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Abstract
In this paper, we obtain the sufficient and necessary condition of a strong law of large num-

bers for negatively associated random variables with different distributions and finite variances,

the Egorov’s results for independent random variables are generalized to the case of negatively

associated random variables. We also establish a new strong laws of large numbers for negatively

associated random variables.
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§1. Introduction

The negatively associated random variables was introduced by Joag-Dev and Proschan
[1].

Definition 1.1 A finite family of random variables {Xk, 1 ≤ k ≤ n} is said to be
negatively associated (NA) if

Cov (f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)) ≤ 0

holds for every pair of disjoint subsets A1, A2 of {1, 2, · · · , n}, and coordinatewise increas-
ing functions f1, f2 such that above covariance exists. An infinite family is NA if each of
its finite subfamily is negatively associated.

Clearly, a set of independent random variables is NA.
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As pointed out by Joag-Dev and Proschan[1], a lot of well-known multivariate distri-
butions are NA. Negative association has been applied to reliability theory, multivariate
statistical analysis and percolation theory, and attracted extensive attentions (see ref.
[1]–[10]).

Let {Yn, n ≥ 1} be independent random variables with EYn = 0, s2
n :=

n∑
k=1

EY 2
k ↑ ∞.

A well known law of large numbers is for all λ > 1/2,
n∑

k=1

Yk

sn logλ sn

→ 0 a.s. (n →∞) (1.1)

(see Petrov[11]). Furthermore, Egorov[12] showed that for any λ > 0, (1.1) holds if and
only if

∞∑
n=1

P
(|Yn| > εsn logλ sn

)
< ∞

for any ε > 0. The law of large numbers (1.1) has already been extended to the case that
{Yn, n ≥ 1} are NA random variables. For example, Su and Qin[7] obtained the following.

Theorem A Let {Xn, n ≥ 1} be NA random variables with EXn = 0. Suppose
that there is a random variable X such that P(|Xn| > x) ≤ P(|X| > x) for any x > 0, and
EX2 < ∞. Then

lim
n→∞

n∑
k=1

Xk

(n logλ n)1/2
= 0 a.s.

holds for all λ > 0.

In the present paper, we shall show a revision of the Egorov’s theorem for the NA
sequence. Our main result is given in Section 2 and the above Theorem A will be obtained
as a corollary of Theorem 2.1. Theorem 3.1 in Section 3 will present a new law of large
numbers for the NA sequence without finite variances.

We now quote two lemmas for use. The first one is an extension of probability
inequalities for independent random variables in Fuk and Nagaev[13] and Borovkov[14],
and its proof is obtained due to inequalities of Shao[5].

Lemma 1.1 (Liu and Wu[10]) Suppose that X1, X2, · · · , Xn are NA random vari-
ables with EXk = 0 for all k = 1, · · · , n. If there exists real positive constants σ1, σ2, · · · , σn

such that EX2
k ≤ σ2

k, k = 1, 2, · · · , n, then

P
(

max
1≤k≤n

|Sk| ≥ x
)
≤

n∑
k=1

P(|Xk| > yk) + 2 exp
{

1 +
x

y
−

(x

y
+

Bn

y2

)
ln

(
1 +

xy

Bn

)}
(1.2)

holds for every x > 0, y1, · · · , yn > 0, and y ≥ max{y1, y2, · · · , yn}, where Sn :=
n∑

k=1

Xk

and Bn :=
n∑

k=1

σ2
k > 0.
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Lemma 1.2 (Wittmann[15], Lemma 3.3) Let {ln} be an increasing sequence of
positive numbers with lim

n→∞ ln = ∞, then for any M > 1, there exists a subsequence {nk}
⊂ N := {1, 2, · · · } such that

Mlnk
≤ lnk+1

≤ M3lnk+1.

§2. The Main Results

In the following, suppose that {Xn, n ≥ 1} are NA random variables with EXn = 0
and finite variances, and {σn, n ≥ 1} are real numbers such that EX2

n ≤ σ2
n for each n ≥ 1.

