−1∑
k=0

ri(1− ri)kXn−k > di

}}
.

As can be seen that, for the observations, X1, X2, · · · , Xn, it needs only mn times of
calculation for the CUSUM or EWMA multi-chart in detecting mean shift, while the GLR
and GEWMA tests (see Siegmund and Venkatraman (1995), Han and Tsung (2004)) in
the following

TGL(c) = min
{

n : max
1≤k≤n

|[Xn + · · ·+ Xn−k+1]/k1/2| > c
}

and
TGE(c) = inf

{
n ≥ 1 : max

1≤k≤n

∣∣∣Wn

(1
k

)∣∣∣ ≥ c
}

,

where

Wn

(1
k

)
=

√
2− 1/k√

(1/k) · [1− (1− 1/k)2n]

n−1∑
i=0

1
k

(
1− 1

k

)i
Xn−i,

need n(n + 1)/2 times. Especially, when n is large, e.g., 1000, the computational burden
for the GLR and GEWMA charts become very heavy. Thus, the multi-chart has usually
an advantage in the computational issue. Moreover, once a mean shift is out of the control
limit we can diagnose the possible size of the mean shift if the chosen reference values have
some relation with the sizes of the mean shift, e.g. the CUSUM multi-chart. That is to
say, the multi-chart can overcome the two weaknesses of the GLR and GEWMA control
charts. Another important problem we concern in the present paper is that how is the
detecting performance of the multi-chart. That is, can it be quickly in detecting the mean
shift? The following section will discuss the problem.

§3. Comparison of the Multi-Chart

with Its Constituent Charts

For the convenience of discussion, we use the standard quality control terminology.
Let P0(·) and E0(·) denote the probability and expectation when there is no change in the
mean. Denote Pµ(·) and Eµ(·) as the probability and expectation when the change point
is at τ = 1, and the true mean shift value is µ. For a stopping time T as the alarm time
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with a detecting procedure, two most frequently used operating characteristics are the
in-control average run length (ARL0) and the out-of-control average run length (ARLµ),
defined by ARL0(T ) = E0(T ) and ARLµ(T ) = Eµ(T ). Usually, comparisons of the control
charts’ performance are made by designing the common ARL0 and comparing the ARLµ’s
of the control charts for a given shift µ. The chart with the smaller ARLµ is considered
to have better performance.

Without loss of generality we assume in the following that the mean µ ≥ 0 and the
parameters {δ} satisfy 0 < δ1 < δ2 < · · · < δm. We first compare the multi-chart with its
constituent charts. It is obvious that

ARLµ(T (δk, ck)) ≥ ARLµ(T ∗(∆m, Cm))

for 1 ≤ k ≤ m. But the above inequality usually doesn’t hold if they have the com-
mon ARL0. That is, when we take the control limits c′1, c

′
2, · · · , c′m, such that c′k > ck,

1 ≤ k ≤ m, and ARL0(T ∗(∆m, C ′
m)) = ARL0(T (δ1, c1)) = ARL0(T (δ2, c2)) = · · · =

ARL0(T (δm, cm)), the following inequality

ARLµ(T (δk, ck)) ≥ ARLµ(T ∗(∆m, C ′
m))

usually doesn’t holds, where C ′
m = {c′k, 1 ≤ k ≤ m}. In fact, the ARLµ(T (δk, ck)) can

attain at the minimum value for the CUSUM chart when the parameter δk is just equal
to the mean shift µ. But the following inequality can hold under some conditions,

m∑
k=1

ARLµ(T (δk, ck))

m
≥ ARLµ(T ∗(∆m, C ′

m)). (3.1)

This means that the multi-chart can perform better than its constituent charts in the
sense that the average of the ARLs of the constituent charts is large than that of the
multi-chart. The following theorem can be obtained from (3.1).

Next we give some conditions under which (3.1) holds.

