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Abstract
Updating equations for linear models have been investigated for several years, however they

have been restricted to the models with uncorrelated error structure, or considered for univariate

linear models involving fixed parameters. This paper has considered updating equations for mul-

tivariate linear models with correlated error structure, and outlined updating equations of BLUE

of unknown parameter matrix and residual when parameter, data or index is supplemented. The

formulae are fitted for the cases of both fixed and random parameter matrices.
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§1. Introduction

Consider the univariate linear model {y, Xβ, σ2V }, where the parameters β and σ2

are unknown and the design matrix X is fixed. The statistical quantities we are inter-

ested in include: the best linear unbiased estimates (BLUEs) of the estimable parametric

functions, variance-covariance matrices of such estimates, the residual sum of squares and

the likelihood ratio tests for testable linear hypotheses. With the time going by, some

observations and regression parameters sometimes would have some changes. So we are

primarily concerned with the changes of these statistical quantities when some observa-

tions are appended or deleted, as well as when some regressors are added or dropped. This

is the focus of updating equations for linear models. It may be categorized by additional
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data and/or parameters are added, by whether parameter vector are fixed, random, or

mixed, and by whether the error process is uncorrelated or not.

Updating equations for parameter estimates when parameters are added were consid-

ered for uncorrelated errors and fixed parameter vectors by Cochran (1938) and Quenouille

(1950). The case of additional data but no additional regressors for a fixed parame-

ter vector and uncorrelated errors was analyzed by Plackett (1950) and Young (1984).

McGilchrist and Sandland (1979) extended these results to correlated errors when addi-

tional data are added one at a time. Bhimasankaram and Jammalamadaka (1994) dis-

cussed deletion of a single observation of more than one correlated errors. Haslett (1985)

considered simultaneous addition of more than one correlated datum.

When linear model parameters were random and varied with each update, Anderson

and Moore (1979) studied parameter estimates where there is no correlation between the

error structure from different updates. The methodology, again for uncorrelated errors,

has been extended by Sallas and Harville (1981) to include mixed models, i.e. the linear

models containing both fixed and random effects, all of which are to be estimated.

Haslett (1996) outlined updating equations of some statistical quantities in univariate

linear models where adding parameters and data simultaneously. Jammalamadaka and D.

Sengupta (1999) defined linear zero functions which provided an intuitive way of developing

important results for both cases – nonsingular and singular variance matrices in connection

with the general linear model, and then obtained updating equations when adding or

deleting a set of observations, adding or dropping a group of parameters in the general

linear model.

In this paper, we argue updating equations for multivariate linear model Y = XΘ +

UE with correlated error structure. In § 2 some necessary preliminaries are listed. In

§ 3 we outline our main results: updating equations of unknown parameter matrices and

residual matrices when adding parameters, observations or indexes.

§2. Preliminaries

Consider the multivariate linear model





Y11 = X11Θ11 + U1E1,

All lines of E1 are uncorrelated, with the same variance-covariance matrix

Σ11 and the mean value is 0,

(2.1)
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where Y11 is an n × p matrix. It is observed matrix in the non-random case, and it is

composed of the mean matrix of the random parameter Θ11 and observed matrix in the

random case. Θ11 is a fixed or random parameter matrix to be estimated, X11 is a fixed

design matrix, having full-column rank, U1 has full-row rank, and Σ11 > 0.

Theorem 2.1 In the model (2.1), the minimum mean square linear estimator

(MMSLE) of Θ is

Θ̂11 = (X ′
11(U1U

′
1)
−1X11)−1X ′

11(U1U
′
1)
−1Y11, (2.2)

and the residual is

RSS1 = Y ′
11(U1U

′
1)
−1Y11 − Θ̂′

11X
′
11(U1U

′
1)
−1Y11,

or RSS1 = Y ′
11(U1U

′
1)
−1/2(I − P(U1U ′1)−1/2X11

)(U1U
′
1)
−1/2Y11. (2.3)

Proof Herein we only prove the results in the non-random case, and the results in

the random case can follow from Lemmas 2.4 and 2.6 (Duncan and Horn, 1972).

We can vectorize the model to be

~Y11 = (I ⊗X11)~Θ11 + (I ⊗ U1) ~E1,

thus the original model is changed into




E~Y11 = (I ⊗X11)~Θ11,

Var ~Y11 = Σ11 ⊗ U1U
′
1.

