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Abstract

This paper proposes some regularity conditions which weaken those given by Zhu & Wei
(1997). On the basis of the proposed regularity conditions, the existence, the strong consistency
and the asymptotic normality of maximum likelihood estimation (MLE) are proved in exponential
family nonlinear models (EFNMs). Our results may be regarded as a further improvement of the
work of Zhu & Wei (1997).
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§1. Introduction

Suppose that the random variables y1, - - - , y, are independent and each y; has density:

p(yi; 0i,0%) = eXp{iy = (6)

+clyi o)},
ezzf(xhﬁ)7 i:1>2>"'7n7

(1.1)

with respect to a o-finite measure v, where b, ¢ and f are known functions, x; is a known
g-vector defined in X', § is an unknown p-vector parameter defined in B, 0; is a natu-
ral parameter, and o is a scale parameter. Then models (1.1) are called the exponential
family nonlinear models (EFNMs) which are natural extensions of generalized linear mod-
els (Nelder & Wedderburn, 1972) and normal nonlinear regression models. In the past

two decades, a number of authors have been concerned about the inference of EFNMs,
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Cordeiro and Paula (1989) studied the improved likelihood ratio statistics; Cook and Tsai
(1990) discussed the cubic approximations of confidence regions; Wei and Shi (1994) stud-
ied some diagnostics problems; Wei (1998) made a systematic study for the theory and
the methods of EFNMs.

We first introduce some notation and basic properties of EFNMs to be used later.
For all # € B and a given § > 0, the neighborhoods of 3 with radius § are denoted by
N(8) = {8 I8' = Bl < o}, N(©0) = {8+ |6' = Bll < 6}, ON(0) = {8’ : |6' - BI| = o}
separately. Let ApinA(AmaxA) denote the smallest (largest) eigenvalue of a symmetric
matrix A; and let A'/2(A7/2) denote the left (right) square root of the positive definite
matrix A, i.e. AY2AT/2 = A; denote A=Y/2 = (AY/2)=1, A-T/2 = (AT/2)=1. Since the
parameters of interest in EFNMs are # and the maximum likelihood estimators of 4 and
o2 can be estimated separately, we may set o2 = 1 for simplicity. Then the distribution
of the response y; in (1.1) belongs to a natural exponential family, the natural parameter
space © is an interval in R, and b(6) is an analytical convex function in ©. In particular,
we have p; = E(y;) = b(6;), Var (y;) = b(6;). In this paper, we use dots over the functions
to denote the derivatives.

The log likelihood of a sample y1, - -+ , ¥y, is given by

L(8) = S (i —bB)} +C, 0= 0:8) = f@iB), i=12,--.n,  (12)

=1
where C' does not depend on (.

It is easily seen from (1.2) that the score function, the observed information matrix

and the Fisher information matrix for 8 can be respectively denoted by

50(8) = i (8) = ; W — 1i(8)) = DT(B)e(d), (1.3)
noc96;, 00; 82&
Hn(B) = ; { EMT vi(B) — Wei(ﬁ)}
=DT(ﬂ) (B)D(B) — [T (B)W(B),
Jn(8) = DTBV(ADB),  Ha(B) = Jn(B) — Ru(9). (1.4)

where Ra(8) = [T(D)][W(B)], D(8) = D0(8)/05T, W(8) = 926/ (9B8057), 0(8) = (61(8),
02(8),- - . 0u(A)T, e(8) = (e1(8),ea(8); -+, en(B)T, €i(B) = s — a(B), i) = b(6),
V(8) = diag(v1(8), v2(8),- -+, va(B)), v:(8) = b(8:), 0 = f(ws, B), and [][] denotes array
product (see Wei, 1989).

For EFNMs, Zhu & Wei (1997) discussed the existence, the strong consistence and

asymptotic normality of MLE under some regularity conditions. One of those conditions
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is that there exist a neighborhood Ny C B of &y, constant C' > 0 and a positive integer
number m, such that AyninJn(8) > Cn, 8 € Ng, n > m (Zhu & Wei, 1997, p.196). This
condition is too strong, in this paper we weaken this condition to gain the corresponding
results.

This paper is organized as follows. Section 2 introduces some regularity conditions
and lemmas. In Section 3, we show the existence, strong consistency and asymptotic

normality of MLE in EFNMs under some mild regularity conditions.

§2. Conditions and Lemmas

To make inference for 3 we make

Assumption A (i) X is a compact subset in R%, and B is an open subset in RP,

(ii) f(z,pB), as a function of 3, is differentiable up to the third order. The function
f(z, ) and all its derivatives are continuous in X x B,

(iii) 0; = f(x;, ) €0,i=1,2,---, for all x; € X and ( € B,

(iv) Bo is unknown true parameter of 4 and an interior point of B,

(v) D(B) = 00(8)/08" = (D1,---,Dy)7 is full rank, where 0(3) = (01, ,0,)".