Lemma 3.1 Let H = max
δ

max
c>0

{ARL0(T (δ, c))}. Then for every m ≥ 2 and

positive number M < H, there exist numbers c′k > ck, 1 ≤ k ≤ m such that

ARL0(T (δk, c
′
k)) > ARL0(T (δk, ck))

for 1 ≤ k ≤ m,

ARL0(T (δ1, c
′
1)) = ARL0(T (δ2, c

′
2)) = · · · = ARL0(T (δm, c′m))

and

M = ARL0(T ∗(∆m, C ′
m))

= ARL0(T (δ1, c1)) = ARL0(T (δ2, c2)) = · · · = ARL0(T (δm, cm))

where C ′
m = {c′k, 1 ≤ k ≤ m}.
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Proof Since the test statistic function fn(δ, x1, · · · , xn) is continuous and strictly
increasing, it follows that, for every δ, ARL0(T (δ, c)) is also continuous and increasing on
c (c > 0) and so does ARL0(T ∗(∆m, Cm)) on Cm. Thus, for the positive constant M we
can take the numbers ck, 1 ≤ k ≤ m such that

M = ARL0(T (δ1, c1)) = ARL0(T (δ2, c2)) = · · · = ARL0(T (δm, cm)).

Similarly, we can choose the numbers c′k, 1 ≤ k ≤ m such that c′k > ck, ARL0(T (δk, c
′
k)) >

ARL0(T (δk, ck)) for 1 ≤ k ≤ m and

ARL0(T (δ1, c
′
1)) = ARL0(T (δ2, c

′
2)) = · · · = ARL0(T (δm, c′m)).

Note that

ARL0(T ∗(∆m, C ′
m)) < ARL0(T (δ1, c

′
1)) = ARL0(T (δ2, c

′
2)) = · · · = ARL0(T (δm, c′m)).

If ARL0(T ∗(∆m, C ′
m)) < M , we can take the numbers c′′k, 1 ≤ k ≤ m such that

c′′k > c′k, ARL0(T (δk, c
′′
k)) > ARL0(T (δk, c

′
k)) for 1 ≤ k ≤ m,

ARL0(T (δ1, c
′′
1)) = ARL0(T (δ2, c

′′
2)) = · · · = ARL0(T (δm, c′′m))

and
ARL0(T ∗(∆m, C ′′

m)) = M,

where C ′′
m = {c′′k, 1 ≤ k ≤ m}, since ARL0(T ∗(∆m, Cm)) is continuous and increasing on

Cm.
If ARL0(T ∗(∆m, C ′

m)) > M , we can similarly take the number c∗k, 1 ≤ k ≤ m such
that c′k > c∗k > ck, ARL0(T (δk, c

∗
k)) > ARL0(T (δk, ck)) for 1 ≤ k ≤ m,

ARL0(T (δ1, c
∗
1)) = ARL0(T (δ2, c

∗
2)) = · · · = ARL0(T (δm, c∗m))

and
ARL0(T ∗(∆m, C∗

m)) = M,

where C∗
m = {c∗k, 1 ≤ k ≤ m}. This completes the proof. 1cm¤

Lemma 3.2 Suppose that ARL0(T (δ,c)) is differentiable and its two partial deriva-
tives are continuous with respect to δ and c, then, for every positive constant M < H,
there exists (∆(m+1), C(m+1)) such that

ARL0(T ∗(∆(m+1), C(m+1))) = M

and

ARL0(T ∗(∆(1)
m , C(1)

m )) = ARL0(T (∆(2)
m , C(2)

m )) = · · · = ARL0(T ∗(∆(m+1)
m , C(m+1)

m ))

where ∆(k)
m = {δi : 1 ≤ i ≤ m + 1, i 6= k} and C

(k)
m = {ci : 1 ≤ i ≤ m + 1, i 6= k}, 1 ≤ k ≤

m + 1.
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Proof Since the partial derivatives of ARL0(T (δ, c)) are continuous, it follows from
(2.2), the definition of multi-chart that ARL0(T ∗(∆m, Cm)) is also differentiable and its
2m partial derivatives are continuous with respect to δ1, c1, δ2, c2, · · · , δm, cm, respectively.
Thus by the inversion and implicit theorem we obtain the lemma. 1cm¤

Theorem 3.3 Let the numbers c1, c2, · · · , cm satisfy ARL0(T (δk, ck)) = M < H

for 1 ≤ k ≤ m and the condition of Lemma 3.2 holds. Suppose that, for the stopping
times Tx = min

1≤j≤k
{T (δ1j , x)} and T ′x = min

1≤j≤k
{T (δ2j , x

′)}, where 1 ≤ k ≤ m − 1, {δij , 1 ≤
j ≤ k} ∈ ∆k for i = 1, 2, and x = a, b > 0,

ARLµ(Ta) + ARLµ(Tb)
2

≥ ARLµ(min{T ′a, T ′b}) (3.2)

holds so long as
ARL0(min{T ′a, T ′b}) = ARL0(Ta) = ARL0(Tb)

and
ARL0(T ′a) = ARL0(T ′b) > ARL0(Ta) = ARL0(Tb).