(2.4)

According to the classical theory of linear model (see Rao (1973)), Model (2.4) has MMSLE

of ~Θ given by

~̂Θ11 = [(I ⊗X11)′(Σ11 ⊗ U1U
′
1)
−1(I ⊗X11)]−1(I ⊗X11)′(Σ11 ⊗ U1U

′
1)
−1~Y11

= Vec((X ′
11(U1U

′
1)
−1X11)−1X ′

11(U1U
′
1)
−1Y11),

thus

Θ̂11 = (X ′
11(U1U

′
1)
−1X11)−1X ′

11(U1U
′
1)
−1Y11.

Use (U1U
′
1)
−1/2 premultiply the model, and then
−−−−−−−−−−→
(U1U

′
1)
−1/2Y11 = (I ⊗ (U1U

′
1)
−1/2X11)~Θ11 + (I ⊗ (U1U

′
1)
−1/2U1) ~E1.

So

Var (
−−−−−−−−−−→
(U1U

′
1)
−1/2Y11) = (I ⊗ (U1U

′
1)
−1/2U1)(Σ11 ⊗ I)(I ⊗ U ′

1(U1U
′
1)
−1/2)

= Σ11 ⊗ I,

《
应
用
概
率
统
计
》
版
权
所
有



444 应用概率统计 第二十四卷

then

RSS1 = [(U1U
′
1)
−1/2(Y11 −X11Θ̂11)]′[(U1U

′
1)
−1/2(Y11 −X11Θ̂11)]

= Y ′
11(U1U

′
1)
−1Y11 − Θ̂′

11X
′
11(U1U

′
1)
−1Y11,

or

RSS1 = Y ′
11(U1U

′
1)
−1/2(I − P(U1U ′1)−1/2X11

)(U1U
′
1)
−1/2Y11.

Suppose that Y11 = (y1, · · · , yp), E1 = (ε1, · · · , εp), (Σ11)ij = σij , then

(E(RSS1))ij = E(y′i(U1U
′
1)
−1/2(I − P(U1U ′1)−1/2X11

)(U1U
′
1)
−1/2yj)

= Etr(ε′iU
′
1(U1U

′
1)
−1/2(I − P(U1U ′1)−1/2X11

)(U1U
′
1)
−1/2U1εj)

= tr(I − P(U1U ′1)−1/2X11
)E(U1U

′
1)
−1/2U1εjε

′
iU

′
1(U1U

′
1)
−1/2

= σij(n− rkX11).

So

E(RSS1) = (n− rkX11)Σ11.

¤

§3. Main Results

The original model can generate the following three models when adding parameters,

observations or indexes. Now we discuss updating equations of the three models separately.

(I) Model 1 (additional parameters)

Y11 = (X11 : X12)

(
Θ11

Θ21

)
+ U1E1, (3.1)

where VarE1 = Σ11 > 0, X12 6= 0.

Define that

R11 = (U1U
′
1)
−1 − (U1U

′
1)
−1X11(X ′

11(U1U
′
1)
−1X11)−1X ′

11(U1U
′
1)
−1,

L21 = X ′
12(U1U

′
1)
−1X11(X ′

11(U1U
′
1)
−1X11)−1, (3.2)

M22 = X ′
12R11X12.
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Theorem 3.1 In the model (3.1), if X12 is of full-column rank, and R(X11) ∩
R(X12) = {0}, then the MMSLE Θ̃ = (Θ̃′

11 : Θ̃′
21)

′ is given by

(
Θ̃11

Θ̃21

)
=

(
Θ̂11

0

)
−

(
L′21
−I

)
M−1

22 X ′
12R11Y11, (3.3)

and the residual RSS2 is

RSS2 = RSS1 − Θ̃′
21X

′
12R11Y11. (3.4)

Proof The proof method is similar to Theorem 3.1 of Haslett (1985), so omitted.

¤

For RSS2 = RSS1−Θ̃′
21X

′
12R11Y11, and Θ̃′

21X
′
12R11Y11 = Y ′

11R11X12M
−1
22 X ′

12R11Y11 ≥
0, so RSS2 ≤ RSS1. This result shows that the addition of paramors improves the precision

of MMSLE of Θ.

When (X11 : X12) has not full-column rank, we can’t use this formula directly. How-

ever because X11 has full-column rank, we can combine the columns of X12 with those of

X11. The columns which are linearly independent with columns of X11 are left, and the

others are replaced with zero vectors. Then (X11 : X12) is changed into (X11 : X∗
12 : 0). At

this time (X11 : X∗
12) has full-column rank, and the columns which are linearly dependent

with them can be linearly expressed by them. So these columns are unnecessary, and they

can be deleted. Thus (X11 : X12) turns to (X11 : X∗
12), and

(
Θ11

Θ21

)
turns to

(
Θ11

Θ∗
21

)
.

