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Abstract

In this paper, we investigate how to apply the empirical likelihood method to the mean in
the presence of censoring and missing. We show that an adjusted empirical likelihood statistic
follows a chi-square distribution. Some simulation studies are presented to compare the empirical
likelihood method with the normal method. These results indicate that the empirical likelihood
method works better than or equally to the normal method.
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81. Introduction

Many statistical experiments result in incomplete sample, even under well-controlled
conditions. This is because individuals will experience some other competing events which
cause them to be removed. In such cases, the event of interest is not observable. In this
paper, we investigate how to estimate the mean in the presence of missing and censoring.

A common method for handling missing data is to impute a value for each missing
response and then apply standard methods to the complete data set as if they were true
observations. Commonly used imputation methods include ratio and linear regression
imputation, nearest neighbor imputation and kernel regression imputation. The idea of
filling in the least squares estimates of all missing values in the analysis of variance and
covariance dates back to Yates (1933)[") and Bartlett (1937)). We refer the reader to
Little & Rubin (1987, ch.4)l® for an excellent account of imputation methods for missing
responses.

Censored data often arise in the study of medical follow-up, survival analysis, biometry
and reliability study. In the last two decades, statistical inference with censored data has

been paid considerable attention and studied extensively.
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Let Y7,Y2,- -+, Y, be nonnegative independent and identically distributed (i.i.d.) ran-
dom variables (r.v.) with unknown distribution function F', the mean of which is what we
are interested in and we denote as 6. Let C1,C5,--- ,C, be nonnegative i.i.d. censoring
r.v. with the distribution function G which is assumed known here. It is also assumed
that Y;’s and Cj’s are independent. In the random censoring model, the true survival
values Y7, Ys, -+ Y, are not observable. Instead, one observes only Z; = min(Y;, C;) and
0; = I(Y; < C;), where I(-) denotes the indicator function.

In practice, we may find that Y is missing at random (MAR), which means that
whether Y is missing or not is independent of the value of Y. We denote 7; as the
indicator of whether Y; is missing or not. n; = 0 if Y; is missing, otherwise n; = 1.

The paper is structured as follows. In Section 2, we construct confidence intervals
for the mean by both normal method and empirical likelihood method. The empirical
likelihood method was first suggested by Art. Owen (1988, 1990)[* 5. According to him,
confidence intervals are constructed by empirical likelihood ratio. Compared with the
traditional parametric methods, the empirical likelihood-based intervals are more accurate

under small-sample circumstances and are range preserving69.

In section 3, we do some
simulations to compare the performance of the two methods under various conditions. In

section 4, we give some proofs of the main results.

§2. Methodology and Main Results

First of all, we use the linear regression imputation method to impute the missing

values. We assume the following regression model:
Y =X/B+e¢i, 1=1,2,---,n, (2.1)

where (3 is a p X 1 vector of regression parameter. ¢;’s are i.i.d. random errors with the
mean 0 and independent of X;’s.

By the method of Koul, Susarla and Van Ryzin (1981) (hereafter abbreviated as
K-S-V), we get the estimator for (3:

~ n —1 n
B = ( > niXinT) > miXiY,
i=1 i=1

where Y* = Z;0;/[1 — G(Z;)], i =1,2,--- ,n.
Hence, we can use the regression imputation to impute Y; by X7 E if Y; is missing.
Let
Zin =Y + (1 —n)X7B,  i=1,2,--,n.
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- n
We then use 0 = (1/n) - > Ziy, as the estimator of 6.
i=1

Theorem 2.1  Assume E||X|| < oo, Ee? < oo, and if  is the true value of 6, then

(Zin — 00) — N(0,V(6o)),

M=

1
Vi

1

where

V(QO) = O‘% + O‘% + 2019,

o} = (1S, X + 12V = X7B), o} = E(X7B—60)2,
012 = E[n(515; X + 1)(Y* — X™B)(X74 — b)),
S =E[(1-n)X"], S;=EnXX").

Since V/(6p) is unknown, we can use its moment estimator V (6p) instead. V(6) =
02 + G5 + 2012, where
~2 15~ (3§ a-1 2 32 ~2 11~ 3 2
op =n > mi(Si1Sy Xi+ 1)°(Y7 = X[p)%, oy =n"" Y (X]B—00)7,
i=1 i=1

G12 ="t 3 w5185 X + )Y = XTB)(XTB ~ o),
i=1

~ n ~ n
S = n~! (1 — m)X{, Sy = n~! Z HZXZXZT
=1 =1

We can obtain normal approximation 1 — o confidence interval (6 — u;_,, /2 V(0)/n,

o+ Ui _q/2\/ ‘7(5)/71), where u;_, /9 is 1 —a/2 quartile of the standard normal distribution.

But when the sample size is small, the above symmetric interval based on the central
limit theorem has poor performance. So, we can also consider the confidence interval based
on the empirical likelihood method, which makes very weak distributional assumptions and
is justified by having asymptotically correct coverage levels.

