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Abstract

We focus on variable selection in this paper, and propose a variable selection criterion based
on the extended quasi-likelihood which is for joint generalized linear models with structured dis-
persions. The new criterion is an extension of Akaike’s information criterion. Its performance is
investigated through simulation studies and a real data application.
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8§1. Introduction

Variable (or model) selection is an essential part of any statistics analysis. There is an
extensive model selection literature in statistics (e.g. [1] and references therein), but mainly
for the classic linear regression. One powerful and widely used model selection criterion is
Akaike’s Information Criterion(AIC)?. Generalized linear models are regression models
in a number of cases, including categorical responses, where the classical assumptions are
not satisfied, see [3-5], etc.

For generalized linear models, Pregibon!®l and Hosmer et al.[”) proposed two differ-
ent versions of Mallow’s C), variable selection criterion. Furthermore, Efronl® and Jin et
al.%) considered two versions of AIC criterion. However, the generalized linear models
considered in these papers do not include a dispersion parameter. On the other hand, Mc-
Cullagh and Nelder! (P.90) suggested that it should be wise to assume that a dispersion
parameter is presented in the model unless the data or prior information indicate other-
wise. Hurvich and Tsail'® considered a corrected AIC criterion for a kind of extended
quasi-likelihood models in small samples. Pan'!l proposed a modification to AIC based
on GEE or quasi-likelihood. However the dispersion parameter was treated as a constant
in the two papers.
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We focus on joint generalized linear models (JGLMSs) for the mean and dispersion,
and develop a new variable selection technique for such models using ideas from extended
quasi-likelihood (EQL) of Nelder and Pregibon!'?l. The rest of this paper is organized
as follows. In Section 2, we first present the model structure of JGLMs, and then derive
the EAIC. Section 3 provides simulation studies to demonstrate the effectiveness of the
proposed criterion, followed by a real data illustration in Section 4. Section 5 gives a brief

summary and discussion.

§2. Derivation of EAIC

In this section, we present a heuristic derivation of the proposed criterion.

2.1 Model Structures

Let y = (y1,¥2, - ,yn) be an independent response variable vector from a JGLM,
X,; and Z; be the corresponding observations of the explanation variables for the mean
and the dispersion of y; (i = 1,--- ,n) respectively. The true models considered in this
paper are composed of three parts:

(1) a model for the variances Var (y;) = ¢ioV (1i0);

(2) a GLM for the means n;0 = g(pio) = X/o00, where X0, ¢ = 1,--- ,n are the
observations of the real mean explanation variables. They are sub-vector of X;, ¢ = 1,

- ,n from the same subset of the possible mean explanation variables;

(3) a GLM for the dispersions (jo = h(¢i0) = Zjyy0, where Zj, i = 1,--- ,n are
the real explanation variables for the dispersion, and the functions V'(-), g(-) and h(-) are
supposed to be known.

Let po = (10, 420, * 5 no)’ denote the expectation of y evaluated under the true
model, ¢g = (¢10, P20, - , Pno)’ denote the dispersion vector, and 6y = (Sp,v0)" denote
the true parameter vector.

For inference from JGLMs, [12, 13] proposed the use of extended quasi-likelihood.

The extended (log) quasi-likelihood function for the true model is
2 Dio(yis fio o
—2Q7 (y; 1o, $0) = X Dio(bs i) + > log{2mioV (i)},
=1 %o i=1
where D;q is the deviance component in the model for the mean,

Viyi =t

0 dt.

Dio(yis paio) = 2/

Hi0
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With the specified regression models g = g~ 1(X{80) and ¢o = h~1(Z)0), the ex-
tended (log) quasi-likelihood function can be written down as a function of the regression
coefficients 6y = (6o, 70)": QF (¥; 1o, Do) = QF (v; Bo. 1) = QF (y]6o)-

In practice, we do not know the true model, thus we fit the data with a candidate
family of JGLMs:

(1) a model for the variances Var (y;) = ¢;V (i);

(2) a GLM for the means n; = g(u;) = X/(a)5;