In this way we don’t lose information, and (X11 : X∗
12) has full-column rank, so we can

get the updating equations according to the way of this part.

(II) Model 2 (additional data)

(
Y11

Y21

)
=

(
X11

X21

)
Θ11 +

(
U1

U2

)
E1, (3.5)

where VarE1 = Σ11 > 0, U2 6= 0.

Define that

RA = Y21 −G′
AY11, RB = G′

BX ′
11(U1U

′
1)
−1Y11,

CA = U2U
′
2 − U2U

′
1GA, CB = G′

BZA,

GA = (U1U
′
1)
−1U1U

′
2, GB = (X ′

11(U1U
′
1)
−1X11)−1ZA,

ZA = X ′
21 −X ′

11GA.

(3.6)
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Theorem 3.2 In Model (3.5), when

(
U1

U2

)
is of full-row rank,

(i) (UU ′)−1 =

(
(U1U

′
1)
−1 0

0 0

)
+

(
GA

−I

)
C−1

A (G′
A : −I),

(ii) (X ′(UU ′)−1X)−1 = (X ′
11(U1U

′
1)
−1X11)−1 −GB(CA + CB)−1G′

B,

(iii) X ′(UU ′)−1Y = X ′
11(U1U

′
1)
−1Y11 + ZAC−1

A RA,

(3.7)

where U =

(
U1

U2

)
, X =

(
X11

X21

)
, and Y =

(
Y11

Y21

)
.

Proof It can be proved with a series of inverse operations of matrix. ¤

Theorem 3.3 In Model (3.5), if

(
U1

U2

)
is of full-row rank, then the MMSLE of

Θ11 is given by

Θ̃11 = Θ̂11 + GB(CA + CB)−1(RA −RB), (3.8)

and the residual RSS2 is given by

RSS2 = RSS1 + (RA −RB)′(CA + CB)−1(RA −RB). (3.9)

Proof It’s easy to prove with Theorem 3.2. ¤

Notice that the equations (3.8) and (3.9) have strong statistics meaning. When Σ11 =

I, Var (RA −RB) = CA + CB. When

(
U1

U2

)
hasn’t full-row rank, we can’t use Theorem

3.3 directly for the conditions of this Theorem are not satisfied. But we can do as just

now combining rows of U2 with them of U1. Those rows, linearly independent with them

of U1 are left, and the others, linearly dependent with rows of U1, are replaced with zero

vectors. Then the model will turn to



Y11

Y ∗
21

0


 =




X11

X∗
21

0


 Θ11 +




U1

U∗
2

0


 E1,

where

(
U1

U∗
2

)
has full-row rank, and the rows linearly dependent with them can be

expressed by them. And then the model is changed into
(

Y11

Y ∗
21

)
=

(
X11

X∗
21

)
Θ11 +

(
U1

U∗
2

)
E1,
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with full-row rank

(
U1

U∗
2

)
. So we can obtain the updating equations using the method

of this part.

(III) Model 3 (additional index)

(Y11 : Y12) = X11(Θ11 : Θ12) + U1(E1 : E2), (3.10)

where Var (E1 : E2) =

(
Σ11 Σ12

Σ21 Σ22

)
> 0.

Theorem 3.4 In Model (3.10), the MMSLE Θ̃ = (Θ̃11 : Θ̃12) is given by

Θ̃ = (Θ̂11 : (X ′
11(U1U

′
1)
−1X11)−1X ′

11(U1U
′
1)
−1Y12), (3.11)

and the residual RSS2 is

RSS2 =

(
RSS1 0

0 0

)
+

(
0 Y ′

11R11Y12

Y ′
12R11Y11 Y ′

12R11Y12

)
, (3.12)

where R11 is defined as (3.2).

Proof Because X = X11 and U = U1 in Model (3.10) are completely as same as

them in Model (2.1), it’s easy to get the result according to Theorem 2.1. ¤
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具有相关误差的多元线性模型的更新方程

罗 季1,2

(1华东师范大学金融与统计学院, 上海, 200241; 2浙江财经学院数学与统计学院, 杭州, 310018)

已知的线性模型的更新方程是在对模型加了不相关误差结构的约束, 或只对带有固定参数的一元线性模

型考虑的. 本文考虑具有相关误差的多元线性模型下的更新方程, 给出了在补充参数, 数据或指标时, 未知参

数阵的最佳线性无偏估计及残积阵的更新方程. 公式适用于固定参数与随机参数两种情形.

关键词: 线性模型, 更新方程, 最佳线性无偏估计, 最小均方线性估计, 残积阵.

学科分类号: O212.1.
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