Then, for every m ≥ 2, there exists the numbers c′k > ck, 1 ≤ k ≤ m such that
ARL0(T (δk, c

′
k)) > ARL0(T (δk, ck)), 1 ≤ k ≤ m, ARL0(T ∗(∆m, C ′

m)) = M and

m∑
k=1

ARLµ(T (δk, ck))

m
≥ ARLµ(T ∗(∆m, C ′

m)). (3.3)

Proof Let dµ(δ, c) = ARLµ(T (δ, c)) and Dµ(∆m, Cm) = ARLµ(T ∗(∆m, Cm)).
From Lemma 3.1 and (3.2) it follows that the theorem holds for m = 2. Assume that the
theorem is true for m = k ≥ 2. Then, for m = k + 1 we have

dµ(δ1, c1) + dµ(δ2, c2) + · · ·+ dµ(δk+1, ck+1)
k + 1

=

k+1∑
i=1

∑
j 6=i

dµ(δj , cj)

k(k + 1)
. (3.4)

According to the assumption that (3.2) holds for m = k, thus there exist numbers c
(i)
j ,

1 ≤ i ≤ k + 1, 1 ≤ j ≤ k such that c
(i)
j > cj for 1 ≤ j ≤ k, D0(4(i)

k , C
(i)
k ) = M and

k+1∑
j=1, 6=i

dµ(δj , c
(i)
j )

k
≥ Dµ(4(i)

k , C
(i)
k ) (3.5)

for 1 ≤ i ≤ k + 1, where4(i)
k = {δj : 1 ≤ j ≤ k + 1, j 6= i} and C

(i)
k = {c(i)

j , 1 ≤ j ≤ k}. On
the other hand, it follows form Lemma 3.2 that there exist numbers c′i > ci, 1 ≤ i ≤ k + 1
such that D0(4k+1, C

′
k+1) = M , and

D(4(1)
k , C

(1)′
k ) = D(4(2)

k , C
(2)′
k ) = · · · = D(4(k+1)

k , C
(k+1)′
k )
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where C ′
k+1 = {c′i : 1 ≤ i ≤ k + 1}, C

(i)′
k = {c′j : 1 ≤ j ≤ k + 1, j 6= i} for 1 ≤ i ≤ k + 1.

Note that D0(4(i)
k , C

(i)′
k ) > D0(4(i)

k , C
(i)
k ), since D0(4k+1, C

′
k+1) = M = D0(4(i)

k , C
(i)
k ).

Hence, by using (3.2) we have

Dµ(4(i)
k , C

(i)
k ) + Dµ(4(j)

k , C
(j)
k )

2
≥ ARLµ(min{Ti, Tj}) (3.6)

for 1 ≤ i 6= j ≤ k + 1, where Ti = min
1≤l≤k+1, l 6=i

{T (δl, c
′
l)}, 1 ≤ i ≤ k + 1. Obviously,

min{Ti, Tj} = T ∗(∆k+1, C
′
k+1) for 1 ≤ i 6= j ≤ k + 1. Thus, by (3.4), (3.5) and (3.6),

dµ(δ1, c1) + dµ(δ2, c2) + · · ·+ dµ(δk+1, ck+1)
k + 1

≥

k+1∑
i+1

Dµ(4(i)
k , C

(i)
k )

k + 1
=

2
k+1∑
i=1

Dµ(4(i)
k , C

(i)
k )

2(k + 1)
≥ ARLµ(T ∗(4k+1, C

′
k+1)).

By mathematical inductive method, the theorem is proved. 1cm¤

Remark 1 The result of Theorem 3.3 is comparatively general since it does not
depend on the specific information about the observations {Xn}.