Remark 1  Condition (v) will ensure that the information matrix .J,, () is positive
define for all 8 € B.

Assumption B (i) ApinJn(80) — o0,

(ii) There is a neighborhood N C B of (3 such that

)\mann(ﬁ) > C( max (50)) B €N, n=>ng,

with some constants ¢ > 0, ng,
(iii)
> f (i, 5)
max Z; 8/88/8T

with some constants ¢; > 0, ng.

< Cl)\max (ﬁ0)7 n > ng,

Remark 2 Assumption B is similar to those of Fahrmeir & Kaufmann (1985,
p.348, p.362).

Assumption C There exists a positive definite and continuous matrix K () such
that
ML (8) — K (), uniformly in N (§),

here and in the sequel \;, = ApaxJn(B0)-
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Remark 3 Assumption C is similar to that of Zhu & Wei (1997, p.197) and
includes it (when A\, = n).
Let Bn denote the maximum likelihood estimator of @, which is the solution of the

likelihood equation ln(ﬁ) = 0. For notational simplicity, we shall mostly drop the argument
Bo in Sp(Bo), Hn(fo), Epy, Pg, etc. and write Sy, Hy, E, P etc..

Lemma 2.1 Let {z} be a sequence of independent random variables with Ez; = 0

n 1/240
and Var (z;) = 02 > 0 and A,, — oo, limsup ( > a2>

(]
n—oo i=1
g(x, ) is a continuous function in X' x By, where B; is a compact subset in B. Then

A, < +0o0, for some § > 0, and

n

1
lim > i —2zig(x;, /) =0, a.s. uniformly in B;. (2.1)

—
'I’LOOZl

In particular, if 3, — (o in N(J), then

1 n
a, . Z g(xi, Bn) — 0 (a.s.).
pe

Proof For any given B1, considering a point 3’ # [ in a neighborhood N(§)

of 3, then
1 & ) 1 & 1 & )
1 Lol ®)| < | S e d)| +| 1 L ot ) — gl 9))
1 2 , 1 n
< | X metan )|+ swplota, 8) — glw A 1 X Jail}- (22

Since Ez;g(z;, 5) = 0, and

) 1/246 ) 1/246

(3 varglai. )

=1

1 n
= (T w0t

2 Lo g\ 1/249
< swp @) (X o) <+,
X xB1 n Ni=1

from Lemma 2 of Wu (1981), the first term of (2.2) tends to zero (a.s.). Since g(z,3) is
uniformly continuous in X' x By, we have sup |g(x, ') — g(x,3)| — 0, if 3/ — 3. On the
X

other hand, we have

i 2 [l = o DAl — Elad} + o - Elal

nz* TLZ*

Since

jn(zé Var (|zi — E!zﬂ))WH < jn( i Var(zi)>l/2+6 _ jn( i 012)1/2%7
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it follows from Lemma 2 of Wu (1981) that

1 n
1 > Alzil —Elzl} =0 (as.).

n =1

n

7
Since (1/A;) - Y E|zi| is bounded, (1/A4,) - > |zi| is a.s. bounded. Collecting together
=1

1= =1
the above, we obtain the following conclusion.

For any given ¢ > 0, there exist a neighborhood N(d;) of # with 0 < §; < 0 and a

random number nj, such that
1 2 ,
P{‘ — > Zig(l‘i,ﬁ)’ <e&mn> nl} =1
An i3

for any 3’ € N(d1). since By is compact, it follows from the finitely covered theorem that

there exists ny > ni such that
1 n
P{li Z Zzg(.’I}Z,ﬁ)‘ <gmn> nQ} =1
An =1
for any § € B;. Thus (2.1) is proved. O

Lemma 2.2 Suppose that Assumptions A and B, and the conditions of Lemma

2.1 hold. If there exists dp > 0 such that 3, — B in N(d) C By, then
MAR,L(B,) — 0 (a.s.). (2.3)

Proof R,() may be written as

9 f (wi, n 9 f (i,
Ra(8) = 3 2 et + 35 LS i) — wa9)
= Bu(8)+Cald),
where
n 92 f(x. n 92 f(x.
Bu(9) = 3= T et Cuo) = 3 TS ) - w9, 2)

The component of A\, 1B, (3) at (a,b) may be written as
{0 Ba(B)}as = A" 2 Wian(B)ei(Bo)-

From Lemma 2.1, it follows that A\, B, (3,) — 0 (a.s.).
For any A with AT\ = 1, we have

n 92 )
NN < s ) - (3 T

1=1,2,-, i=1

< A, max . 1i(Bo) — (B,

=1,2,---,
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with some constant c¢;. Particularily, we have

