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Abstract
This paper proposes some regularity conditions which weaken those given by Zhu & Wei

(1997). On the basis of the proposed regularity conditions, the existence, the strong consistency

and the asymptotic normality of maximum likelihood estimation (MLE) are proved in exponential

family nonlinear models (EFNMs). Our results may be regarded as a further improvement of the

work of Zhu & Wei (1997).
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§1. Introduction

Suppose that the random variables y1, · · · , yn are independent and each yi has density:




p(yi; θi, σ
2) = exp

{yiθi − b(θi)
σ2

+ c(yi;σ)
}

,

θi = f(xi, β), i = 1, 2, · · · , n,
(1.1)

with respect to a σ-finite measure v, where b, c and f are known functions, xi is a known

q-vector defined in X , β is an unknown p-vector parameter defined in B, θi is a natu-

ral parameter, and σ is a scale parameter. Then models (1.1) are called the exponential

family nonlinear models (EFNMs) which are natural extensions of generalized linear mod-

els (Nelder & Wedderburn, 1972) and normal nonlinear regression models. In the past

two decades, a number of authors have been concerned about the inference of EFNMs,
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Cordeiro and Paula (1989) studied the improved likelihood ratio statistics; Cook and Tsai

(1990) discussed the cubic approximations of confidence regions; Wei and Shi (1994) stud-

ied some diagnostics problems; Wei (1998) made a systematic study for the theory and

the methods of EFNMs.

We first introduce some notation and basic properties of EFNMs to be used later.

For all β ∈ B and a given δ > 0, the neighborhoods of β with radius δ are denoted by

N(δ) = {β′ : ‖β′ − β‖ < δ}, N(δ) = {β′ : ‖β′ − β‖ ≤ δ}, ∂N(δ) = {β′ : ‖β′ − β‖ = δ}
separately. Let λminA(λmaxA) denote the smallest (largest) eigenvalue of a symmetric

matrix A; and let A1/2(AT/2) denote the left (right) square root of the positive definite

matrix A, i.e. A1/2AT/2 = A; denote A−1/2 = (A1/2)−1, A−T/2 = (AT/2)−1. Since the

parameters of interest in EFNMs are β and the maximum likelihood estimators of β and

σ2 can be estimated separately, we may set σ2 = 1 for simplicity. Then the distribution

of the response yi in (1.1) belongs to a natural exponential family, the natural parameter

space Θ is an interval in R, and b(θ) is an analytical convex function in Θ. In particular,

we have µi = E(yi) = ḃ(θi), Var (yi) = b̈(θi). In this paper, we use dots over the functions

to denote the derivatives.

The log likelihood of a sample y1, · · · , yn is given by

ln(β) =
n∑

i=1
{yiθi − b(θi)}+ C, θi = θi(β) = f(xi, β), i = 1, 2, · · · , n, (1.2)

where C does not depend on β.

It is easily seen from (1.2) that the score function, the observed information matrix

and the Fisher information matrix for β can be respectively denoted by

Sn(β) = l̇n(β) =
n∑

i=1

∂θi

∂β
(yi − µi(β)) = DT (β)e(β), (1.3)

Hn(β) = −l̈n(β) =
n∑

i=1

{∂θi

∂β
· ∂θi

∂βT
vi(β)− ∂2θi

∂β∂βT
ei(β)

}

= DT (β)V (β)D(β)− [eT (β)][W (β)],

Jn(β) = DT (β)V (β)D(β), Hn(β) = Jn(β)−Rn(β), (1.4)

where Rn(β) = [eT (β)][W (β)], D(β) = ∂θ(β)/∂βT , W (β) = ∂2θ/(∂β∂βT ), θ(β) = (θ1(β),

θ2(β), · · · , θn(β))T , e(β) = (e1(β), e2(β), · · · , en(β))T , ei(β) = yi − µi(β), µi(β) = ḃ(θi),

V (β) = diag(v1(β), v2(β), · · · , vn(β)), vi(β) = b̈(θi), θi = f(xi, β), and [·][·] denotes array

product (see Wei, 1989).