For the CUSUM multi-chart

T ∗C(∆m, Cm) = min
1≤k≤m

{T (δk, ck)}

where
T (δk, ck) = min

{
n : max

1≤i≤n
δk[Xn + · · ·+ Xn−i+1 − δki/2] > ck

}

and 0 < δ1 < δ2 < · · · < δm, we have the following corollary which say that (3.3) of
Theorem 3.3 hold for large ARL0.

Corollary 3.4 Let the distribution of the observations {Xn} be normal and M =
ARL0(T (δk, ck)) for 1 ≤ k ≤ m, then

1
m

m∑
k=1

ARLµ(T (δk, ck)) > ARLµ(T ∗C(4m, C ′
m)) (3.7)

holds for large M , so long as ARL0(T ∗(4m, C ′
m)) = M and

ARL0(T (δ1, c
′
1)) = ARL0(T (δ2, c

′
2)) = · · · = ARL0(T (δm, c′m))

> ARL0(T (δ1, c1)) = ARL0(T (δ2, c2)) = · · · = ARL0(T (δm, cm)) = M.

Proof It needs only to check that (3.2) of Theorem 3.3 holds for any two stopping
times Ti = T (δi, ci) and Tj = T (δj , cj) for large M , that is

ARLµ(Ti) + ARLµ(Tj)
2

≥ ARLµ(min{T ′i , T ′j}) (3.8)

《
应

用
概

率
统

计
》

版
权

所
有



第三期 韩东 宗福季 胡锡健: 监测均值变动的多重控制图方法 305

for large M , where T ′i = T (δi, c
′
i) and T ′j = T (δj , c

′
j). Without loss generality we take i = 1

and j = 2.
Let T (δ, c) denote the CUSUM chart with reference value δ and control limit c. It is

known that (see Srivastava and Wu (1997))

Eµ(T (δ, c)) = (1 + o(1))
e(δ−2µ)(c+2δρ)/δ − 1− (δ − 2µ)(c + 2δρ)/δ

2(µ− δ/2)2

for δ > 2µ, Eµ(T (δ, c)) = (1 + o(1)) · (c2/δ2) as δ → 2µ, and

Eµ(T (δ, c)) = (1 + o(1))
2c

δ(2µ− δ)

for δ < 2µ. Note that ci/c′i → 1 as M →∞. It follows that

Eµ(T ′i )) = (1 + o(1))Eµ(Ti)) (3.9)

for large M and i = 1, 2.
If δi > 2µ, 1 ≤ i ≤ 2, then (δ2 − 2µ)/δ2 > (δ1 − 2µ)/δ1 since δ2 > δ1, and therefore,

by (3.9),

Eµ(Ti)) = (1 + o(1))
[e(δi−2µ)(ci+2δiρ)/δi − 1− (δi − 2µ)(ci + 2δiρ)/δi

2(µ− δi/2)2
]

> Eµ(T ′1) + o(Eµ(T1))

for i = 1, 2 and large M . Hence,

1
2
(Eµ(T1) + Eµ(T2)) > Eµ(T ′1) ≥ Eµ(min{T ′i , T ′j})

for large M , that is, (3.8) holds for large M . Similarly, we can check that (3.8) holds for
the other cases: δ2 < 2µ or δ2 > 2µ, δ1 ≤ 2µ or δ2 = 2µ, δ1 < 2µ. Thus, we prove the
corollary. 1cm¤

Remark 2 The condition that the common ARL0 is large in the corollary may
not need in practical detection. In fact, the simulation examples in the next section
have showed that (3.7) holds for m = 2, 5 when ARL0 = 500. Moreover, the numerical
simulations in the table 3 in the next section support that (3.3) of Theorem 3.3 can hold
for many multi-charts.