Denote Sn =
n∑

k=1

Xk, Bn =
n∑

k=1

σ2
k, and log x = lnmax(e, x) for every x > 0. Write K for

a positive constant whose value may be changed in different places. The Egorov’s results
are extended as follows

Theorem 2.1 If Bn ↑ ∞ as n →∞, then for any λ > 0

lim
n→∞

Sn

(Bn logλ Bn)1/2
= 0 a.s. (2.1)

if and only if
∞∑

n=1
P
(|Xn| > ε(Bn logλ Bn)1/2

)
< ∞ (2.2)

holds for any ε > 0.

Proof The necessity of the theorem follows from Lemma 3 of Matula[3]. We need
only to show the sufficiency. Assume that (2.2) holds for any ε > 0. Denoting an =
ε(Bn logλ Bn)1/2,

Yn = XnI{|Xn|≤an} + anI{Xn>an} − anI{Xn<−an} and Zn = Xn − Yn

for each n ≥ 1, we have

Sn =
n∑

k=1

(Yk − EYk) +
n∑

k=1

(Zk − EZk). (2.3)

At first, we show that

(Bn logλ Bn)−1/2
n∑

k=1

(Zk − EZk) → 0 a.s. (n →∞). (2.4)

It is easily seen that

(Bn logλ Bn)−1/2
n∑

k=1

E|Xk|I{|Xk|>an} ≤ (Bn logλ Bn)−1/2a−1
n

n∑
k=1

E|Xk|2

= (εBn logλ Bn)−1
n∑

k=1

E|Xk|2

≤ (ε logλ Bn)−1 → 0 (2.5)
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as n →∞. Note that for any m ≤ n,

(Bn logλ Bn)−1/2
n∑

k=1

E|Xk|I{ak<|Xk|≤an}

= (Bn logλ Bn)−1/2
( m∑

k=1

+
n∑

k=m+1

)
E|Xk|I{ak<|Xk|≤an}

≤ (Bn logλ Bn)−1/2
m∑

k=1

E|Xk|+ ε
∞∑

k=m+1

P(|Xk| > ak).

By letting n →∞ and m →∞ in turn, we get further

(Bn logλ Bn)−1/2
n∑

k=1

E|Xk|I{ak<|Xk|≤an} → 0 (2.6)

as n →∞. Since Zk = (Xk − ak)I{Xk>ak} + (Xk + ak)I{Xk<−ak}, it follows from (2.5) and
(2.6) that

(Bn logλ Bn)−1/2
n∑

k=1

E|Zk|

≤ (Bn logλ Bn)−1/2
n∑

k=1

E|Xk|I{|Xk|>ak}

≤ (Bn logλ Bn)−1/2
( n∑

k=1

E|Xk|I{|Xk|>an} +
n∑

k=1

E|Xk|I{ak<|Xk|≤an}
)
→ 0. (2.7)

Therefore (2.4) is obtained by (2.2) and the Borel-Cantelli Lemma.
Secondly, note that {Yn − EYn, n ≥ 1} are also NA random variables (see Joag-Dev

and Proschan[1]), and

E(Yn − EYn)2 ≤ EY 2
n = EX2

nI{|Xn|≤an} + a2
nI{|Xn|>an} ≤ EX2

n ≤ σ2
n

for each n ≥ 1. Applying Lemma 1.1 to {Yn−EYn, n ≥ 1}, set d > 2/λ, x = dan, y = 2an

and yk = 2ak for each 1 ≤ k ≤ n, we get

P
(

max
1≤k≤n

∣∣∣
k∑

j=1
(Yj − EYj)

∣∣∣ ≥ dan

)
≤ 2e exp

{
1 +

x

y
−

(x

y
+

Bn

y2

)
ln

(
1 +

xy

Bn

)}

≤ K exp
{
− d

2
ln(1 + 2dε2 logλ Bn)

}

≤ K(log Bn)−dλ/2. (2.8)

Moreover, for any M > 1, it follows from Lemma 1.2 that there exists a subsequence
{nk} ⊂ N such that

Mank
≤ ank+1

≤ M3ank+1.