(3) a GLM for the dispersions ¢; = h(¢;) = Z.y,
where X;(a) is the sub-vector of X; from a subset a of the mean explanation variables,
and X; is the observation vector of possible explanation variables for the mean of y;,
i=1,---,n, and § = (8,7v) stands for the unknown parameter vector. Note that we
assume the observed dispersion explanation vector to be the same one in the true model,
since we focus only on the selection of the mean explanation variables in this paper.
We shall select the explanation variables by comparing different subsets according to
the criterion derived from the extended quasi-likelihood function. The extended quasi-

likelihood function for the candidate model a is given by
+(n. & (yla :U’Z)
_2Qa (y7/j’7 ) zl + Z log{Qﬂ-él ( Z)}7
i=
where m = (/’Llnu'Q: T ;Mn>/7 ¢ = (¢17 ¢27 T 7¢TL)/7

Di(yis i) = 2/

Hi

Also, QF (y; 1, #) can be written down as QF (y; i, @) = Qf (y; 8,7) = QF (y6).

Yy —t

V) dt.

2.2 Derivation of EAIC

A common measure of the discrepancy between the true model f(z) and the candidate

models g(z) is the Kullback-Leibler information:
_ f(z)
1/@).g(e) = [ f@)tos T (21)

AIC was motivated as an asymptotically unbiased estimator of E f[f (f,9)], where E;
stands for the expectation under model f(z) with respect to the sample.
We propose to replace the likelihood in (2.1) by the extended quasi-likelihood (EQL)

under the working independence model and define a new discrepancy as:

1(,g0) = / F(@)[QF (2]60) — Q@ (x]0))dz
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The best fitting model g, in the considered models, is simply the model that produces the

minimum K-L value. Note that

I(f,ga(100)) = / (@)@ (@lf) — QF (/60 dz
= E(Q7 (2]60)] — E4[QF (]60)] (2.2)

The first term E¢[Q{ (z]6o)] in (2.2) does not depend on the candidate model and can be

viewed as a constant. Ignoring this constant, (2.2) can be expressed as

I(f,9a(-100)) = —E[Q5 (x|60)].

~

Given that we have data y as a sample from f(-), 0 = 5( ) is the maximum ex-
tended quasi-likelihood (MEQL) estimate of 6 (see, e.g.[13]). Next, we intend to compute
E f[Qj(a:@)] based on Taylor series expansions.

The Taylor expansion of Q. (a:|§) around 6y for any given x is:

QHw) ~ Qf i) + [P Gy,
+;(§—90)&0é9100)(9 0o).
£1QL (0] ~ Erl (i) + £, [ 29 Gy
2 +$
%(9 oy [Ef W}(e o). (2.3)

The second term in (2.3) vanishes given that Ef[0Q/ (x]6p)/00] = 0, which is at least

approximately satisfied.

We define 520 (2160)
a \T1Y0
100) =& = 5005 |
then (2.3) leads to
E1Q3 (1)) ~ E/[Q7 (x160)] — 50— 60)'T(60) 8 — 00). (24)

Take the expectation of (2.4) with respect to 0 (i.e., y; in fact, both with respect to truth
f) and get

E5E/1QF («18)] ~ EfQ3 (r100)] — 5 [T(B0)E; (T — 60)(F — 0.
Let E;E/[Q7 (x|0)] = T, E5[(6 — 60)(0 — 6p)'] = . Thus we have

T ~ Ef(Q3 (a160)] — 5 r(1(60)5). (25)
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Next, we do the expansion of Q7 (x]0y) about @\(az), taking account of the relationship
between 7" and Ey [Q(‘f(x\a(:c))] We treat x as the sample data, hence get MEQL estimate
of 8 for this x. It does not matter what notation we use for these sample points: = or
y, because all we are interested in is an expected value, which means taking an integral
over all possible points in the sample space. And note that here, 0 = a(x), the Taylor
expansion is
a@i(x\@\)}/( ALy 5,008, o

2

Q(—z’—(xm()) ~ Q;—(x’é\) + |: 90 0o — 0) + (90 - )/ 9006’ (00 - 9) (26)

The MEQL estimate 0 satisfies

~

0Qs (=16) _
00 -
Then, .
Ef[Qs (2160)] = Ef[Q (210)] — Stx[EA{[1(9))(8 — )(60 — 0)'}], (27)
where i
- 0*Qi(xlf)
1) = 0006’
The notation 1(6p) is
Fo - 0°Qd (x]60)
100) = =508

It is obvious that Ef[f(ﬁo)] = I(6), and 1(6y) converges to I(6) as n — oo.
Assume that the MEQL estimate 8 converges to 6y as n — oo, thus, IA(é\) ~ I(6p).
And we have a result

T(a) ~ Ef[QF (216)] — tr[I(60)%].