We have shown that the CUSUM multi-chart has the better performance than that
of its constituent CUSUM charts in the sense of (3.7). What is the result of comparing
the CUSUM multi-chart with the GLR control chart? It has been shown that the GLR
control chart has the best performance in detecting mean shift among the four control
charts, the EWMA, optimal EWMA, GEWMA and CUSUM when the ARL0 approaches
to infinity (see Han and Tsung (2004)). But, when the ARL0 is not large, the simulation
results given in the next section show that the multi-chart has the better performance in
detecting small mean shift than the GLR does.
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§4. Numerical Illustration

The purpose of this section is to illustrate some simulation results of ARL’s of the two-
sided CUSUM, EWMA, CUSUM multi-chart, EWMA multi-chart and the GLR charts.
The numerical results of ARL’s were obtained based on 10000-repetition experiment. The
common ARL0 here is taken to be 500. We compare the simulation results for 10 mean
shifts (µ1 = 0.1, µ2 = 0.25, · · · , µ10 = 4) listed in the first column of Tables’ with change
point τ = 1.

In order to compare the averages of ARLs’ for the CUSUM and EWMA charts with the
ARL of the CUSUM and EWMA multi-charts, we list the simulation results of the CUSUM
and EWMA charts with the parameters, {δ1 = 0.1, δ2 = 0.5, δ3 = 1, δ4 = 1.5, δ5 = 2}
and {r1 = 0.1, r2 = 0.3, r3 = 0.5, r4 = 0.7, r5 = 0.9}, in Table 1 and 2, respectively.
Table 3 compares the simulation results of the ARLµs’ for the GLR, CUSUM multi-
chart, EWMA multi-chart and the averages of the ARLµs’ for five CUSUM and five
EWMA charts corresponding to the cases, {δ1 = 0.1, δ2 = 0.5, δ3 = 1, δ4 = 1.5, δ5 = 2}
and {r1 = 0.1, r2 = 0.3, r3 = 0.5, r4 = 0.7, r5 = 0.9}, respectively. The values in the
parenthesis in every column of Tables’ are the standard deviation of the simulation results
of the stopping times. In the first two rows of Tables 1 and 2, c denotes various values of
the width of the control limits, δ and r are the parameters of the CUSUM and EWMA
charts, respectively. The Aver. CUSUM and Aver. EWMA both in the second and
forth column of Table 3 denote respectively, the average of ARL’s for the constituent
CUSUM and EWMA charts. The sizes of the mean shifts (µ) are listed in the first
column of Tables’. We list the simulation results of the GLR (TGL) with the control
limit c = 3.494 such that ARL0(TGL) = 500 in the last column of Table 3. It should be
explained that to obtain the ARL0(T ∗C) = 500 for the CUSUM multi-chart, T ∗C in Table 3
we take the control limits, c′1 = 2.71, c′2 = 5.22, c′3 = 6.029, c′4 = 6.282 and c′5 = 6.301 such
that ARL0(T (δ1, c

′
1)) = 1297.4, ARL0(T (δ2, c

′
2)) = 1298.5, ARL0(T (δ3, c

′
3)) = 1298.6,

ARL0(T (δ4, c
′
4)) = 1297.2 and ARL0(T (δ5, c

′
5)) = 1298.1. Similarly, we can choose the

control limits of the EWMA multi-chart T ∗E such that ARL0(T ∗E) = 500.
Usually, each chart has its strong points in detecting different sizes of the mean shift.

In order to compare their whole performance of control charts in detecting various sizes
of the mean shift, we use the number,

ETD =
10∑

k=1

µkARLµk

/ 10∑
k=1

µk

listed in the last row of Tables’, as a standard to judge who is well on the whole. Obviously,
the smaller the number is, the better the control chart performs. We may call the number
as an expectation of the time for detecting the mean shifts (ETD). The calculation of the
number ETD is based on the consideration that in order to sum up the ARLs’ in some
reasonable way one may reduce the ARLs of detecting small shifts and enlarge the ARLs
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of detecting large shifts such that the resulting ARLs’ can added up in the “same” order of
quantity. As can be seen that the ETD is a result of weakening the strong point of control
chart in detecting small shifts, at the same time, magnifying its weak point in detecting
large shifts.

