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Abstract
In this paper, we propose to estimate the monotonic link function of the single-index model

by I-spline approximation. On the basis of a consistent estimation of the projection direction, the

consistency of the least square criterion with a penalty function is established. Simulations are

carried out to compare the existing method and to evidence the efficacy of our propose approach.
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§1. Introduction

In this paper we consider the regression of a univariate response Y on a p-dimensional
predictor vector X = (X1, · · · , Xp)T , where T denotes the transposition operator. In a
routine analysis we can decompose Y into a link function m(X) and a noise variable ε,
which is assumed to be orthogonal to X and satisfy E(ε|X) = 0, that is, Y = m(X) + ε.
Quite often the dimensionality p of X is usually very large, which hinders the estimation of
the link function m(·) by nonparametric methods such as kernel smoothing. Therefore, we
may suppose that m(X) = ψ(βT X) to circumvent the well-known curse of dimensionality,
where β is an unknown vector which needs to be estimated from the available data, and
the link-function ψ(·) may be nonlinear and unspecified. This is the so-called single index
model. Now we arrive at a semi-parametric model which is more flexible on one hand and,
on the other hand, avoids the curse of dimensionality one faces in fully in nonparametric
models. The estimator of β as well as the link function ψ in this so-called single-index
model has been extensively studied, among others, by Li and Duan[1] (1989), Duan and
Li[2] (1991), Härdle et al.[3] (1993), Ichimura[4] (1993), Hristache et al.[5] (2001), Härdle and
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Stoker[6] (1989) and Zhu et al.[7] (2008). In this context, a special case of the single-index
model is considered:

Y = h(βT X) + ε, (1.1)

where h(·) is a strictly monotonic transformation of the linear combination βT X. This
model is very general, including the linear model, logistic model and probit model, etc.
However, little research work has been devoted to this model. Therefore, we study the
estimation of this model in this work.

The rest of this paper is organized as follows. In Section 2, we illustrate that the
estimation of the projection direction β. When a consistent estimation of β is available,
we then investigate in Section 3 the I-spline approximation to the link function under the
least square regression measure with a penalty function. The consistency of this criterion
is also established in this section. Simulations are carried out in Section 4 to compare the
existing methods and to evidence the efficacy of the I-spline approximation. All proofs
are postponed to the Appendix.

§2. Estimation of the Projection Direction β

In this section, we will introduce a dimension-reduction method for estimating the
projection index β. Consider first fitting the linear model Y = bT X + e by choosing the
estimate b to minimize an objective function E(Y − bT X)2. Li and Duan[1] (1989) have
shown that the least square estimator

b = [Var (X)]−1Cov (X, Y )

is a consistent estimate of kβ for some constant k if E(X|βT X) is linear in βT X. It
follows from Eaton[8] (1986) that this linearity condition will hold for all β if X has an
elliptically contoured distribution, say, the normal or student distribution. If h(·) is strictly
monotonic, then the constant k is not zero. That is, the least square estimation b is a
consistent estimator of β up to a nonzero constant scale. Throughout this article, the least
square estimator b of β will be used. Therefore, we have

E(Y |bT X) = E[(h(βT X) + ε)|bT X] = h(βT X) + E(ε|βT X) = h(βT X), (2.1)

which implies that we can estimate the link function h(βT X) based on the least square
estimator b. Denote by Z the variate bT X, then only the univariate spline approximation or
kernel smoother is needed, and hence the curse of dimensionality is avoided here. Notice
that (2.1) also indicates that the plot {(bT X, Y )} may be a practically useful tool for
visualizing an appropriate transformation h(·). This is also found in Zhu et al.[7] (2008).
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To gain some insights why this response plot works, we consider, for any joint distribution
of (X, Y ), the problem of finding h(·) such that the least square distance E[Y −ψ(XT b)]2

is minimized. Let
h∗ = arg max

ψ∈H2

E[Y − ψ(XT b)]2.

Theorem 2.1 Suppose that X and Y are non-degenerate random variables such
that E(X2) and E(Y 2) are finite. Then for any given b, the optimal choice h∗ is E(Y |XT b).