Since an+1/an ≤ Bn+1/Bn holds for large n, the following inequality

M ≤ ank+1
/ank

≤ Bnk+1
/Bnk
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is obtained for large k. Therefore we have form (2.8) that

∞∑
k=1

P
(

max
nk<n≤nk+1

(∣∣∣
n∑

j=1
(Yj − EYj)

∣∣∣
/
(M3an)

)
> d

)

≤
∞∑

k=1

P
(

max
nk<n≤nk+1

∣∣∣
n∑

j=1
(Yj − EYj)

∣∣∣ > dank+1

)

≤
∞∑

k=1

P
(

max
1<n≤nk+1

∣∣∣
n∑

j=1
(Yj − EYj)

∣∣∣ > dank+1

)

≤ K
∞∑

k=1

(log Bnk+1
)−dλ/2 ≤ K

∞∑
k=1

(k log M + log Bn1)
−dλ/2 < ∞.

By the Borel-Cantelli Lemma, it holds that

lim sup
n→∞

∣∣∣
n∑

k=1

(Yk − EYk)
∣∣∣
/
an ≤ dM3 a.s..

Since M > 1 and d > 2/λ are arbitrary, we get further

lim sup
n→∞

∣∣∣
n∑

k=1

(Yk − EYk)
∣∣∣
/
(Bn logλ Bn)1/2 ≤ 2ε/λ a.s.. (2.9)

Combining (2.4), (2.9) with (2.3), we obtain

lim sup
n→∞

|Sn|
(Bn logλ Bn)1/2

≤ 2ε

λ
a.s..

This proves (2.2) by letting ε → 0, the proof of the theorem is completed. ¤

Corollary 2.1 Let {Xn, n ≥ 1} satisfy the conditions of Theorem 2.1. If λ > 1,
then (2.1) holds.

Proof By Markov’s inequality and Lemma 6.18 in Petrov[11], it is easily seen that

∞∑
n=1

P(|Xn| > ε(Bn logλ Bn)1/2) ≤ 1
ε2

∞∑
n=1

EX2
n

Bn logλ Bn

< ∞

for λ > 1 and any ε > 0. Hence the assertion of the corollary follows from Theorem 2.1.
¤

Remark 2.1 Consider the case of 0 < λ ≤ 1. We have from the proof of Theorem
2.1 that, if there exist c > 0 and 0 < λ ≤ 1 such that

∞∑
n=1

P(|Xn| > c(Bn logλ Bn)1/2) < ∞,

then

lim sup
n→∞

Sn

(Bn logλ Bn)1/2
≤ 2c

λ
a.s.. (2.10)
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Remark 2.2 Theorem A of Su and Qin[7] is a corollary of Theorem 2.1. In fact,
it follows that

∞∑
n=1

P(|Xn| > ε(n logλ n)1/2) ≤
∞∑

n=1
P(|X| > ε(n logλ n)1/2)

≤
∞∑

n=1
P(X2 > ε2n) ≤ EX2

ε2
< ∞

for any ε > 0. Hence the conditions of Theorem 2.1 are satisfied.
Remark 2.3 In particular, if these exist p > 2 such that

∞∑
n=1

(Bn logλ Bn)−p/2E|Xn|p < ∞

for some 0 < λ ≤ 1. Then (2.1) holds.

§3. Applications

We now use Theorem 2.1 to get a new strong laws of large numbers similar to (1.1).