Table 1 ARL’s of the CUSUM control chart with ARL0 = 500

SHIFTS δ1 = 0.1 δ2 = 0.5 δ3 = 1 δ4 = 1.5 δ5 = 2

(µ) c1 = 1.979 c2 = 4.29 c3 = 5.075 c4 = 5.337 c5 = 5.355

0 500 (414) 500 (491) 500 (502) 500 (490) 500 (498)

0.1 239 (169) 301 (284) 369 (366) 417 (416) 439 (433)

0.25 91.7 (42.7) 94.2 (77.2) 144 (135) 202 (198) 252 (250)

0.5 44.2 (14.3) 31.0 (17.7) 38.9 (31.8) 58.1 (53.7) 81.9 (78.8)

0.75 28.9 (7.46) 17.5 (7.55) 17.2 (11.1) 22.0 (17.9) 30.7 (27.6)

1 21.5 (4.74) 12.2 (4.45) 10.5 (5.56) 11.6 (7.92) 14.6 (11.9)

1.25 17.2 (3.43) 9.34 (2.96) 7.52 (3.36) 7.53 (4.37) 8.56 (6.04)

1.5 14.3 (2.59) 7.59 (2.16) 5.83 (2.29) 5.50 (2.72) 5.80 (3.59)

2 10.8 (1.69) 5.55 (1.32) 4.07 (1.30) 3.56 (1.41) 3.43 (1.63)

3 7.27 (0.93) 3.68 (0.72) 2.60 (0.66) 2.19 (0.64) 1.95 (0.71)

4 5.54 (0.64) 2.84 (0.51) 2.03 (0.38) 1.64 (0.51) 1.39 (0.51)
10∑

k=1

µkARLµk

/ 10∑
k=1

µk 15.38 10.53 11.01 13.05 15.55

Table 2 ARL’s of the EWMA control chart with ARL0 = 500

SHIFTS r1 = 0.1 r2 = 0.3 r3 = 0.5 r4 = 0.7 r5 = 0.9

(µ) c1 = 2.818 c2 = 3.026 c3 = 3.073 c4 = 3.085 c5 = 3.089

0 500 (497) 500 (495) 500 (492) 500 (504) 500 (502)

0.1 320 (316) 403 (398) 438 (431) 455 (458) 470 (473)

0.25 106 (95.8) 187 (181) 256 (255) 308 (311) 354 (355)

0.5 31.2 (22.2) 55.4 (51.6) 88.7 (87.4) 128 (128) 176 (178)

0.75 15.8 (8.85) 22.5 (18.9) 36.0 (33.9) 55.5 (54.6) 84.6 (85.3)

1 10.3 (4.78) 11.9 (8.61) 17.4 (15.3) 26.9 (25.5) 42.7 (42.1)

1.25 7.68 (3.05) 7.65 (4.73) 10.0 (8.01) 14.7 (13.4) 23.5 (22.9)

1.5 6.10 (2.15) 5.55 (3.00) 6.53 (4.64) 8.90 (7.72) 13.7 (13.1)

2 4.36 (1.25) 3.55 (1.48) 3.64 (2.04) 4.30 (3.12) 5.80 (5.01)

3 2.87 (0.67) 2.16 (0.66) 1.92 (0.78) 1.86 (0.95) 1.98 (1.28)

4 2.19 (0.42) 1.61 (0.52) 1.33 (0.49) 1.23 (0.45) 1.21 (0.48)
10∑

k=1

µkARLµk

/ 10∑
k=1

µk 9.83 12.64 16.53 21.32 28.01

Table 3 illustrates that both the CUSUM and EWMA multi-charts have the better
performance in detecting all size of the mean shifts than that of its constituent charts in
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the sense that the average of the ARLs of the constituent charts is large than the ARLs of
the multi-charts. Comparisons of the numbers ETD in Table 1, 2 and 3 show that the ETD
(9.27) of the CUSUM multi-chart with five constituent CUSUM charts is smallest among
all tests, though the value ETD weakens the strong point, at the same time, magnifies the
weak point of the CUSUM multi-chart. That is to say the CUSUM multi-chart is superior
on the whole (in the sense of the number ETD) to a single CUSUM, EWMA, EWMA
multi-chart and GLR control charts in detecting various mean shifts when the in-control
average run length is not large enough.