For EFNMs, Zhu & Wei (1997) discussed the existence, the strong consistence and

asymptotic normality of MLE under some regularity conditions. One of those conditions
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is that there exist a neighborhood N0 ⊂ B of β0, constant C > 0 and a positive integer

number m, such that λminJn(β) ≥ Cn, β ∈ N0, n > m (Zhu & Wei, 1997, p.196). This

condition is too strong, in this paper we weaken this condition to gain the corresponding

results.

This paper is organized as follows. Section 2 introduces some regularity conditions

and lemmas. In Section 3, we show the existence, strong consistency and asymptotic

normality of MLE in EFNMs under some mild regularity conditions.

§2. Conditions and Lemmas

To make inference for β we make

Assumption A (i) X is a compact subset in Rq, and B is an open subset in Rp,

(ii) f(x, β), as a function of β, is differentiable up to the third order. The function

f(x, β) and all its derivatives are continuous in X × B,

(iii) θi = f(xi, β) ∈ Θ, i = 1, 2, · · · , for all xi ∈ X and β ∈ B,

(iv) β0 is unknown true parameter of β and an interior point of B,

(v) D(β) = ∂θ(β)/∂βT = (D1, · · · , Dn)T is full rank, where θ(β) = (θ1, · · · , θn)T .

Remark 1 Condition (v) will ensure that the information matrix Jn(β) is positive

define for all β ∈ B.

Assumption B (i) λminJn(β0) →∞,

(ii) There is a neighborhood N ⊂ B of β0 such that

λminJn(β) ≥ c(λmaxJn(β0)), β ∈ N, n ≥ n0,

with some constants c > 0, n0,

(iii)

λmax

n∑
i=1

∂2f(xi, β)
∂β∂βT

≤ c1λmaxJn(β0), n ≥ n0,

with some constants c1 > 0, n0.

Remark 2 Assumption B is similar to those of Fahrmeir & Kaufmann (1985,

p.348, p.362).

Assumption C There exists a positive definite and continuous matrix K(β) such

that

λ−1
n Jn(β) → K(β), uniformly in N(δ),

here and in the sequel λn = λmaxJn(β0).
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Remark 3 Assumption C is similar to that of Zhu & Wei (1997, p.197) and

includes it (when λn = n).

Let β̂n denote the maximum likelihood estimator of β, which is the solution of the

likelihood equation l̇n(β) = 0. For notational simplicity, we shall mostly drop the argument

β0 in Sn(β0), Hn(β0), Eβ0 , Pβ0 etc. and write Sn, Hn, E, P etc..

Lemma 2.1 Let {zi} be a sequence of independent random variables with Ezi = 0

and Var (zi) = σ2
i > 0 and An →∞, lim sup

n→∞

( n∑
i=1

σ2
i

)1/2+δ/
An < +∞, for some δ > 0, and

g(x, β) is a continuous function in X × B1, where B1 is a compact subset in B. Then

lim
n→∞

n∑
i=1

1
An

zig(xi, β) = 0, a.s. uniformly in B1. (2.1)

In particular, if βn → β0 in N(δ), then

1
An

n∑
i=1

zig(xi, βn) → 0 (a.s.).

Proof For any given β ∈ B1, considering a point β′ 6= β in a neighborhood N(δ)

of β, then

∣∣∣ 1
An

n∑
i=1

zig(xi, β
′)
∣∣∣ ≤

∣∣∣ 1
An

n∑
i=1

zig(xi, β)
∣∣∣ +

∣∣∣ 1
An

n∑
i=1

zi[g(xi, β
′)− g(xi, β)]

∣∣∣

≤
∣∣∣ 1
An

n∑
i=1

zig(xi, β)
∣∣∣ + sup

X
|g(x, β′)− g(x, β)|

{ 1
An

n∑
i=1

|zi|
}

. (2.2)