T
)‘Cf\(ﬁ”)/\ < e max | (Bo) — i (Bn)l,s (2.5)

with some constant c¢;. Since 3, — Gy (n—00), . max |pi(Bo) — pi(Br)| can be made arbi-
= 3T

trarily small for sufficiently large n, and therefore it follows from (2.5) that ATC,,(8,)\/ A

converges to zero. Since A\ with AT\ = 1 is arbitrary and pointwise convergence on the

unit ball implies ||Cy,(3,)||/An converges to zero, which leads to A, 'C,(8,) — 0.
Combining the above results yields A\, R, (3,) — 0 (a.s.). O

Lemma 2.3 Under Assumptions A and B, the score function is asymptotically
normal:
T 28, 5 N0, 1),

where £ denotes the convergence in distribution and I, is a p x p unit matrix.

Proof To get lemma 2.3, it is enough to show that Z, = \TJ, /25, 5 N(0,1) holds

for any ATA = 1. Z,, may be written as Z,, = Z i€, Where ap; = ATJ_1/2 1/286 i/ 00,

=1
71/2(%

& =1

— 11i(Bo)). From Assumption A, it is easily seen that
n
E(Oénzgz) = 0, Var ( Z ani5i> = 1
i=1

We shall show that the Lindeberg condition is satisfied (see Ferguson, 1996, p.27), i.e. for
any p >0

( ) A Z E{am & (’amsl|2 > :02‘42)} —0 (7’L - OO), (26)
where A2 = Z Var (apg;). Since A2 = 1, inserting into (2.6),

gn(p) = E{ams I(|O‘m5l’2 > p }

é e{2r(2> 5 )b —0 (o). (2.7)

ni
It follows from B (i) that AyaxJ, ' — 0. Using the compactness of X, we have

max a2, — 0 (n — o0).

1<i<n

Let the distribution function of ¢; be F'x, define

he(z) = / 22dFy.
{lzI>c}
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We have, for any (large) ¢ > 0,

2
E{52[<52> p)}_/ 22dFx < he(xi), i=1,2,---,n, n>nac).
AT A {22502 /a2,}

ni

Combining the above results yields
gn(p) < ;aiihc(wi)-

By the Helly-Bray Lemma and the continuity properties of exponential function, the
function h.(z) has the following properties: hq(x) is continuous in X, h.(z) — 0 (as
¢ — +00) (pointwise for any x € X') and h.(x) is monotonously decreasing in ¢. Due to
the above properties and the compactness of X, h.(z) — 0 uniformly in X' as ¢ — +o0,
ie.

sup he(x) — 0 (¢ — +00). (2.8)

By > a2, < K < oo with a constant K, we have

gn(p) < K max h.(z), n > na(c). (2.9)
reX
From (2.8) and (2.9), it is easily seen that g,(p) — 0. O

§3. Main Results

Theorem 3.1 Under Assumptions A and B, there exist a sequence { @\n} of random
variables and a random number ny(Y"), such that for any n > ng(Y),

i) P(Su(B,) =0) — 1 (asymptotic existence),

ii) Bn — By as. (strong consistency).

Proof By (1.4), )‘ZlHn(/@) = )‘len(ﬁ) - /\Ean(ﬁ)a implying

Hn () [ Bn(B)]I
p et ™ A > )\—)\mmJ W(B) — " (a.s.). (3.1)

With analogous arguments as in the proof of Lemma 2.2 it can be shown that || R, (5)|/A\»
is arbitrarily small for sufficiently large n in a (sufficiently small) neighborhood N (dg) of
Bo, and therefore there exists a random number n;(Y) such that for all 5 € N(dp) and
n>ni(Y)

(3.2)

further yielding
My >0, (3.3)
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where M is a positive constant. So I,,(3) is concave in N(dp) a.s., and therefore we only
need to show that for any d (0 < 6 < Jp), there exists a random number ng(Y’) such that
for all 5 € ON(0) and n > ny(Y),

L(8) — la(Bo) <0 (as.). (3.4)

This means that (3, which maximizes [, (3) must be located in N (6). Since 0 < § < Jp
and 0 is arbitrary, (i) and (ii) of the theorem can be obtained.