Let F, be the distribution function which assigns probability p; at the point Z;,
for i = 1,2,---,n. Then, we have 0(F,) = ipiZm. An empirical log-likelihood ratio,
evaluated at # = 0, is then defined as =

ln(0) =-2  max > log(np;). (2.2)
0(Fp)=0, 3 pi=1 '~

By considering a Lagrange multiplier argument, we get

~ n

In(bo) = 2 21 log(1 + A(Zin — 60)), (2.3)
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where A is the solution of the following equation:

1 Zin - 00
— =0. 24
n Z; 14+ MNZin — 6o) 0 (24)

Compared to the standard empirical log-likelihood function, the main difference is
that Z;,’s in lAn(Qo) are not i.i.d.. As a result, the asymptotic distribution of lAn(Ho) is
a non-standard chi-square distribution in which case confidence intervals are not easily
contributed as in the case of standard chi-square distribution. So lAn(Go) should be adjusted

to follow the standard chi-square distribution.

Let
Laa(B0) = 7(00)ln(00), (2.5)
where )
_ Va(bo an R A RY
r(6p) = 7 0 d Vi) nl;(zm 00)>.

Then, Z;d(t%) has asymptotically a standard chi-square distribution with 1 degree of
freedom as stated below.

Theorem 2.2  Suppose E|| X|| < oo, Ee? < 0o, and if fp is the true value of 0, then
lAad(Ho) is asymptotically x2. That is, P(lAad(Ho) < c¢q) =1 —a+o(l), where ¢, satisfies
P2 <ca)=1-a.

By theorem 2.2, an asymptotically correct 1 — « level confidence interval can be
obtained as I, = {0 : Taa(6) < Cat-

Corollary 2.1 In particular, when there is no censoring, Z;, = n;Y; + (1 —ni)XZ-TB,
where B = (zn: niXiXZ-T>_1 Xn: n:X;Y;. Suppose E||X|| < oo, Ee? < oo, and if f is the
true value of ;Tlthen z;d(ﬂo) 1Zs_ ;lso asymptotically x3.

This is Theorem 2.1 by Qihua Wang & J.N.K. Rao (2002)[1%,

§3. Simulation Results

In section 2, we considered two methods for constructing confidence intervals in the
presence of both missing and censoring. Following are the simulation results to compare
these methods in terms of coverage accuracies based on them.

We use simple regression model Y = « + X + ¢, where ¢ is a standard normal r.v.
and X follows the exponential distribution with mean 1. The censoring r.v. C follows

the exponential distribution with mean c¢. N (), EL(f) denote the coverage probabilities
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for the confidence intervals on 6 by normal method and empirical method respectively.

We generated 1000 random samples of size n = 20,50,100. The mean of censoring r.v.,
¢ = 10,20,50. The missing probability is 0.05, 0.1 and 0.2 (see Table 1, 2 and 3).

From the results, we can find that in any situation, empirical likelihood method is

better than normal method. As the missing probability increases, the coverage probability

decreases.

Table 1 Coverage probabilities for the mean (missing probability is 0.05)

a=0.1 a=0.05
c n No(0) EL,(0) No(0) EL,(0)
10 20 0.806 0.914 0.852 0.925
50 0.831 0.886 0.896 0.917
100 0.858 0.901 0.912 0.932
15 20 0.850 0.918 0.874 0.928
50 0.865 0.899 0.921 0.940
100 0.873 0.906 0.935 0.940
20 20 0.848 0.905 0.897 0.943
50 0.875 0.906 0.902 0.929
100 0.898 0.909 0.923 0.940
Table 2 Coverage probabilities for the mean (missing probability is 0.1)
a=0.1 a=0.05
c n No(0) EL,(9) N, (0) EL.(9)
10 20 0.789 0.902 0.830 0.918
50 0.827 0.891 0.884 0.908
100 0.860 0.899 0.896 0.932
15 20 0.803 0.881 0.867 0.913
50 0.834 0.875 0.902 0.933
100 0.862 0.891 0.919 0.937
20 20 0.827 0.896 0.898 0.933
50 0.867 0.886 0.924 0.932
100 0.886 0.905 0.924 0.941
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Table 3 Coverage probabilities for the mean (missing probability is 0.2)

a=0.1 a = 0.05
c n Na(6) ELa(8) Na(6) ELa(0)
10 20 0.763 0.857 0.830 0.896
50 0.818 0.877 0.856 0.901
100 0.831 0.872 0.890 0.915
15 20 0.795 0.867 0.824 0.872
50 0.814 0.854 0.855 0.897
100 0.835 0.881 0.899 0.931
20 20 0.819 0.883 0.862 0.892
50 0.809 0.843 0.876 0.902
100 0.822 0.873 0.889 0.917
§4. Proofs

Proof of Theorem 2.1:
First, from the K-S-V method, we know that E(Z;d;/[1 — G(Z;)]) = E(Y;). Thus, we
can conclude that E(Z;,) = E(Y;).