Since Ezig(xi, β) = 0, and

1
An

( n∑
i=1

Var (zig(xi, β))
)1/2+δ

=
1

An

( n∑
i=1

g2(xi, β)σ2
i

)1/2+δ

≤ sup
X×B1

g2(x, β))
1

An

( n∑
i=1

σ2
i

)1/2+δ
< +∞,

from Lemma 2 of Wu (1981), the first term of (2.2) tends to zero (a.s.). Since g(x, β) is

uniformly continuous in X × B1, we have sup
X
|g(x, β′) − g(x, β)| → 0, if β′ → β. On the

other hand, we have

1
An

n∑
i=1

|zi| = 1
An

n∑
i=1
{|zi| − E|zi|}+

1
An

n∑
i=1

E|zi|.

Since

1
An

( n∑
i=1

Var (|zi| − E|zi|)
)1/2+δ

≤ 1
An

( n∑
i=1

Var (zi)
)1/2+δ

=
1

An

( n∑
i=1

σ2
i

)1/2+δ
,
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it follows from Lemma 2 of Wu (1981) that

1
An

n∑
i=1
{|zi| − E|zi|} → 0 (a.s.).

Since (1/An) ·
n∑

i=1
E|zi| is bounded, (1/An) ·

n∑
i=1

|zi| is a.s. bounded. Collecting together

the above, we obtain the following conclusion.

For any given ε > 0, there exist a neighborhood N(δ1) of β with 0 < δ1 ≤ δ and a

random number n1, such that

P
{∣∣∣ 1

An

n∑
i=1

zig(xi, β
′)
∣∣∣ < ε, n > n1

}
= 1

for any β′ ∈ N(δ1). since B1 is compact, it follows from the finitely covered theorem that

there exists n2 > n1 such that

P
{∣∣∣ 1

An

n∑
i=1

zig(xi, β)
∣∣∣ < ε, n > n2

}
= 1

for any β ∈ B1. Thus (2.1) is proved. ¤

Lemma 2.2 Suppose that Assumptions A and B, and the conditions of Lemma

2.1 hold. If there exists δ0 > 0 such that βn → β0 in N(δ0) ⊂ B1, then

λ−1
n Rn(βn) → 0 (a.s.). (2.3)

Proof Rn(β) may be written as

Rn(β) =
n∑

i=1

∂2f(xi, β)
∂β∂βT

ei(β0) +
n∑

i=1

∂2f(xi, β)
∂β∂βT

(µi(β0)− µi(β))

= Bn(β) + Cn(β),

where

Bn(β) =
n∑

i=1

∂2f(xi, β)
∂β∂βT

ei(β0), Cn(β) =
n∑

i=1

∂2f(xi, β)
∂β∂βT

(µi(β0)− µi(β)). (2.4)

The component of λ−1
n Bn(β) at (a, b) may be written as

{λ−1
n Bn(β)}a,b = λ−1

n

n∑
i=1

Wiab(β)ei(β0).

From Lemma 2.1, it follows that λ−1
n Bn(βn) → 0 (a.s.).

For any λ with λT λ = 1, we have

λT Cn(β)λ ≤ max
i=1,2,··· ,n

|µi(β0)− µi(β)|λT
( n∑

i=1

∂2f(xi, β)
∂β∂βT

)
λ

≤ c1λn max
i=1,2,··· ,n

|µi(β0)− µi(β)|,
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with some constant c1. Particularily, we have

λT Cn(βn)λ
λn

≤ c1 max
i=1,2,··· ,n

|µi(β0)− µi(βn)|, (2.5)

with some constant c1. Since βn→β0 (n→∞), max
i=1,2,··· ,n

|µi(β0)−µi(βn)| can be made arbi-

trarily small for sufficiently large n, and therefore it follows from (2.5) that λT Cn(βn)λ/λn

converges to zero. Since λ with λT λ = 1 is arbitrary and pointwise convergence on the

unit ball implies ‖Cn(βn)‖/λn converges to zero, which leads to λ−1
n Cn(βn) → 0.