Thus, we can infer that a criterion for JGLMs selection is structurally of the form

T(a) = QF (z]0) — tx[I(60)%],

EAIC(a) = —2Q; (x|6) + 2{x[I(60)%], (2.8)
where a2Q+ (CE ‘ 90) R R
160) = Ef| - 52| T =El0—00)(0— o).

Note that (2.8) would be exact AIC when Q' is replaced by log-likelihood function,
and the second term on right hand side would be 2K, where K, is the number of parame-

ters in the candidate model a. After Akaike’s innovative derivation of AIC, people noticed
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a heuristic interpretation that the second term in AIC, AIC = —2log(Ly(z)) + 2K,, can
be interpreted as a penalty for increasing the size of the model, and be generalized into a
function of K,. Therefore, we employ a function of K,, F(K,), to substitute the penalty
term in (2.8) in the following. The criterion got by estimating the penalty term will be

presented in more general framework later. The obtained criterion is
EAIC(a) = —2Q; (z]0) + F(K,).

For z is treated as the sample data above, traditionally, the criterion is presented in the
following way
EAIC(a) = —2Q; (y|0) + F(K,). (2.9)

One needs to calculate the EAIC for all candidate models, and then pick up the one with
the smallest EAIC.

§3. Simulation Studies

We make some simulation studies to evaluate the performance of EAIC.

3.1 Two Overdispersed Models

In practice, it is common that overdispersion or underdispersion happens!®. In other
words, the variance of y; may be either greater or smaller than the nominal variance. Two
models with overdispersion are used in the simulations.

The first one is beta-binomial modelll4: 15]

. It is assumed that conditionally on 7,
the response variable y; is binomial y;|m; ~ bin(m;,m;), and m; has a beta distribution
Beta(a, d;). Hence, marginally, the distribution of y; is not binomial but beta-binomial.
Then

where \; = «a;/(a; + 9;) and 6; = 1/(a; + 6 + 1). Thus the dispersion parameter is
Another overdispersed model is extra-Poisson modell*6]. Conditionally on m;, the

response y;|m; is Poisson with parameter m;, and m; itself is Gamma(v;, «;), so that
E(y;) = wi = viay, Var (y;) = via; + I/Z'Oél-Q = w;i(1+ o).

And the dispersion parameter is ¢; = 1 + «;.
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3.2 Simulation for Beta-Binomial Distribution

For each observation (y;, X;), the covariate X; is a 5 x 1 vector with elements generated
randomly from a uniform distribution U(—1,1), and the y; is generated from the Beta-
Binomial model: logit(u;) = XGy with Gy = (1,2,3,0,0). Hence, the true model contains
only the first 3 components of X;. The cluster size m; is randomly generated from a
Binomial distribution bin(40,0.65). For simplicity we only consider five nested candidate
models which use the first K components of X; as explanation variables, K = 1,2, 3,4, 5,
and thus we drop out the subset notation a. The structure of the dispersion that we adopt
is ¢; = 14 (m; —1)0; = exp(Z}y0) with 70 = (1,1) and Zjp is a 2 x 1 vector with elements

generated randomly from a uniform distribution U(0,1).

Table 1 Frequencies of models selected in 1000 replications for Beta-Binomial

distribution
n =50 n = 100

Criterion K=1 2 3 4 5 K=1 2 3 4 5
AIC 0 0 457 256 287 0 0 400 256 344
2K 0 1 678 181 140 0 1 677 150 172
2K log(logn) 0 1 714 165 120 0 1 743 132 124
2K logn 16 0 887 74 23 1 5 914 54 26

2K (logn +1) 23 0 918 49 10 3 6 940 43 8

We respectively take F(K) = 2K, 2K log(logn), 2K logn, 2K (logn + 1), for each
sample size n = 50, 100. In these computations, we employ the adjusted EQL, in which the
second term of —2Q (y|f) is multiplied by (n — K)/n. In the simulations, for comparison,
we also compute the MLE and thus AIC in which the overdispersion isn’t considered.
Table 1 presents the frequencies of the candidate models selected by the various criteria
in 1000 replications, where K = 3 stands for the true model. As may be expected, the
new criterion derived from EQL is much better than the naive AIC, although no exact
likelihood function is involved in EQL. Note also that the larger the penalty F(K, n) is, the
larger the probability of correct selection is, and the smaller the probability of overfitting
is. This is due to the fact that the true model is included in the candidate models. In fact,
using the techniques of Shaol'”, it may be shown under some regular conditions that when
F(K,n) — oo and F(K,n)/n — 0 as n — oo, the probability that the criterion selects the
true model tends to 1. However, this property doesn’t hold when the true model is not a

candidate model, and in this case, the criterion with F(K) = 2K may have some optimal
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properties[17] .