Then, recalling the definition of B, we have

w23 (1 - ) X7 (B - )

=1

= U2 Zﬁ:l(l i) X7 [( Z i X X7 ) - ilﬂkaYk* —B
1 n

- n_l/Q(Z(l—m) )(Zn]XX) ZTZka(Y — X 5)

1= k=

= PE[(1 - ) XTIEMXXT)] ! anXk(Y —XiB) + op(1)

= 258, N m XV = X[B) + op(1). (4.1)
k=1
Reorganize (4.1), we get

n 2 Z(l —mi)X] B\

=1

Y2885 S e X (Vi — XTB) +n~ Y2 S5 (1 — ) X768+ op(1). (4.2)
k=1 =1
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By applying (4.2), we have
n~1/2 é(zzn —0o)
— 2 ; (mY;" + (1 — 1) X7 B — o)
= w0+ (1 = m)XTD)
= Y — )+ 021 3 XY - X7
+n~1/2 £:1<(1 — 1) X[ B) + 0p(1)
— U2 i(niy;* — 0o+ S185 i X (Y7 — XTB) + (1 — ) X7 B) + 0p(1)
W25 (i (S187 X + 1) (Y7 — XTB) + (XTB — 60)) + 0,(1), (4.3)

=1

By the central limit theorem, (4.3) — N(0,V (6p)), where

V(0o) = E(n;(S155 ' Xi + )(Y;* — X7 B) + (X7 B — 60))* = 07 + 03 + 2012,

and

o = En(S19; X + 1)X(Y* — X76)%, 02 =E(X"3—6))?,
o1z = E[n(S155 ' X + 1)(Y* = X7B) (X753 — 6))].

g

Lemma 4.1 Under the condition of theorem 2.1, we have

(Zi — (90)2 = 0'% + 0'32) + 2093 + Op(l),

-

3

=1

where

o5 =E(X"B—00)%, o3 =EMnY* - X"p)%,
023 =E[n(XT8—6p)(Y" — X" 5)].

Proof By the law of large numbers and the fact that B L, 3, it is easy to see that

(Zin — 00)* = (Y7 + (1 — ) X7 B — 6p)°

-

S

i=1

1
1 n
- Rnl +Rn2+Rn3+0p(1)7

(2

(4.4)
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where
1o 1 .
Ry = *Z(Xﬂ 00)?, *Z i(Y; = X7 B)?,
n = n ;=1
2 T * T
Ruz = — > mi(X] 6 = 00)(Y;" — X[ ).
i=1
By the law of large numbers, we have
Ry 2 o2, (4.5
Rp3 = 2023. (4.7)
From (4.5)—(4.7), lemma 4.1 is then proved. O
Lemma 4.2 Let 2( ) = mmax | Zin|. If the conditions of theorem 2.1 are satisfied,
i<n
we have
Z(ny = 0p(n'/?).
Proof Notice that
< N e :
Zawy < e Y71+ amass X115 (48)
By lem.3 of Owen (1988), it follows that
_ 1/2 _ 1/2
pax V7| = o0p(n%),  max |Xif| = op(n7). (4.9)
(4.8) and (4.9) together with the fact 3= Op(1) prove lemma 4.2. O
Lemma 4.3 Under assumption of theorem 2.1, we have
A= 0,(n'/?).
Proof By theorem 2.1, it follows that
L& ~1/2
5" (Zin — 00) = o072, (110)
i=1

This together with lemmas 4.1 and 4.2 proves lemma 4.3 by the same arguments as

used in Owen (1988). O

Proof of Theorem 2.2:
Applying Taylor’s expansion to %(60), we have

£(00) = 2 X AN Zin = 00) = 5N (Zon — )1} +% (411)
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with |y,| < C Z IN(Zin, — 600)|? in probability.
By lemmas 4 1, 4.2 and 4.3, it follows that
| < C’\)\\S nmax yzm — by Z( in — 00)? = 0p(1). (4.12)
Notice that
n Zin — 00 1 12
= =Y (Zin—00) = | = X (Zin — 00)*|A
2 + AZin — 60) n 2 PP 0) ]
12 )\2(Zm—90)3
- 4.13
T BT A Zn — ) (4.13)
By (2.4), (4.13) and lemma 4.1-4.3, we get
n 1 n
A= (2 (Zin=00%) S (Zin— b0) + 0p(n?) (4.14)
i=1 =1
Again using (2.4), we get
n A(Zzn - 00)
0 = S o0
Z; 1+ (Zin — 6o)
S A Zin = 00)] = SN Zon — o))+ 37 LA — OO 415
- Z[ ( in 0)] Z[ ( in 0)] E _ ( )
i=1 i=1 =1 14+ MZin — o)
By lemmas 4.1-4.3, it follows that
. [ ( in — ‘90)]
= op(1). 4.1
; 1+ )\( mn 90) Op( ) ( 6)
From (4.15) and (4.16), we get
2 M Zin = 00)] = 2, [MZin = b0))" + 0p(1) (4.17)
By (4.11), (4.12), (4.14) and (4.17), we have
~ 1n a-lr 1 & 2
In(b0) = | S (Zin = 00| | 7= % (Zin = 00)] + (1),
Hence, 0
T 1 & Zin— 0?2
laalo) = { = 2 =2~ + (1), (4.18)

VISt [V (60)]?

Standard arguments can be used to prove that
V(6o) — V().

This together with theorem 2.1 and (4.18) proves theorem 2.2. O
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