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Abstract
We focus on variable selection in this paper, and propose a variable selection criterion based

on the extended quasi-likelihood which is for joint generalized linear models with structured dis-

persions. The new criterion is an extension of Akaike’s information criterion. Its performance is

investigated through simulation studies and a real data application.
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§1. Introduction

Variable (or model) selection is an essential part of any statistics analysis. There is an

extensive model selection literature in statistics (e.g. [1] and references therein), but mainly

for the classic linear regression. One powerful and widely used model selection criterion is

Akaike’s Information Criterion(AIC)[2]. Generalized linear models are regression models

in a number of cases, including categorical responses, where the classical assumptions are

not satisfied, see [3–5], etc.

For generalized linear models, Pregibon[6] and Hosmer et al.[7] proposed two differ-

ent versions of Mallow’s Cp variable selection criterion. Furthermore, Efron[8] and Jin et

al.[9] considered two versions of AIC criterion. However, the generalized linear models

considered in these papers do not include a dispersion parameter. On the other hand, Mc-

Cullagh and Nelder[4] (P. 90) suggested that it should be wise to assume that a dispersion

parameter is presented in the model unless the data or prior information indicate other-

wise. Hurvich and Tsai[10] considered a corrected AIC criterion for a kind of extended

quasi-likelihood models in small samples. Pan[11] proposed a modification to AIC based

on GEE or quasi-likelihood. However the dispersion parameter was treated as a constant

in the two papers.
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We focus on joint generalized linear models (JGLMs) for the mean and dispersion,

and develop a new variable selection technique for such models using ideas from extended

quasi-likelihood (EQL) of Nelder and Pregibon[12]. The rest of this paper is organized

as follows. In Section 2, we first present the model structure of JGLMs, and then derive

the EAIC. Section 3 provides simulation studies to demonstrate the effectiveness of the

proposed criterion, followed by a real data illustration in Section 4. Section 5 gives a brief

summary and discussion.

§2. Derivation of EAIC

In this section, we present a heuristic derivation of the proposed criterion.

2.1 Model Structures

Let y = (y1, y2, · · · , yn)′ be an independent response variable vector from a JGLM,

Xi and Zi be the corresponding observations of the explanation variables for the mean

and the dispersion of yi (i = 1, · · · , n) respectively. The true models considered in this

paper are composed of three parts:

(1) a model for the variances Var (yi) = φi0V (µi0);

(2) a GLM for the means ηi0 = g(µi0) = X ′
i0β0, where Xi0, i = 1, · · · , n are the

observations of the real mean explanation variables. They are sub-vector of Xi, i = 1,

· · · , n from the same subset of the possible mean explanation variables;

(3) a GLM for the dispersions ζi0 = h(φi0) = Z ′i0γ0, where Zi0, i = 1, · · · , n are

the real explanation variables for the dispersion, and the functions V (·), g(·) and h(·) are

supposed to be known.

Let µ0 = (µ10, µ20, · · · , µn0)′ denote the expectation of y evaluated under the true

model, φ0 = (φ10, φ20, · · · , φn0)′ denote the dispersion vector, and θ0 = (β0, γ0)′ denote

the true parameter vector.

For inference from JGLMs, [12, 13] proposed the use of extended quasi-likelihood.

The extended (log) quasi-likelihood function for the true model is

−2Q+
0 (y;µ0, φ0) =

n∑
i=1

Di0(yi;µi0)
φi0

+
n∑

i=1
log{2πφi0V (yi)},

where Di0 is the deviance component in the model for the mean,

Di0(yi;µi0) = 2
∫ yi

µi0

yi − t

V (t)
dt.
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With the specified regression models µ0 = g−1(X ′
0β0) and φ0 = h−1(Z ′0γ0), the ex-

tended (log) quasi-likelihood function can be written down as a function of the regression

coefficients θ0 = (β0, γ0)′: Q+
0 (y;µ0, φ0) = Q+

0 (y;β0, γ0) = Q+
0 (y|θ0).