We also compute the mean of 3 and its mean squared error (MSE) with the 1000
replications for each model. The results for the sample size of 50 are listed in Table 2.
And the MSE is computed by the formula 1000~* 1.%0(3(") — Bo) (B = By), where 3 is
the ith estimate of 8 in the 1000 replications. Tal;l:e1 2 shows that for Model 3, the true
model, the average estimates of components for § are near the true values and its MSE is

the smallest.

Table 2 Estimates of coefficients and the MSEs for Beta-Binomial distribution,

sample size n = 50

i By Bs B Bs |MSE(B)| A1 72 |MSE(®¥)
Model 1(0.2179 — - — - 13.6296 |-0.4895(-0.3371| 0.0038
Model 20.6943 | 2.4122 — — — 9.6146 |-0.7108| 0.1123 | 0.0031
Model 3/0.8852(2.0362|3.0719 — - 0.7557 [-1.9364|-1.8552| 0.0102
Model 4|0.8988|2.0736|3.1049 |-0.1184 - 0.9916 [-1.9817|-1.7998| 0.0105
Model 5/0.9017{2.0810|3.1213|-0.1245[0.0276 | 1.0467 |-1.9783|-1.8042| 0.0097

3.3 Simulation for Extra-Poisson Distribution

Table 3 Frequencies of models selected in 1000 replications for extra-Poisson

distribution
n =50 n = 100

Criterion K=1 2 3 4 5 K=1 2 3 4 5
AIC 0 0 466 239 295 0 0 436 255 309
2K 0 0 650 199 151 0 0 712 184 104

2K log(log n) 0 0 742 172 86 0 0 834 126 40
2K logn 0 0 957 41 2 0 0 994 6 0
2K (logn +1) 0 0 980 20 0 0 0 997 3 0

In this simulation, the structure of the mean model is E(y;) = p; = via; = exp(X/fo),
where X is a 5 x 1 vector with elements independently sampled from a uniform distribution
U(0,1), and Gy = (1,2,3,0,0). The structure of the dispersion parameter is ¢; = 1+ o; =
exp(Zjyv0) with vo = (1,1) and Zjp is a 2 x 1 vector with elements generated randomly

from a uniform distribution U(0,1). The sample sizes are n = 50, 100.
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The simulation results on the selection frequencies in 1000 replications are presented in
Table 3, and those on the estimates and their MSEs are listed in Table 4. The performances

are similar to those shown in Table 1 and Table 2.

Table 4 Estimates of coefficients and the MSEs for extra-Poisson distribution, n = 50

B e Bs o Bs  |MSE(B)| A1 Y2 | MSE(®y)
Model 1 | 5.0089 — - - — 29.0758 | 3.7640 | 2.2871| 0.0113
Model 2 | 2.7930 | 2.9702 — - - 13.2161 | 3.6775 | 1.2912 | 0.0097
Model 3 | 1.0030 | 1.9981 | 2.9943 - — 0.0487 ]0.9983 | 0.9591 | 0.0002
Model 4 | 1.0022 | 1.9986 | 2.9946 | -0.0016 — 0.0627 |0.9895 |0.9468 | 0.0004
Model 5| 1.0022 | 1.9997 | 2.9974 | -0.0021 | -0.0070 | 0.0854 |0.9769|0.9306 | 0.0005

To investigate the stability of EAIC, we do some simulations when some of 3y are
adjusted to be near zero. The results from 100 independent replications appear to be
promising in some situations. We list the results in Table 5, 6 when Gy = (1,1,1,0,0),
Bo = (0.1,0.2,3,0,0) for extra-Poisson model when n = 50. And the results show that the
EAIC is stable for change of the coefficient.