Combining the above results yields λ−1
n Rn(βn) → 0 (a.s.). ¤

Lemma 2.3 Under Assumptions A and B, the score function is asymptotically

normal:

J−1/2
n Sn

L→ N(0, Ip),

where L denotes the convergence in distribution and Ip is a p× p unit matrix.

Proof To get lemma 2.3, it is enough to show that Zn = λT J
−1/2
n Sn

L→ N(0, 1) holds

for any λT λ = 1. Zn may be written as Zn =
n∑

i=1
αniεi, where αni = λT J

−1/2
n v

1/2
i ∂θi/∂β,

εi = v
−1/2
i (yi − µi(β0)). From Assumption A, it is easily seen that

E(αniεi) = 0, Var
( n∑

i=1
αniεi

)
= 1.

We shall show that the Lindeberg condition is satisfied (see Ferguson, 1996, p.27), i.e. for

any ρ > 0

gn(ρ) = A−2
n

n∑
i=1

E{α2
niε

2
i I(|αniεi|2 > ρ2A2

n)} → 0 (n →∞), (2.6)

where A2
n =

n∑
i=1

Var (αniεi). Since A2
n = 1, inserting into (2.6),

gn(ρ) =
n∑

i=1
E{α2

niε
2
i I(|αniεi|2 > ρ2}

=
n∑

i=1
α2

niE
{

ε2
i I

(
ε2
i >

ρ

α2
ni

)}
→ 0 (n →∞). (2.7)

It follows from B (i) that λmaxJ
−1
n → 0. Using the compactness of X , we have

max
1≤i≤n

α2
ni → 0 (n →∞).

Let the distribution function of εi be FX , define

hc(x) =
∫

{|z|>c}
z2dFX .

《
应
用
概
率
统
计
》
版
权
所
有



第六期 夏天 孔繁超: 指数族非线性模型最大似然估计的相合性和渐近正态性 599

We have, for any (large) c > 0,

E
{

ε2
i I

(
ε2
i >

ρ2

α2
ni

)}
=

∫

{z2>ρ2/α2
ni}

z2dFX ≤ hc(xi), i = 1, 2, · · · , n, n ≥ n2(c).

Combining the above results yields

gn(ρ) ≤
n∑

i=1
α2

nihc(xi).

By the Helly-Bray Lemma and the continuity properties of exponential function, the

function hc(x) has the following properties: hc(x) is continuous in X , hc(x) → 0 (as

c → +∞) (pointwise for any x ∈ X ) and hc(x) is monotonously decreasing in c. Due to

the above properties and the compactness of X , hc(x) → 0 uniformly in X as c → +∞,

i.e.

sup
X

hc(x) → 0 (c → +∞). (2.8)

By
∑

α2
ni ≤ K < ∞ with a constant K, we have

gn(ρ) ≤ K max
x∈X

hc(x), n ≥ n2(c). (2.9)

From (2.8) and (2.9), it is easily seen that gn(ρ) → 0. ¤

§3. Main Results

Theorem 3.1 Under Assumptions A and B, there exist a sequence {β̂n} of random

variables and a random number n0(Y ), such that for any n > n0(Y ),

i) P(Sn(β̂n) = 0) → 1 (asymptotic existence),

ii) β̂n → β0 a.s. (strong consistency).