This theorem, together with (2.1), shows that the least square estimator h∗ is also a
consistent estimator of h(·).

§3. I-Spline Approximation of the Link Function h(·)
When a consistent estimator of β is obtained, there are many nonparametric smoothers

available to estimate the link function. In the present context, we should, however, restrict
our special attention to the spline approximation of the monotonic link function h(·),
as the ordinary B-spline transformation (among these, see Eubank[9] (1999) for more
details) may not satisfy the monotonicity. Herein we introduce a monotonic I-spline with
a penalty function. Differing from Zhu et al.[7] (2008) in which the link is approximated by
maximizing the covariance, we suggest to estimate the link by minimizing the least square
measure. The algorithm is a modification of Ramsay[10] (1988). Specifically, consider the
I-spline of order 2 based on the knots mesh {tj} with c = t0 < t1 < · · · < tJ < tJ+1 = d.
The basis function π(·) = (B0, · · · , BJ+1)T is defined through Bk as B0(zi) ≡ 1 and

B1(Z) =
(Z − t0)2

(t1 − t0)2
I(t0 ≤ Z ≤ t1) + I(Z ≥ t1);

Bk(Z) =
(Z − tk−1)2

(tk−1 − tk−2)(tk − tk−2)
I(tk−2 ≤ Z ≤ tk−1)

+
[
1− (Z − tk−1)2

(tk − tk−1)(tk − tk−2)

]
I(tk−1 ≤ Z ≤ tk), k = 1, · · · , J ;

BJ+1(Z) =
(Z − tJ−1)2

(tJ − tJ−1)2
I(tJ−1 ≤ zi ≤ tJ).

Let h(·) = θT π(·). First we consider the transformation for each component Z = bT X with
its i.i.d. copies {zi = bT xi, i = 1, · · · , n}. When the sample points {xi, yi} are available,
we replace b by its least square estimator β̂, and then use the j/J-th quartile of ẑi = xT

i β̂

as tj . Because we want a monotonic transformation, we here consider the minimizer of the
discrepancy subject to monotonicity on h(·). The monotonicity can be ensured by θ ≥ 0
(see Ramsay[10] (1988) for details).

Since we consider the algorithm with this constraint, then the solution of θ is not
simple. However, the minimization problem is a quadratic problem and can be resolved
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without much difficulty, although such a transformation may not be strictly monotonic
because some optimal values of the components of θ may be zero. It is clear that we can
restrict the first derivative to be bounded away from 0. To achieve this, the following
criterion with a penalty function can be used. Let

Dθ,β(h(Z)) = E[Y − h(Z)]2 + 2α
J+1∑
i=0

log(1 + θi) (3.1)

and θ = (θ0, · · · , θJ+1) is the minimizer of Dθ,β(h) over all θ = (θ0, · · · , θJ+1). Once
we have data points {(x1, y1), · · · , (xn, yn)}, we can estimate b first, and then write zi =
xT

i b and ẑi = xT
i b̂. Then the estimators of Dθ,β(h(Z)), D̂θ,β(h(z)), and D̂

θ,β̂
(h(ẑ)) are

separately defined by

D̂θ,β(h(z)) =
1
n

n∑
k=1

[yk − h(zk)]2 + 2α
J+1∑
i=0

log(1 + θi), (3.2)

D̂
θ,β̂

(h(ẑ)) =
1
n

n∑
k=1

[yk − h(ẑk)]2 + 2α
J+1∑
i=0

log(1 + θi). (3.3)

Clearly, the final estimator θ̂ = (θ̂0, · · · , θ̂J+1) is the minimizer of the corresponding
D̂θ(h(ẑ)) over all θ = (θ0, · · · , θJ+1). We can also obtain the convergence of min D̂θ,β(h(z))
to minDθ,β(h(z)). The result is as follows.