In practice, we do not know the true model, thus we fit the data with a candidate

family of JGLMs:

(1) a model for the variances Var (yi) = φiV (µi);

(2) a GLM for the means ηi = g(µi) = X ′
i(a)β;

(3) a GLM for the dispersions ζi = h(φi) = Z ′i0γ,

where Xi(a) is the sub-vector of Xi from a subset a of the mean explanation variables,

and Xi is the observation vector of possible explanation variables for the mean of yi,

i = 1, · · · , n, and θ = (β, γ)′ stands for the unknown parameter vector. Note that we

assume the observed dispersion explanation vector to be the same one in the true model,

since we focus only on the selection of the mean explanation variables in this paper.

We shall select the explanation variables by comparing different subsets according to

the criterion derived from the extended quasi-likelihood function. The extended quasi-

likelihood function for the candidate model a is given by

−2Q+
a (y;µ, φ) =

n∑
i=1

Di(yi;µi)
φi

+
n∑

i=1
log{2πφiV (yi)},

where µ = (µ1, µ2, · · · , µn)′, φ = (φ1, φ2, · · · , φn)′,

Di(yi;µi) = 2
∫ yi

µi

yi − t

V (t)
dt.

Also, Q+
a (y;µ, φ) can be written down as Q+

a (y;µ, φ) = Q+
a (y;β, γ) = Q+

a (y|θ).

2.2 Derivation of EAIC

A common measure of the discrepancy between the true model f(x) and the candidate

models g(x) is the Kullback-Leibler information:

I(f(x), g(x)) =
∫

f(x) log
f(x)
g(x)

dx. (2.1)

AIC was motivated as an asymptotically unbiased estimator of Ef [Î(f, g)], where Ef

stands for the expectation under model f(x) with respect to the sample.

We propose to replace the likelihood in (2.1) by the extended quasi-likelihood (EQL)

under the working independence model and define a new discrepancy as:

I(f, ga) =
∫

f(x)[Q+
0 (x|θ0)−Q+

a (x|θ)]dx.
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The best fitting model g, in the considered models, is simply the model that produces the

minimum K-L value. Note that

I(f, ga(·|θ0)) =
∫

f(x)[Q+
0 (x|θ0)−Q+

a (x|θ0)]dx

= Ef [Q+
0 (x|θ0)]− Ef [Q+

a (x|θ0)]. (2.2)

The first term Ef [Q+
0 (x|θ0)] in (2.2) does not depend on the candidate model and can be

viewed as a constant. Ignoring this constant, (2.2) can be expressed as

I(f, ga(·|θ0)) = −Ef [Q+
a (x|θ0)].

Given that we have data y as a sample from f(·), θ̂ = θ̂(y) is the maximum ex-

tended quasi-likelihood (MEQL) estimate of θ (see, e.g. [13]). Next, we intend to compute

Ef [Q+
a (x|θ̂)] based on Taylor series expansions.

The Taylor expansion of Q+
a (x|θ̂) around θ0 for any given x is:

Q+
a (x|θ̂) ≈ Q+

a (x|θ0) +
[∂Q+

a (x|θ0)
∂θ

]′
(θ̂ − θ0)

+
1
2
(θ̂ − θ0)′

∂2Q+
a (x|θ0)

∂θ∂θ′
(θ̂ − θ0).

Ef [Q+
a (x|θ̂)] ≈ Ef [Q+

a (x|θ0)] + Ef

[∂Q+
a (x|θ0)
∂θ

]′
(θ̂ − θ0)

+
1
2
(θ̂ − θ0)′

[
Ef

∂2Q+
a (x|θ0)

∂θ∂θ′
]
(θ̂ − θ0). (2.3)

The second term in (2.3) vanishes given that Ef [∂Q+
a (x|θ0)/∂θ] = 0, which is at least

approximately satisfied.

We define

I(θ0) = Ef

[
− ∂2Q+

a (x|θ0)
∂θ∂θ′

]
,

then (2.3) leads to

Ef [Q+
a (x|θ̂)] ≈ Ef [Q+

a (x|θ0)]− 1
2
(θ̂ − θ0)′I(θ0)(θ̂ − θ0). (2.4)

Take the expectation of (2.4) with respect to θ̂ (i.e., y; in fact, both with respect to truth

f) and get

E
θ̂
Ef [Q+

a (x|θ̂)] ≈ Ef [Q+
a (x|θ0)]− 1

2
tr

[
I(θ0)Eθ̂

[(θ̂ − θ0)(θ̂ − θ0)′]
]
.

