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Abstract

In this paper, we obtain the sufficient and necessary condition of a strong law of large num-
bers for negatively associated random variables with different distributions and finite variances,
the Egorov’s results for independent random variables are generalized to the case of negatively
associated random variables. We also establish a new strong laws of large numbers for negatively
associated random variables.
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§1. Introduction

The negatively associated random variables was introduced by Joag-Dev and Proschan
(1]

Definition 1.1 A finite family of random variables { X}, 1 < k < n} is said to be
negatively associated (NA) if

Cov (f1(Xi,i € A1), fo(Xj,j € A2)) <0

holds for every pair of disjoint subsets Aj, A of {1,2,--- ,n}, and coordinatewise increas-
ing functions f1, fo such that above covariance exists. An infinite family is NA if each of

its finite subfamily is negatively associated.
Clearly, a set of independent random variables is NA.
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As pointed out by Joag-Dev and Proschan!!l, a lot of well-known multivariate distri-
butions are NA. Negative association has been applied to reliability theory, multivariate
statistical analysis and percolation theory, and attracted extensive attentions (see ref.
[1]-[10)).

n
Let {Y,,n > 1} be independent random variables with EY,, = 0, s2 := > EY? | oo.
k=1

A well known law of large numbers is for all A > 1/2,
n
> Vi
kzliA —0 a.s. (n — o0) (1.1)
splog” s,
(see Petrov'!). Furthermore, Egorov['? showed that for any A > 0, (1.1) holds if and
only if
oo
> P(\Yn| > €8, log’\ sn) < 00

n=1
for any £ > 0. The law of large numbers (1.1) has already been extended to the case that
{Y,,n > 1} are NA random variables. For example, Su and Qin!" obtained the following.

Theorem A Let {X,,n > 1} be NA random variables with EX,, = 0. Suppose
that there is a random variable X such that P(|X,| > z) < P(|X| > z) for any « > 0, and
EX? < co. Then

n

> Xk

lim —=L =0 a.s.
n—oo (nlog* n)1/2
holds for all A > 0.

In the present paper, we shall show a revision of the Egorov’s theorem for the NA
sequence. Our main result is given in Section 2 and the above Theorem A will be obtained
as a corollary of Theorem 2.1. Theorem 3.1 in Section 3 will present a new law of large
numbers for the NA sequence without finite variances.

We now quote two lemmas for use. The first one is an extension of probability
inequalities for independent random variables in Fuk and Nagaevl'®l and Borovkov[*4,

and its proof is obtained due to inequalities of Shaol®.

Lemma 1.1 (Liu and Wu[lo]) Suppose that Xy, Xs, -+, X,, are NA random vari-
ables with EXy = 0forall k = 1,--- ,n. If there exists real positive constants 01,09, , 0y,
such that EX,% < a,%, k=1,2,---,n, then

P(lrgnlgécn|sk| > 93) < kél P(1 Xk > yi) +26Xp{1 + g - (g + 5;) In <1 + %Z)} (1.2)

n
holds for every x > 0, y1,--- ,yn > 0, and y > max{y1,y2, - ,Yn}, where S, := > X
k=1

and By, := Y 07 > 0.
k=1
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Lemma 1.2 (Wittmann['®l, Lemma 3.3) Let {I,} be an increasing sequence of
positive numbers with lim [,, = oo, then for any M > 1, there exists a subsequence {ny}

n—oo

C N:={1,2,---} such that

Mly, <lnppy < M3y, 4.

N1

§2. The Main Results

In the following, suppose that {X,,n > 1} are NA random variables with EX,, = 0

and finite variances, and {o,,,n > 1} are real numbers such that EX,QL < a,% for each n > 1.
n

n
Denote S, = Y. Xy, B, = Y 0%, and logz = Inmax(e, z) for every x > 0. Write K for
k=1 k=1
a positive constant whose value may be changed in different places. The Egorov’s results

are extended as follows
Theorem 2.1 If B, T co as n — oo, then for any A > 0
Sn

li = .S. 2.1
w00 (B, log* By)1/? 0 as (2.1)

if and only if
> P(|Xn| > e(Bylogh B,)Y?) < oo (2.2)
n=1

holds for any & > 0.