Proof By (1.4), λ−1
n Hn(β) = λ−1

n Jn(β)− λ−1
n Rn(β), implying

λT Hn(β)
λn

λ ≥ 1
λn

λminJn(β)− ‖Rn(β)‖
λn

(a.s.). (3.1)

With analogous arguments as in the proof of Lemma 2.2 it can be shown that ‖Rn(β)‖/λn

is arbitrarily small for sufficiently large n in a (sufficiently small) neighborhood N(δ0) of

β0, and therefore there exists a random number n1(Y ) such that for all β ∈ N(δ0) and

n > n1(Y )
1
λn

λT Hn(β)λ ≥ c

2
, (3.2)

further yielding

λT Hn(β)λ ≥ c

2
· λn ≥ c

2
M1 > 0, (3.3)
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where M1 is a positive constant. So ln(β) is concave in N(δ0) a.s., and therefore we only

need to show that for any δ (0 < δ < δ0), there exists a random number n0(Y ) such that

for all β ∈ ∂N(δ) and n > n0(Y ),

ln(β)− ln(β0) < 0 (a.s.). (3.4)

This means that β̂n which maximizes ln(β) must be located in N(δ). Since 0 < δ < δ0

and δ is arbitrary, (i) and (ii) of the theorem can be obtained.

To prove (3.4), letting λ = (β − β0)/δ, then the Taylor series expansion gives

ln(β)− ln(β0) = δλT Sn − 1
2
δ2λT Hn(β∗n)λ, (3.5)

where β∗n = tnβ0 + (1− tn)β for some 0 ≤ tn ≤ 1. Then (3.4) is equivalent to

1
λn

λT Sn <
1

2λn
δλT Hn(β∗n)λ a.s., (3.6)

for all λT λ = 1, n > n0. It follows from (1.3) that the a-th component of λ−1
n Sn = λ−1

n

·
n∑

i=1
ei(β0)∂θi/∂β is

sna

λn
=

1
λn

n∑
i=1

∂θi

∂βa
(yi − µi(β0)).

Under Assumptions A and B, it follows from Lemma 2.1 that λ−1
n sna → 0 a.s., and hence

λ−1
n ‖Sn‖ → 0 (a.s.). By the Cauchy-Schwarz inequality, for any λT λ = 1, we have

|λT Sn|2 ≤ (λT λ)ST
n Sn = |Sn‖2,

and therefore

λ−1
n λT Sn → 0 a.s. for any λT λ = 1. (3.7)

On the other hand, from (3.2), there is δ (0 < δ < δ0) such that

λ−1
n λT Hn(β∗n)λ >

c

2
> 0 a.s., (3.8)

for any β ∈ N(δ) and n > n1(Y ). By (3.7), there exists a random number n0(Y ) > n1(Y )

such that

λ−1
n λT Sn <

1
2
δ · c

2
a.s., (3.9)

for any β ∈ N(δ) and n > n0(Y ). From (3.8) and (3.9), it is easily seen that (3.6) holds,

and therefore (3.4) holds. (i) and (ii) of Theorem 3.1 are proved. ¤
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Theorem 3.2 Suppose that Assumptions A, B (i), (iii) and C hold in model (1.1),

then there exists a sequence {β̂n} of MLE with

i) β̂n → β0 a.s.,

ii) λ
1/2
n (β̂n − β0)

L→ N(0,K−1(β0)).

Proof By the continuity properties of Jn(β) = D(β)T V (β)D(β) and Assumption

C, for any given ε (0 < ε < (1/2) · λT K(β0)λ), there exist an integer number n0 and a

neighborhood N(δ0) of β0 such that
∣∣∣ 1
λn

λT Jn(β)λ− λT K(β0)λ
∣∣∣

≤
∣∣∣ 1
λn

λT Jn(β)λ− λT K(β)λ
∣∣∣ + |λT K(β)λ− λT K(β0)λ| < ε, (3.10)

for any β ∈ N(δ0), n > n0(Y ), λT λ = 1. Then we get

λ−1
n λT Jn(β)λ > λT K(β0)λ− ε >

1
2
λT K(β0)λ > 0,

inducing (ii) of Assumption B. And therefore, we gain the (i) of the theorem from Theorem

3.1.