To prove (3.4), letting A = (8 — p)/9, then the Taylor series expansion gives
1
1n(B) — 1n(Bo) = 6ATS,, — 552)\THn(ﬁ;§)>\, (3.5)

where 3% = t,00 + (1 — t,,) 3 for some 0 < ¢,, < 1. Then (3.4) is equivalent to

1 T 1 T *
for all AT\ = 1, n > ng. It follows from (1.3) that the a-th component of A\, 1S, = \;*
. Z 6,(ﬁ0)891/8ﬁ is
i=1

0;
9Ba

Under Assumptions A and B, it follows from Lemma 2.1 that A, 's,, — 0 a.s., and hence

na 1 n
Zna _ . > (yi — 1i(Bo))-
n =1

An

A Y[S,| — 0 (a.s.). By the Cauchy-Schwarz inequality, for any ATA = 1, we have
NS, < (ATA)S) Sn = [Snll?,
and therefore
MINTS, 0 as. for any AT\ = 1. (3.7)

On the other hand, from (3.2), there is 6 (0 < § < Jp) such that

AT H, (BN > g >0 as, (3.8)
for any 8 € N(J) and n > n1(Y). By (3.7), there exists a random number ng(Y) > ni(Y)
such that

1
A NS, < 54 g as., (3.9)

for any § € N() and n > ng(Y). From (3.8) and (3.9), it is easily seen that (3.6) holds,
and therefore (3.4) holds. (i) and (ii) of Theorem 3.1 are proved. O
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Theorem 3.2  Suppose that Assumptions A, B (i), (iii) and C hold in model (1.1),
then there exists a sequence {Bn} of MLE with

i) Bn — fBo a.s.,

i) Ml (B = o) = N (0, K~ (60)).

Proof By the continuity properties of J,(3) = D(8)TV(8)D(3) and Assumption
C, for any given € (0 < ¢ < (1/2) - ATK(Bp)A), there exist an integer number ng and a
neighborhood N (dy) of By such that

ATTDA — NTK (50))
< %ATJR(B))\ - )\TK(ﬂ)/\‘ + MK (B)A = ATK(Bo)\| < e, (3.10)

for any 3 € N (&), n > ng(Y), ATA = 1. Then we get
1
AN T (BN > MK (Bo)\ — e > 5ATK(ﬁO)A >0,

inducing (ii) of Assumption B. And therefore, we gain the (i) of the theorem from Theorem
3.1.
To prove part (ii) of the theorem, the Taylor expansion of S;, at Bn can be used, which
is
Sn = Su(Bn) + Hu(87) (8 — o) = Hu(8) (B — o).

where 3% = %5y + (1 — t;)ﬁn for some 0 < t; < 1. The above equation may be rewritten

as
T 28y = S P (7)1 TR (B~ o),
where J,l/2 is a square root of the positive definite matrix J,, i.e. J, = %/2 5/2, Jl =
J{T/2J{1/2. Then we have
N2 (B = Bo) = ) TG (B7) 07280, (3.11)
where G, (5}) = J{l/an(ﬂfl)J{Tﬂ. On the other hand,
Gn(Br) = O ) T2 (87) = A Ra(B3) YO M) T2, (3.12)
Since 3 — [y a.s. (n — 00), it follows from Lemma 2.2 that
MIR(B) =0 (as.). (3.13)

From Assumption C, we get
A1) T2 - kT2, (3.14)
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Since 3% — [y a.s. (n — o), by analogous arguments as given in the proof of (3.10), it
can be shown that
MU (68) = K = KY2KT2, (3.15)

n

Substituting (3.13)-(3.15) into (3.10) yields Gn(8)) — I, a.s.. Hence, it follows from
(3.11) and Lemma 2.3 that AY%(3, — Bo) — N(0, K~1(5)). 0

Theorem 3.3 Suppose that Assumptions A, B (i), (iii) and C hold in the models

(1.1), then there exists a sequence {Bn} satisfies

2{10(Bn) — 1 (Bo)} 5 X%(p), (3.16)

where X2(p) denotes X'2-distribution with a degree of freedom, p.
Proof From (3.11), it follows that

(B = Bo) = i 26N (7) I 25, (3.17)
where G, () = Jn Y 2Hn(ﬂ;§)Jn_ T2 The Taylor expansion of [,,((3) at By gives

1n(B0) = Un(Bn) + ST (Ba)(Bo — Bn) — = (Bo — Bu) " Hn(52) (B0 — Bn),

1
2
where 3% =t 5y + (1 — t;‘;)Bn, 0 <t:<1. From S’n(Bn) = 0, we have

2{1n(Bn) — 1n(Bo)} = (Bo — )T Hu(B2)(Bo — Bu)- (3.18)

Since 3, — Bo (n — o0), we have 3} — [y (n — 00). Substituting (3.17) into (3.18), we
get

2{Ln(Bn) = 1n(Bo)} = {7 /2Su} T 1G (B)) {2 S} (3.19)
From G,(8%) — I, a.s., the continuity theorem, Lemma 2.3 and the definition of X2-
distribution, it follows that (3.16) holds. O
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