Proof The necessity of the theorem follows from Lemma 3 of Matulal?. We need
only to show the sufficiency. Assume that (2.2) holds for any € > 0. Denoting a, =
e(By log* B,)'/?,

Y, = an{|Xn|§an} + anI{Xn>an} — anI{Xn<—an} and In=X,-Y,

for each n > 1, we have

Sp= > (Ye — EYy) + >°(Zk — EZy). (2.3)
k=1 k=1
At first, we show that
(Bylog* B,) Y2 S (2, —EZ,) — 0 as.  (n— o). (2.4)
k=1

It is easily seen that

n n
(Bnlog” Bn) ™2 3. E|XilI{xysany < (Bnlogh Bn)™2a, 0 E|X;[?
k=1 =1

n
= (eBn IOgA Bn)_l > E|Xk’2
k=1

IN

(elog* B,)" ' =0 (2.5)
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as n — oo. Note that for any m < n,
n
(Bn log/\ Bn)*l/Q kzl E‘Xk|[{ak<|Xk|§an}

= (Balog*B) (X4 3 BNk cixi/an)
k=1 k=m+1

< (Bulog*B,)™/? Z E|Xk| te S P(X] > ap).
m—+1

By letting n — oo and m — oo in turn, we get further
n
(Bn IOgA Bn)_1/2 Z E|Xk|I{ak<|Xk|§an} —0 (2'6)
k=1

as n — oo. Since Zy = (Xg — ar) [ x>0} + (Xk + ar) [{x,<—a,}, it follows from (2.5) and
(2.6) that

n
(B, log* B,)~'/* 3" E|Z]
k=1

< (BnlogABn)_l/kalE‘Xku{|Xk|>ak}
< (Bnlog’\Bn)’l/Q(];lE]Xk\I{|Xk|>an}+kzlE|Xk]I{ak<‘Xk‘§an})—>0. (2.7)

Therefore (2.4) is obtained by (2.2) and the Borel-Cantelli Lemma.
Secondly, note that {Y,, — EY,,,n > 1} are also NA random variables (see Joag-Dev

and Proschan!!l); and
E(Yo — EYn)? < EY;? = EX0I{x, <00} + Gnd{ X, 500} < EXS <07

for each n > 1. Applying Lemma 1.1 to {Y,, — EY,,,n > 1}, set d > 2/\, x = da,, y = 2a,
and yp = 2ay for each 1 < k < n, we get

P (s [ 350 €5 2 o) < 2ew {1 (T T (14 )
< Kexp { - gln(l + 2de? log? Bn)}

< K(log B,)~ 2 (2.8)

Moreover, for any M > 1, it follows from Lemma 1.2 that there exists a subsequence
{nr} C N such that
Mank S a’nk+1 S Mgank+1.

Since an+1/an < Bpi1/By holds for large n, the following inequality

M < ank+1/ank < Bnk+1/B”k
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is obtained for large k. Therefore we have form (2.8) that

n

2, 05 %) |/ () > d)

J=1

i( EY;)| > da,, )

j=1

gk

P ( max (
nEp<n<ngyq

< iP( max

—1 nE<n<ngi1

< EP( max

k=1 1<TLSTLk+1

o

n

Z (YJ - EYJ)’ > dank+1)
j=1

) oo
< K ) (log Bnk,+1)_d)\/2 < K Y (klog M + log Bnl)—d)\/z < .
k=1 k=1
By the Borel-Cantelli Lemma, it holds that

3 (Vi — EYi) Jan <ar® .

lim sup
n—oo

Since M > 1 and d > 2/ are arbitrary, we get further

lim sup
n—oo

3 (Y — EYi)|/(Balog) B)Y2 <2e/A s, (2.9)
k=1

Combining (2.4), (2.9) with (2.3), we obtain
| S < 2

lim su — a.s..
n—»oop (Bn 10g>\ Bn)1/2 A

This proves (2.2) by letting ¢ — 0, the proof of the theorem is completed. O
Corollary 2.1 Let {X,,n > 1} satisfy the conditions of Theorem 2.1. If A > 1,
then (2.1) holds.
Proof By Markov’s inequality and Lemma 6.18 in Petrov!’], it is easily seen that

1 = EX2
P(IX,|> e(B, log* B,)/?) < =y ——2n
1(!n\ (ngn))_nglogB

gL

n

for A > 1 and any € > 0. Hence the assertion of the corollary follows from Theorem 2.1.
O