Table 5 Frequencies of models selected in 100 replications when £y = (1,1,1,0,0)

for extra-Poisson distribution, sample size n = 50

criterion K=1 2 3 4 5
2K 0 2 75 16 7

2K log(log n) 0 2 85 11 2
2K logn 3 11 85 0
2K (logn + 1) 4 6 90 0 0

Table 6 Frequencies of models selected in 100 replications when Gy = (0.1,0.2,3,0,0)

for extra-Poisson distribution, sample size n = 50

criterion K=1 2 3 4 5)

2K 0 0 63 19 18

2K log(logn) 0 0 73 15 12
2K logn 0 0 97

2K (logn + 1) 0 0 97 3 0

Remark 1 In principle, one could use K log(logn), Klogn and K(logn + 1) as

penalty. A constant before them does not change the consistency of the identified order
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of the model, see [18]. We, in fact, compute the simulations without multiplier 2 in the

penalties, and the result is slightly worse than those given above.

84. An Example

We consider a data set taken from the Pignatiello and Ramberg!'¥, discussing an
experiment related to the production of leaf springs for trucks. The same data have
been studied by McCullagh and Nelder!. The response variable y is the free height
of leaf springs and five controllable factors are B (furnace temperature), C' (heating
time), D (transfer time), £ (hold-down time), O (quench oil temperature). The ex-
periment was conducted following an orthogonal design. Note that the defining con-
trast for this design is I = BCDE. Thus the aliased pairs of two-factor interactions are
BD =CFE, CD = BE, DE = B(C, and the all two-factor interactions may be expressed
as BC,BD,BE, BO,CO, DO, EO. Hence, there are twelve explanation variables in the
full model. For the illustration of the proposed method, we require a model for the mean
assuming the dispersion model has been known in advance. We take the variance function

as V(u) = 1 and the full mean model as
n=wp=p0+pBpB+pcC+- -+ ProLO,
and the dispersion model as
log¢ =~ +vB +cC.

All candidate models 4095 (i.e. 2'2 — 1) are reduced to 311 models by requiring that the

main effects are included in the model if their interactions are included.

Table 7 The mean models selected and the corresponding values of criteria

Model factors selected 2K 2Klog(logn) 2K logn 2K (logn + 1)
1  B,C,D,E,0,BO,CO,DO,EO -57.99  -50.21 5.17 97.17
p B,C,E,0,CO 4827 -43.32 -8.07 5.93
3 B,C,0,CO -41.64 -37.40 -7.19 4.81
4 B,C.E,0,BO,CO -50.99 -45.33 -5.05 10.95

Table 7 presents four models followed by their corresponding EAIC values. Model 1
is selected by the criteria with F(K) = 2K and 2K log(logn). When F(K) = 2K logn,
Model 2 is selected, and F(K) = 2K (logn + 1) selects Model 3. Model 4 is given by
McCullagh and Nelder!?.
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The parameter estimators and their corresponding standard errors and p-values of
all models are investigated, but we don’t present them here since the space is limited.
It clearly indicates that coefficients in Model 2 and Model 3 are highly significant at the
1% level. The p-value of the coefficient BO in Model 4 is 0.0264, and not significant
at the 1% level. While for Model 1, the p-values of the coefficients DO, BO, EO, D are
0.0027, 0.0166, 0.0291, 0.2614 respectively, and the other coefficients are highly significant
at the 1% level. We can see that BO, EO are not significant at the 1% level, and DO is
significant, however D is clearly not significant. Maybe Model 1 implies some information
which isn’t revealed by Model 4, and whether DO and D should be included in the mean

model would need further experiments or investigations based on the background.

§5. Summary and Discussion

For likelihood-based methods, there are many well-studied model selection criteria,
such as AIC. But for non-likelihood-based methods, such as the extended quasi-likelihood
approaches for the joint generalized linear models, there is relatively a lack of literature
on model selection. In this article, we have proposed a new criterion EAIC that works
for joint generalized linear models. Using the extended quasi-likelihood approach, we only
need to know the first two moments of y; without specifying it’s distribution. In simulation
studies we found that the EAIC works well and stably in variable selection. The penalty
term in AIC or EAIC, however, is not arbitrary; rather, it should be the asymptotic
bias-correction term. We might use the bootstrap to compute tr[I(6y)%]. Furthermore,
in principle, our proposed criterion can also be used to select variables for the dispersion

model. Further applications warrant further studies.
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