Let E
θ̂
Ef [Q+

a (x|θ̂)] = T , E
θ̂
[(θ̂ − θ0)(θ̂ − θ0)′] = Σ. Thus we have

T ≈ Ef [Q+
a (x|θ0)]− 1

2
tr[I(θ0)Σ]. (2.5)
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Next, we do the expansion of Q+
a (x|θ0) about θ̂(x), taking account of the relationship

between T and Ef [Q+
a (x|θ̂(x))]. We treat x as the sample data, hence get MEQL estimate

of θ for this x. It does not matter what notation we use for these sample points: x or

y, because all we are interested in is an expected value, which means taking an integral

over all possible points in the sample space. And note that here, θ̂ = θ̂(x), the Taylor

expansion is

Q+
a (x|θ0) ≈ Q+

a (x|θ̂) +
[∂Q+

a (x|θ̂)
∂θ

]′
(θ0 − θ̂) +

1
2
(θ0 − θ̂)′

∂2Q+
a (x|θ̂)

∂θ∂θ′
(θ0 − θ̂). (2.6)

The MEQL estimate θ̂ satisfies

∂Q+
a (x|θ̂)
∂θ

= 0.

Then,

Ef [Q+
a (x|θ0)] ≈ Ef [Q+

a (x|θ̂)]− 1
2
tr

[
Ef{[Î(θ̂)](θ0 − θ̂)(θ0 − θ̂)′}], (2.7)

where

Î(θ̂) = −∂2Q+
a (x|θ̂)

∂θ∂θ′
.

The notation Î(θ0) is

Î(θ0) = −∂2Q+
a (x|θ0)

∂θ∂θ′
.

It is obvious that Ef [Î(θ0)] = I(θ0), and Î(θ0) converges to I(θ0) as n →∞.

Assume that the MEQL estimate θ̂ converges to θ0 as n → ∞, thus, Î(θ̂) ≈ I(θ0).

And we have a result

T (a) ≈ Ef [Q+
a (x|θ̂)]− tr[I(θ0)Σ].

Thus, we can infer that a criterion for JGLMs selection is structurally of the form

T̂ (a) = Q+
a (x|θ̂)− t̂r[I(θ0)Σ],

or

EAIC(a) = −2Q+
a (x|θ̂) + 2t̂r[I(θ0)Σ], (2.8)

where

I(θ0) = Ef

[
− ∂2Q+

a (x|θ0)
∂θ∂θ′

]
, Σ = E

θ̂
[(θ̂ − θ0)(θ̂ − θ0)′].

Note that (2.8) would be exact AIC when Q+
a is replaced by log-likelihood function,

and the second term on right hand side would be 2Ka, where Ka is the number of parame-

ters in the candidate model a. After Akaike’s innovative derivation of AIC, people noticed
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a heuristic interpretation that the second term in AIC, AIC = −2 log(La(x)) + 2Ka, can

be interpreted as a penalty for increasing the size of the model, and be generalized into a

function of Ka. Therefore, we employ a function of Ka, F(Ka), to substitute the penalty

term in (2.8) in the following. The criterion got by estimating the penalty term will be

presented in more general framework later. The obtained criterion is

EAIC(a) = −2Q+
a (x|θ̂) + F(Ka).

For x is treated as the sample data above, traditionally, the criterion is presented in the

following way

EAIC(a) = −2Q+
a (y|θ̂) + F(Ka). (2.9)

One needs to calculate the EAIC for all candidate models, and then pick up the one with

the smallest EAIC.

§3. Simulation Studies

We make some simulation studies to evaluate the performance of EAIC.

3.1 Two Overdispersed Models

In practice, it is common that overdispersion or underdispersion happens[4]. In other

words, the variance of yi may be either greater or smaller than the nominal variance. Two

models with overdispersion are used in the simulations.