Table 3 Comparison of the averages of ARL’s of the CUSUM and EWMA charts

with the ARL’s of the multi-chart and GLR control charts with ARL0 = 500

SHIFTS Aver. CUSUM Multi-chart Aver. EWMA Multi-chart GLR(TG)

(µ) TC(δ1), · · · , TC(δ5) T ∗C TE(r1), · · · , TE(r5) T ∗E c = 3.494

0 500 (479) 500 (460) 500 (498) 500 (499) 500 (492)

0.1 353 (334) 262 (201) 417 (415) 381 (374) 324 (288)

0.25 157 (141) 97.0 (60.5) 242 (240) 146 (135) 114 (83.1)

0.5 50.8 (39.3) 35.2 (20.9) 95.8 (93.5) 40.1 (31.0) 37.4 (23.8)

0.75 23.2 (14.3) 18.2 (9.73) 42.9 (40.3) 18.2 (11.3) 18.6 (10.8)

1 14.1 (6.92) 11.6 (5.98) 21.8 (19.2) 11.2 (6.08) 11.4 (6.24)

1.25 10.0 (4.03) 8.08 (3.98) 12.7 (10.4) 7.81 (3.95) 7.83 (4.11)

1.5 7.81 (2.67) 6.03 (2.82) 8.15 (6.13) 5.85 (2.91) 5.77 (2.92)

2 5.48 (1.47) 3.83 (1.61) 4.33 (2.58) 3.68 (1.77) 3.58 (1.66)

3 3.54 (0.73) 2.20 (0.73) 2.16 (0.87) 1.92 (0.89) 1.94 (0.81)

4 2.69 (0.51) 1.58 (0.53) 1.52 (0.47) 1.28 (0.49) 1.31 (0.49)
10∑

k=1

µkARLµk

/ 10∑
k=1

µk 13.1 9.27 17.67 10.89 9.87

§5. Conclusion and Discussion

We know that the CUSUM or EWMA chart can not give play to its strong point in
detecting more than one mean shifts or the mean shift which is unknown, and the GLR
and GEWMA require a complex computing in detecting the size of a mean shift. To
remedy these defects of the control charts we consider a multi-chart in this paper.

It is shown that the multi-chart has not only the merit in the computational issue but
also can quickly detect the size of the mean shift. We proved that the CUSUM multi-chart
performs better than its constituent CUSUM charts which consist of the CUSUM multi-
chart in the sense that the average of the ARLs of the constituent charts is large than
that of the multi-chart. Moreover, the numerical simulation results show that the CUSUM
multi-chart is superior on the whole (in the sense of the ETD) to the CUSUM, EWMA,
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GLR and EWMA multi-charts in detecting various mean shifts when the in-control average
run length is not large.

In this paper we only discuss the problem of detecting the mean shift. In fact, we
can use the multi-chart to detect simultaneously a change of several values. It often needs
for us to detect simultaneously a change of two characteristic values, µ and γ, of a vector
random process Zn = (Xn, Yn), n ≥ 1. To detect the change of a pair of (µ, γ), we
can choose the parameters δ1 = (µ1, γ1), δ2 = (µ1, γ2), δ3 = (µ2, γ1), δ4 = (µ2, γ2), · · · ,
δk = (µi, γj), · · · , δm = (µl, γs) to constitute a multi-chart as follows:

T ∗(∆m) = min(T (δ1), T (δ2), · · · , T (δm)),

where
T (δk) = min{n > 0, |hn(µi, σj ;Z1, · · · , Zn)| ∈ Dij},

where δk = (µi, σj), Dij is a out-control domain of (µi, σj) and hn(µi, σj ;Z1, · · · , Zn) is a
test statistic function with two parameters µi and σj .

However, the detection performance of a multi-chart depends on the choice of the test
statistic functions and its parameters. In order to constitute a good multi-chart one must
solve three problems: What is the form of the test functions to be taken? How many the
constituent charts should be? What are the reference values to be chosen? It is worth to
further study the three problems.
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监测均值变动的多重控制图方法
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本文证明了当受控平均运行长度充分大时, 多重控制图有两个优点: 一是相比较GLR (广义似然比)

和GEWMA (广义指数权重移动平均)控制图它可以大大降低运算的复杂性; 二是能够较快地监测均值变化的

大小. 数值模拟也表明: 多重控制图不仅优于其构成的单个控制图, 而且在监测未知的均值变动方面也优于单

个的CUSUM, EWMA, 多重EWMA和GLR控制图.

关键词: 统计过程控制, 变点监测, 平均运行长度.

学科分类号: O213.1.

《
应

用
概

率
统

计
》

版
权

所
有