Theorem 3.1 Suppose that there is a random variable X, real numbers a > 0,
b > 0 and n0 ∈ N such that sup

n≥n0

P(|Xn| > x) ≤ aP(|X| > bx) for all x > 0. If

E(|X|t log−β |X|) < ∞ (3.1)

holds for some β ≥ 0 and either 0 < t ≤ 1 or 1 < t ≤ 2 with EXn = 0 for all n ≥ n0, then

lim
n→∞

Sn

n1/t logα n
= 0 a.s. (3.2)

for all α > β/t.

Proof Without loss generality we may assume n0 = 1, and denote an = εn1/t logα n

for given 0 < ε ≤ 1 and α > β/t. Let Yn and Zn be the same as in the proof of Theorem
2.1. It is easily seen form (3.1) that

∞∑
n=1

P(|Xn| > an) ≤ a
∞∑

n=1
P(|X| > bεn1/t logα n)

≤ a
∞∑

n=1
P(|X|t log−β |X| > Kn logαt−β n)

≤ KE(|X|t log−β |X|) < ∞. (3.3)

Note that {Yn − EYn, n ≥ 1} are NA random variables such that
n∑

k=1

E(Yk − EYk)2 ≤
n∑

k=1

(EX2
kI{|Xk|≤ak} + a2

kP(|Xk| > ak))

≤ Kna2−t
n logβ anE(|X|t log−β |X|)

≤ Mn2/t(log n)α(2−t)+β
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holds for some M > 4 and large n. Letting Bn = Mn2/t(log n)α(2−t)+β and λ = αt − β,
we have

lim
n→∞Bn logλ Bn(n1/t logα n)−2 = M > 4.

It follows from (2.10) that

lim sup
n→∞

n∑
k=1

(Yk − EYk)

n1/t logα n
= M1/2 lim sup

n→∞

n∑
k=1

(Yk − EYk)

(Bn logλ Bn)1/2
≤ 2εM1/2

αt− β
a.s.. (3.4)

Consider the case that 1 < t ≤ 2 and EXn = 0 for all n ≥ 1. It follows from (3.1) that

1
n1/t logα n

n∑
k=1

E|Xk|I{|Xk|>an} ≤ K
n

n1/t logα n
E|X|I{|X|>ban}

≤ K
n

n1/t logα n

logβ an

at−1
n

E(Xt log−β |X|)

≤ K(log n)β−αt → 0 (n →∞).

By similar argument as in the proof of Theorem 2.1, we may show

1
n1/t logα n

∣∣∣
n∑

k=1

EYk

∣∣∣ =
1

n1/t logα n

∣∣∣
n∑

k=1

EZk

∣∣∣ → 0 a.s.

as n →∞. Suppose 0 < t ≤ 1, we conclude that

1
n1/t logα n

∣∣∣
n∑

k=1

EYk

∣∣∣ ≤ 1
n1/t logα n

n∑
k=1

(E|Xk|I{|Xk|≤ak} + akP(|Xk| > ak))

≤ K
n

n1/t logα n
a1−t

n logβ anE(|X|t log−β |X|)

≤ K(log n)β−αt → 0

as n →∞. This implies by (3.4), (3.3) and the Borel-Cantelli Lemma that

lim sup
n→∞

Sn

n1/t logα n
≤ 2εM1/2

αt− β
a.s..

Therefore (3.2) is proved by letting ε → 0. The proof of Theorem 3.1 is completed. ¤
Remark 3.1 As a particular case, if t = 2, 0 ≤ β < 1, then result of Liang and

Su[8] follows from the Theorem 3.1 and can be improved.
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NA随机变量列一类强大数律的充分必要条件

刘立新

(对外经贸大学金融学院, 北京, 100029)

程士宏

(北京大学数学学院, 北京, 100871)

本文给出了具有不同分布NA随机变量列满足一类强大数律的充分必要条件, 从而将Egorov对独立随机

变量列建立的结果推广到NA随机变量情形; 作为应用, 我们还建立了一个新的强大数律.

关键词: NA随机变量, 强大数律, 概率不等式.
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