The first one is beta-binomial model[14, 15]. It is assumed that conditionally on πi,

the response variable yi is binomial yi|πi ∼ bin(mi, πi), and πi has a beta distribution

Beta(αi, δi). Hence, marginally, the distribution of yi is not binomial but beta-binomial.

Then

E(yi) = miλi, Var (yi) = miλi(1− λi)(1 + (mi − 1)θi),

where λi = αi/(αi + δi) and θi = 1/(αi + δi + 1). Thus the dispersion parameter is

φi = 1 + (mi − 1)θi.

Another overdispersed model is extra-Poisson model[16]. Conditionally on mi, the

response yi|mi is Poisson with parameter mi, and mi itself is Gamma(νi, αi), so that

E(yi) = µi = νiαi, Var (yi) = νiαi + νiα
2
i = µi(1 + αi).

And the dispersion parameter is φi = 1 + αi.
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3.2 Simulation for Beta-Binomial Distribution

For each observation (yi, Xi), the covariate Xi is a 5×1 vector with elements generated

randomly from a uniform distribution U(−1, 1), and the yi is generated from the Beta-

Binomial model: logit(µi) = X ′
iβ0 with β0 = (1, 2, 3, 0, 0). Hence, the true model contains

only the first 3 components of Xi. The cluster size mi is randomly generated from a

Binomial distribution bin(40, 0.65). For simplicity we only consider five nested candidate

models which use the first K components of Xi as explanation variables, K = 1, 2, 3, 4, 5,

and thus we drop out the subset notation a. The structure of the dispersion that we adopt

is φi = 1+(mi−1)θi = exp(Z ′i0γ0) with γ0 = (1, 1) and Zi0 is a 2×1 vector with elements

generated randomly from a uniform distribution U(0, 1).

Table 1 Frequencies of models selected in 1000 replications for Beta-Binomial

distribution

n = 50 n = 100

Criterion K = 1 2 3 4 5 K = 1 2 3 4 5

AIC 0 0 457 256 287 0 0 400 256 344

2K 0 1 678 181 140 0 1 677 150 172

2K log(log n) 0 1 714 165 120 0 1 743 132 124

2K log n 16 0 887 74 23 1 5 914 54 26

2K(log n + 1) 23 0 918 49 10 3 6 940 43 8

We respectively take F(K) = 2K, 2K log(log n), 2K log n, 2K(log n + 1), for each

sample size n = 50, 100. In these computations, we employ the adjusted EQL, in which the

second term of −2Q+
a (y|θ) is multiplied by (n−K)/n. In the simulations, for comparison,

we also compute the MLE and thus AIC in which the overdispersion isn’t considered.

Table 1 presents the frequencies of the candidate models selected by the various criteria

in 1000 replications, where K = 3 stands for the true model. As may be expected, the

new criterion derived from EQL is much better than the naive AIC, although no exact

likelihood function is involved in EQL. Note also that the larger the penalty F(K,n) is, the

larger the probability of correct selection is, and the smaller the probability of overfitting

is. This is due to the fact that the true model is included in the candidate models. In fact,

using the techniques of Shao[17], it may be shown under some regular conditions that when

F(K, n) →∞ and F(K, n)/n → 0 as n →∞, the probability that the criterion selects the

true model tends to 1. However, this property doesn’t hold when the true model is not a

candidate model, and in this case, the criterion with F(K) = 2K may have some optimal
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properties[17].

We also compute the mean of β̂ and its mean squared error (MSE) with the 1000

replications for each model. The results for the sample size of 50 are listed in Table 2.

And the MSE is computed by the formula 1000−1
1000∑
i=1

(β̂(i) − β0)′(β̂(i) − β0), where β̂(i) is

the ith estimate of β in the 1000 replications. Table 2 shows that for Model 3, the true

model, the average estimates of components for β are near the true values and its MSE is

the smallest.