Theorem 3.1 Assume that J3/2 = o(
√

n) and the fourth moments of X is finite.
Then for any given β, we have

∣∣∣ min
θ

D̂θ,β(h(z))−min
θ

Dθ,β(h(Z))
∣∣∣ = Op(J3/2/

√
n). (3.4)

Compare this with the convergence rate in Zhu et al.[7] (2007), the convergence rate
under the least square criterion is much faster than that by maximizing the correlation
coefficient in Zhu et al.[7] (2008). This shows that estimating the link function under the
least square criterion is much more efficient.

For the I-spline, we do not have a closed-form solution for θ. However, adding the
penalty function can ease the computation burden for the quadratic problem. The point
is illustrated in the following. Note that

dD
θ,β̂

(h(ẑ))

dθ
=

2
n

n∑
k=1

π(ẑk)πT (ẑk)θ − 2
n

n∑
k=1

π(ẑk)yk − 2α

1 + θ

where 1/(1+θ) = [1/(1+θ0), · · · , 1/(1+θJ+1)]T . From this, when letting the above equa-
tion be 0, we can derive the solution of θ. Specifically, let Π(J+1)×(J+1) = E[π(Z)πT (Z)],
F(J+1)×1 = E[π(Z)Y ], and their corresponding estimation

Π̂(J+1)×(J+1) =
1
n

n∑
k=1

π(ẑk)πT (ẑk) and F̂(J+1)×1 =
1
n

n∑
k=1

π(ẑk)yk.
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Furthermore, we write the the (i, j)-th element of the matrix Π by âij , and the j-th element
of the vector F by b̂j . For each 0 ≤ j ≤ J + 1, θj is the solution of the following equation:

(âjjθj − b̂j)(1 + θj) +
∑
i6=j

âjiθi(1 + θj)− α = 0,

where âjj > 0. We can obtain the final solutions by an iterative algorithm because each
θj is only related to all other components θi. The following theorem states the converge
of this algorithm.

Theorem 3.2 Suppose that all marginal density functions of Xl, l = 1, · · · , p are
bounded and positive on [c, d]. Choosing α < (λminΠ2)1/2, the above algorithm converges
in probability, where λmin(Π2) stands for the smallest eigenvalue of the matrix ΠT Π.

To perform the above approximation, one must decide on the number of knots J based
on the available data point {(xi, yi), i = 1, · · · , n}. Here, we use the modified Bayesian
Information Criterion (BIC) (Schwarz[11] (1978)) proposed by Zhu, Zhu and Li[12] (2007).
That is, the optimal choice of kn, denoted by kn,opt, is defined by

kn,opt = arg min
kn

[
log(σ̂2(kn)) + (kn + 3)

max{log n, 3}
n

]
, (3.5)

where σ̂2(kn) is the sum of the squares of the residuals that were obtained in (1.1). Obvi-
ously, some other model selection criterion can be used in the place of (3.5). For instance,
the modified Akaike type information criteria, as proposed by Fujikoshi and Satoh[13]

(1997) are an alternative (McQuarrie and Trai[14] (1998) provide a comprehensive discus-
sion). Although we make no claim that the modified BIC proposed by Zhu, Zhu and Li[12]

(2007) are always the best in this context, our experience indicates that it works very well
across a variety of situations.

§4. Empirical Study

Simulations are carried out in this section to evidence the performance of I-spline
approximation under the least square measure for the single-index model with monotone
link function. Zhu et al.[7] (2008) studied the same problem but the estimation of the
link function is obtained by maximizing the correlation coefficient Corr2[h(Z), Y ], while
in this paper the approximation is based on the least square criterion. To facilitate the
comparison, we use the same model as Zhu et al.[7] (2008):

Y = eβT X + σε, (4.1)

where X and ε are independent. X = (X1, · · · , Xp) is p-dimensional and ε is from N(0, 1).
In the simulation, p vaies from 4 through 10, and β = (1, · · · , 1)T /

√
p, the corresponding
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p-dimensional vector. To examine the impact of the variance σ2, we choose σ = 0.3, 0.5, 1,
2, 5, 10, and X = (X1, · · · , Xp) is drawn from N(0, Ip), where Ip is a p×p identity matrix.
In each case, we generate 100 data sets each of size 100. We now apply the methods above
and in Zhu et al.[7] (2008). We used penalty function defined in (3.1) to do the I-spline
approximation with the knots determined by the modified BIC type criterion introduced
in Zhu et al.[7] (2008). In the following two tables (Table 2 is cited from Zhu et al.[7] (2008)
for ease of illustration), we report the mean of the multiple correlation coefficients, which
we call the empirical correlation coefficient.