Remark 2.1 Consider the case of 0 < A < 1. We have from the proof of Theorem
2.1 that, if there exist ¢ > 0 and 0 < A < 1 such that

S° P(|X,| > (B log? By)Y?) < o,
n=1

then g )
C
lim su " < = a.s.. 2.10
n—»oop (Bn log/\ Bn)l/Q A ( )
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Remark 2.2  Theorem A of Su and Qin!” is a corollary of Theorem 2.1. In fact,
it follows that

(18

P(IXa| > e(nlog*n)'/?) <

1 n

18

P(|X| > e(n log’\ n)l/g)

n

1

e EX?
< X P(X2>52n)§—2<oo
n=1 €

for any € > 0. Hence the conditions of Theorem 2.1 are satisfied.

Remark 2.3 In particular, if these exist p > 2 such that

[ee]
S (Bylog? B,) P/2E|X,|P < 0

n=1

for some 0 < A < 1. Then (2.1) holds.

83. Applications

We now use Theorem 2.1 to get a new strong laws of large numbers similar to (1.1).

Theorem 3.1 Suppose that there is a random variable X, real numbers a > 0,
b > 0 and ng € N such that sup P(|X,| > z) < aP(|X]| > bz) for all x > 0. If

n>no
E(|X| log ™" |X|) < o0 (3.1)
holds for some > 0 and either 0 <t <1or 1<t <2 with EX,, =0 for all n > ng, then
lim __Sn 0 a.s. (3.2)

n—oo nl/tlog® n
for all a > §/t.

Proof Without loss generality we may assume ng = 1, and denote a,, = en'/*log® n
for given 0 < e <1 and o > /t. Let Y,, and Z,, be the same as in the proof of Theorem
2.1. It is easily seen form (3.1) that

S P(1Xn| > an) < aY P(IX] > ben'/tlog® n)
n=1 n=1
< ad. P(\X\tlogfﬁ | X| > Knlog™8 n)
n=1
< KE(|X|'log™?|X]) < . (3.3)

Note that {Y;, — EY,,,n > 1} are NA random variables such that

kzl E(Yk — Eyk)2 < ,gl(Ele{le'S“k} + CL%P(|X}€’ > ak))

IN

Kna? t1og? a,E(| X [ log™? | X|)
S Mn?/taog n)a(Z—t)-‘rﬁ
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holds for some M > 4 and large n. Letting B, = MnQ/t(log n)a@_t)*ﬂ and A\ = at — 3,
we have
lim B, log* B, (n'/'log®n)~2 = M > 4.

n—oo

It follows from (2.10) that

> (Vi — EY) DBV

li L S V K3 =1 < s.. 3.4
lﬂsolip nt/tlog*n lﬂsolcl,p( By logh By,)Y/2 ~ at—f3 s (34)

Consider the case that 1 <t <2 and EX,, =0 for all n > 1. It follows from (3.1) that

1 n
o 2. EIXkl] < K——E|X|I
l/tlog nJ Z | k| {|Xg|>an} = nl/tlogan | | {|X|>ban}
n log® ay,

o0 B
nYtlog*n af ! E(X"log™" | X])

N

K(logn)?=t — 0 (n — o0).

By similar argument as in the proof of Theorem 2.1, we may show
n

1
nt/tlog*n

EYk‘ - ‘ 3 EZk‘ ~0  as.

= ni/t log n

as n — oo. Suppose 0 < t < 1, we conclude that

1 n
Wgn ) = 1/t1Og nkgl(E|Xk|I{|Xk|Sak}+akP(|Xk‘ > ay))
S C P t10e—0
< nl/tlogana" log” an,E(| X" log™" | X])

< K(logn)?~ -0

as n — oo. This implies by (3.4), (3.3) and the Borel-Cantelli Lemma that

1/2
Sh < 2e M

117rln_>solip 2 logen = ot — 8 a.s..
Therefore (3.2) is proved by letting ¢ — 0. The proof of Theorem 3.1 is completed. O

Remark 3.1  As a particular case, if t = 2, 0 < 8 < 1, then result of Liang and

Sul® follows from the Theorem 3.1 and can be improved.
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