Table 2 Estimates of coefficients and the MSEs for Beta-Binomial distribution,

sample size n = 50

β̂1 β̂2 β̂3 β̂4 β̂5 MSE(β̂) γ̂1 γ̂2 MSE(γ̂)

Model 1 0.2179 – – – – 13.6296 -0.4895 -0.3371 0.0038

Model 2 0.6943 2.4122 – – – 9.6146 -0.7108 0.1123 0.0031

Model 3 0.8852 2.0362 3.0719 – – 0.7557 -1.9364 -1.8552 0.0102

Model 4 0.8988 2.0736 3.1049 -0.1184 – 0.9916 -1.9817 -1.7998 0.0105

Model 5 0.9017 2.0810 3.1213 -0.1245 0.0276 1.0467 -1.9783 -1.8042 0.0097

3.3 Simulation for Extra-Poisson Distribution

Table 3 Frequencies of models selected in 1000 replications for extra-Poisson

distribution

n = 50 n = 100

Criterion K = 1 2 3 4 5 K = 1 2 3 4 5

AIC 0 0 466 239 295 0 0 436 255 309

2K 0 0 650 199 151 0 0 712 184 104

2K log(log n) 0 0 742 172 86 0 0 834 126 40

2K log n 0 0 957 41 2 0 0 994 6 0

2K(log n + 1) 0 0 980 20 0 0 0 997 3 0

In this simulation, the structure of the mean model is E(yi) = µi = νiαi = exp(X ′
iβ0),

where Xi is a 5×1 vector with elements independently sampled from a uniform distribution

U(0, 1), and β0 = (1, 2, 3, 0, 0). The structure of the dispersion parameter is φi = 1 + αi =

exp(Z ′i0γ0) with γ0 = (1, 1) and Zi0 is a 2 × 1 vector with elements generated randomly

from a uniform distribution U(0, 1). The sample sizes are n = 50, 100.
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The simulation results on the selection frequencies in 1000 replications are presented in

Table 3, and those on the estimates and their MSEs are listed in Table 4. The performances

are similar to those shown in Table 1 and Table 2.

Table 4 Estimates of coefficients and the MSEs for extra-Poisson distribution, n = 50

β̂1 β̂2 β̂3 β̂4 β̂5 MSE(β̂) γ̂1 γ̂2 MSE(γ̂)

Model 1 5.0089 – – – – 29.0758 3.7640 2.2871 0.0113

Model 2 2.7930 2.9702 – – – 13.2161 3.6775 1.2912 0.0097

Model 3 1.0030 1.9981 2.9943 – – 0.0487 0.9983 0.9591 0.0002

Model 4 1.0022 1.9986 2.9946 -0.0016 – 0.0627 0.9895 0.9468 0.0004

Model 5 1.0022 1.9997 2.9974 -0.0021 -0.0070 0.0854 0.9769 0.9306 0.0005

To investigate the stability of EAIC, we do some simulations when some of β0 are

adjusted to be near zero. The results from 100 independent replications appear to be

promising in some situations. We list the results in Table 5, 6 when β0 = (1, 1, 1, 0, 0),

β0 = (0.1, 0.2, 3, 0, 0) for extra-Poisson model when n = 50. And the results show that the

EAIC is stable for change of the coefficient.

Table 5 Frequencies of models selected in 100 replications when β0 = (1, 1, 1, 0, 0)

for extra-Poisson distribution, sample size n = 50

criterion K = 1 2 3 4 5

2K 0 2 75 16 7

2K log(log n) 0 2 85 11 2

2K log n 3 11 85 1 0

2K(log n + 1) 4 6 90 0 0

Table 6 Frequencies of models selected in 100 replications when β0 = (0.1, 0.2, 3, 0, 0)

for extra-Poisson distribution, sample size n = 50

criterion K = 1 2 3 4 5

2K 0 0 63 19 18

2K log(log n) 0 0 73 15 12

2K log n 0 0 97 3 0

2K(log n + 1) 0 0 97 3 0

Remark 1 In principle, one could use K log(log n), K log n and K(log n + 1) as

penalty. A constant before them does not change the consistency of the identified order
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of the model, see [18]. We, in fact, compute the simulations without multiplier 2 in the

penalties, and the result is slightly worse than those given above.