Table 1 The empirical correlation coefficient between y and the I-Spline approximation
h(·) by using the least square criterion in this paper

p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

σ = 0.3 0.9570 0.9454 0.9353 0.9290 0.9286 0.9285 0.9258

σ = 0.5 0.9567 0.9443 0.9351 0.9287 0.9284 0.9284 0.9257

σ = 1 0.9541 0.9435 0.9339 0.9288 0.9283 0.9284 0.9256

σ = 2 0.9473 0.9402 0.9333 0.9286 0.9283 0.9282 0.9255

σ = 5 0.9126 0.8842 0.9246 0.9280 0.9279 0.9280 0.9253

σ = 10 0.8255 0.9231 0.9048 0.9271 0.9277 0.9278 0.9252

Table 2 The empirical correlation coefficient between y and the I-Spline approximation
h(·) by maximizing the correlation coefficients in Zhu et al.[7] (2007)

p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

σ = 0.3 0.8761 0.8663 0.8577 0.8572 0.8551 0.8543 0.8568

σ = 0.5 0.8634 0.8588 0.8599 0.8566 0.8553 0.8580 0.8561

σ = 1 0.8684 0.8660 0.8578 0.8590 0.8554 0.8538 0.8573

σ = 2 0.8679 0.8612 0.8658 0.8559 0.8545 0.8599 0.8596

σ = 5 0.8394 0.8507 0.8535 0.8542 0.8538 0.8556 0.8565

σ = 10 0.7881 0.8239 0.8425 0.8433 0.8454 0.8508 0.8558

From the above results, we can clearly see that the performance of the I-spline ap-
proximation is acceptable. For model (4.1), the approximation scheme introduced in this
paper via minimizing the discrepancy function (results are shown in Table 1) is more ef-
ficient than that in Zhu et al.[7] (2007) via maximizing the correlation coefficient (results
are shown in Table 2). We can also find that large noise deteriorates the accuracy of ap-
proximation, the correlation is reduced. As we can expect that the correlation decreased
with the increase of the dimension p.
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Appendix

Proof of Theorem 2.1 Note that for any given b,

min
ψ

E[Y − ψ(XT b)]2 = E[Y − E(Y |XT b)]2 + min
ψ

E[E(Y |XT b)− ψ(XT b)]2,

which implies the desired conclusion. ¤
Proof of Theorem 3.1 It suffices to prove that

min
θ
|D̂θ,β(h(z))−Dθ,β(h(Z))|

= min
θ
|Ĉ1θ,β(h)−C1θ,β(h)− 2Ĉ2θ,β(h) + 2C2θ,β(h)| = Op(J3/2/

√
n),

where Ĉ1θ,β(h)=En[θTπ(Z)πT(Z)θ], C1θ,β(h)=E[θTπ(Z)πT(Z)θ], Ĉ2θ,β(h)=En[θTπ(Z)Y ],
and C2θ,β(h) = E[θT π(Z)Y ].

Firstly, we will study the first part at the RHS. Note that

min |Ĉ1θ,β(h)−C1θ,β(h)| ≤ (J + 2)2 max
k,k1

|En[Bk(Z)Bk1(Z)]− E[Bk(Z)Bk1(Z)]|.

In the following, we will show that

max
k,k1

Ik,k1 =: max
k,k1

|Bk(Z)Bk1(Z)− E(Bk(Z)Bk1(Z))| = Op(1/
√

nJ). (A.1)

By the Markov inequality

max
k,k1

P{|Ik,k1 | > b} ≤ max
k,k1

E(Bk(Z)Bk1(Z))2/(nb2).