To prove part (ii) of the theorem, the Taylor expansion of Sn at β̂n can be used, which

is

Sn = Sn(β̂n) + Hn(β∗n)(β∗n − β0) = Hn(β∗)(β̂n − β0),

where β∗n = t∗nβ0 + (1− t∗n)β̂n for some 0 ≤ t∗n ≤ 1. The above equation may be rewritten

as

J−1/2
n Sn = J−1/2

n Hn(β∗n)J−T/2
n JT/2

n (β̂n − β0),

where J
1/2
n is a square root of the positive definite matrix Jn, i.e. Jn = J

1/2
n J

T/2
n , J−1

n =

J
−T/2
n J

−1/2
n . Then we have

λ1/2
n (β̂n − β0) = (λ−1

n Jn)−T/2G−1
n (β∗n)J−1/2

n Sn, (3.11)

where Gn(β∗n) = J
−1/2
n Hn(β∗n)J−T/2

n . On the other hand,

Gn(β∗n) = (λ−1
n Jn)−1/2{λ−1

n Jn(β∗n)− λ−1
n Rn(β∗n)}(λ−1

n Jn)−T/2. (3.12)

Since β∗n → β0 a.s. (n →∞), it follows from Lemma 2.2 that

λ−1
n Rn(β∗n) → 0 (a.s.). (3.13)

From Assumption C, we get

(λ−1
n Jn)−T/2 → K−T/2. (3.14)
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Since β∗n → β0 a.s. (n → ∞), by analogous arguments as given in the proof of (3.10), it

can be shown that

λ−1
n Jn(β∗n) → K = K1/2KT/2. (3.15)

Substituting (3.13)–(3.15) into (3.10) yields Gn(β∗n) → Ip a.s.. Hence, it follows from

(3.11) and Lemma 2.3 that λ
1/2
n (β̂n − β0) → N(0,K−1(β0)). ¤

Theorem 3.3 Suppose that Assumptions A, B (i), (iii) and C hold in the models

(1.1), then there exists a sequence {β̂n} satisfies

2{ln(β̂n)− ln(β0)} L→ X 2(p), (3.16)

where X 2(p) denotes X 2-distribution with a degree of freedom, p.

Proof From (3.11), it follows that

(β̂n − β0) = J−T/2
n G−1

n (β∗n)J−1/2
n Sn, (3.17)

where Gn(β∗n) = J
−1/2
n Hn(β∗n)J−T/2

n . The Taylor expansion of ln(β) at β̂n gives

ln(β0) = ln(β̂n) + ST
n (β̂n)(β0 − β̂n)− 1

2
(β0 − β̂n)T Hn(β∗n)(β0 − β̂n),

where β∗n = t∗nβ0 + (1− t∗n)β̂n, 0 ≤ t∗n ≤ 1. From Sn(β̂n) = 0, we have

2{ln(β̂n)− ln(β0)} = (β0 − β̂n)T Hn(β∗n)(β0 − β̂n). (3.18)

Since β̂n → β0 (n → ∞), we have β∗n → β0 (n → ∞). Substituting (3.17) into (3.18), we

get

2{ln(β̂n)− ln(β0)} = {J−1/2
n Sn}T [G−1

n (β∗n)]T {J−1/2
n Sn}. (3.19)

From G−1
n (β∗n) → Ip a.s., the continuity theorem, Lemma 2.3 and the definition of X 2-

distribution, it follows that (3.16) holds. ¤
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指数族非线性模型最大似然估计的相合性和渐近正态性

夏 天

(云南大学统计系, 昆明, 650091)

孔繁超

(安徽大学数学系, 合肥, 230039)

本文我们提出了一些正则条件, 这些条件减弱了Zhu and Wei (1997)文中的条件. 基于所提的正则条件,

我们证明了指数族非线性模型参数最大似然估计的相合性和渐近正态性. 我们的结果可被认为是Zhu and

Wei (1997)工作的进一步改进.

关键词: 指数族非线性模型, 相合性, 渐近正态性, 最大似然估计.
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