§4. An Example

We consider a data set taken from the Pignatiello and Ramberg[19], discussing an

experiment related to the production of leaf springs for trucks. The same data have

been studied by McCullagh and Nelder[4]. The response variable y is the free height

of leaf springs and five controllable factors are B (furnace temperature), C (heating

time), D (transfer time), E (hold-down time), O (quench oil temperature). The ex-

periment was conducted following an orthogonal design. Note that the defining con-

trast for this design is I = BCDE. Thus the aliased pairs of two-factor interactions are

BD ≡ CE, CD ≡ BE, DE ≡ BC, and the all two-factor interactions may be expressed

as BC,BD, BE,BO, CO, DO, EO. Hence, there are twelve explanation variables in the

full model. For the illustration of the proposed method, we require a model for the mean

assuming the dispersion model has been known in advance. We take the variance function

as V (µ) = 1 and the full mean model as

η = µ = β + βBB + βCC + · · ·+ βEOEO,

and the dispersion model as

log φ = γ + γBB + γCC.

All candidate models 4095 (i.e. 212 − 1) are reduced to 311 models by requiring that the

main effects are included in the model if their interactions are included.

Table 7 The mean models selected and the corresponding values of criteria

Model factors selected 2K 2K log(log n) 2K log n 2K(log n + 1)

1 B,C, D,E, O,BO, CO, DO, EO -57.99 -50.21 5.17 27.17

2 B,C, E,O, CO -48.27 -43.32 -8.07 5.93

3 B,C, O,CO -41.64 -37.40 -7.19 4.81

4 B,C, E,O, BO,CO -50.99 -45.33 -5.05 10.95

Table 7 presents four models followed by their corresponding EAIC values. Model 1

is selected by the criteria with F(K) = 2K and 2K log(log n). When F(K) = 2K log n,

Model 2 is selected, and F(K) = 2K(log n + 1) selects Model 3. Model 4 is given by

McCullagh and Nelder[4].
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The parameter estimators and their corresponding standard errors and p-values of

all models are investigated, but we don’t present them here since the space is limited.

It clearly indicates that coefficients in Model 2 and Model 3 are highly significant at the

1% level. The p-value of the coefficient BO in Model 4 is 0.0264, and not significant

at the 1% level. While for Model 1, the p-values of the coefficients DO, BO,EO,D are

0.0027, 0.0166, 0.0291, 0.2614 respectively, and the other coefficients are highly significant

at the 1% level. We can see that BO, EO are not significant at the 1% level, and DO is

significant, however D is clearly not significant. Maybe Model 1 implies some information

which isn’t revealed by Model 4, and whether DO and D should be included in the mean

model would need further experiments or investigations based on the background.

§5. Summary and Discussion

For likelihood-based methods, there are many well-studied model selection criteria,

such as AIC. But for non-likelihood-based methods, such as the extended quasi-likelihood

approaches for the joint generalized linear models, there is relatively a lack of literature

on model selection. In this article, we have proposed a new criterion EAIC that works

for joint generalized linear models. Using the extended quasi-likelihood approach, we only

need to know the first two moments of yi without specifying it’s distribution. In simulation

studies we found that the EAIC works well and stably in variable selection. The penalty

term in AIC or EAIC, however, is not arbitrary; rather, it should be the asymptotic

bias-correction term. We might use the bootstrap to compute t̂r[I(θ0)Σ]. Furthermore,

in principle, our proposed criterion can also be used to select variables for the dispersion

model. Further applications warrant further studies.
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联合广义线性模型中的变量选择

王大荣1,2 张忠占1

(1北京工业大学应用数理学院, 北京, 100124; 2北京工业大学实验学院, 北京, 101101)

在联合广义线性模型中, 均值和散度参数都被赋予了广义线性模型的结构, 本文主要考虑该模型的变量

选择问题. 文章利用扩展拟似然函数, 提出了一个适用于联合广义线性模型的新的变量选择准则(EAIC), 该准

则是Akaike信息准则的推广. 论文通过模拟研究和一个实例分析验证了该准则的效果.

关键词: Akaike信息准则, 变量选择, 联合广义线性模型, 扩展拟似然, Kullback-Leibler信息量.
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