Note that Bk(Z) ≤ cI(tk,tk+1)(Z) and then E(Bk(Z)) ≤ c/J . Adding the condition that
EY 4 < ∞, we can obtain that

max
k,k1

E(Bk(Z)Bk1(Z))2 ≤
√

c4E(I(tk,tk+1)(Z))
√

c4E(I(tk1
,tk1+1)(Z)) ≤ C/J.

Choosing b satisfies 1/b = o(
√

nJ), we derive that

P
{

max
k,k1

|Ik,k1 | > b
}

= [P{|Ik,k1 | > b}](J+1)2 ≤ C/(nJb2) = o(1).

Therefore, we have
min |Ĉ1θ,β(h)−C1θ,β(h)| = Op(J3/2/

√
n). (A.2)

Now we turn to investigating the second term Ĉ2θ,β(h). Note that

max Ik,2 =: max |Ĉ2θ,β(h)−C2θ,β(h)|
≤ (J + 2)max

k
|Bk(Z)Y − E(Bk(Z)Y )|.
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For any 0 ≤ k ≤ J + 1, and any b > 0 by the Markov inequality

max
k

P{|Ik,2| > b} ≤ max
k

E(Bk(Z)Y )2/(nb2).

Note that Bk(Z) ≤ cI(tk,tk+1)(Z) and then E(Bk(Z)) ≤ c/J . Adding the condition that
EY 4 < ∞, we can obtain that

max
k

E(Bk(Z)Y )2 ≤
√

c4E(I(tk,tk+1)(Z))
√

EY 4 ≤ C/
√

J.

Choosing b satisfies 1/b = o(
√

n/J1/4), we derive that

P
{

max
k
|Ik,2| > b

}
≤ ∑

k

max
k

P{|Ik,2| > b} ≤ C(
√

J)/(nb2) = o(1).

Therefore, we have
min |Ĉ2θ,β(h)−C2θ,β(h)| = Op(J5/4/

√
n). (A.3)

The proof is concluded from (A.2) and (A.3). ¤
Proof of Theorem 3.2 Without loss of difficulty, we can show that Π̂ converges

in probability to Π. Let θ
(l)
i be the results from the lth step of the iterative algorithm.

Therefore,

Π(θ(l+1)
i − θ

(l)
i ) = α

( 1

1 + θ
(l)
i

− 1

1 + θ
(l−1)
i

)

= αc
(l)
i (θ(l)

i − θ
(l−1)
i ),

and then

(θ(l+1)
i − θ

(l)
i ) = αΠ−1

( 1

1 + θ
(l)
i

− 1

1 + θ
(l−1)
i

)

= αΠ−1c
(k)
i (θ(l)

i − θ
(l−1)
i ),

where c
(l)
i = −1/[(1+θ

(l)
i )(1+θ

(l−1)
i )]. Note that |c(l)

i | is smaller than or equal to 1. Because
Π is positive definite matrix and so is Π−1. The largest eigenvalue λmax((ΠT Π)−1) =
1/λmin(ΠT Π) ≤ c < ∞. Note that for any non-negative symmetric matrix B and unitary
vector α, ‖Bα‖ = αT BBα ≤ λmax(BB) where λmax stands for the largest eigenvalue of
the matrix BB. Therefore, it is easy to see that

‖θ(l+1)
i − θ

(l)
i ‖ ≤

α

(λmin(ΠT Π))1/2
‖θ(l)

i − θ
(l−1)
i ‖.

If α is chosen to be smaller than (λmin(Π2))1/2, then the algorithm converges in probability.
¤
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估计单指标模型的单调联系函数

杨 建 娟

(浙江树人大学基础部, 杭州, 310015)

本文我们研究了联系函数单调时单指标模型的模型估计问题. 基于投影方向的相合估计, 本文提出用I-样

条的办法来估计联系函数, 并建立带惩罚函数的最小二乘准则的相合性. 通过模拟与现有的方法进行了对比,

表明我们的估计方法是非常有效的.

关键词: 降维, I-样条, 最小二乘估计, 惩罚函数, 单指标模型.
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