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Abstract
We propose two estimators, an integral estimator and a discretized estimator, for the wavelet

coefficient of volatility in time series models. These estimators can be used to detect the changes

of volatility in time series models. The location estimators of the jump points, we proposed, have

been shown to have the minimax convergence rate, which is the optimal rate for the estimation

of change points. The jump sizes and locations of change points can be consistently estimated

by wavelet coefficients. The convergency rates of these estimators are derived and the asymptotic

distributions of the statistics are established.

Keywords: Change points in volatility, wavelet coefficient, kernel estimation, local polyno-

mial smoother.

AMS Subject Classification: 62N02.

§1. Introduction

The analysis of change points in nonparametric models has attracted increasing in-

terests. Many attempts have been contribute to test and estimate the jumps and their

sizes in volatility model for time series, because of its importance in hedging strategies

and risk management. However, the continuous-time model has a severe limitation when

jumps exist in underlying sample data. This paper develops a theory of estimating change

points in the volatility of a nonparametric model. Wang (1995) first employed the wavelet

method to detect jumps in a continuous-time model with a constant volatility. Wong, Ip,

Li and Xie (1999) have shown that the wavelet coefficient has significantly large absolute

values near the jump points across fine levels, while having relatively small values when

the location shifts away from the jump points.

In this paper, we propose two estimators for the wavelet coefficient of volatility in

time series models. The first one is an integral estimator. This estimator is very simple

and intuitive in constructing the estimator for the wavelet coefficient. The second one is
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a discretized estimator for the wavelet coefficient. These estimators can be used to detect

the change of volatility in time series models. The locations and sizes of change points of

volatility are proposed and the convergency rates of these estimators are derived. Wong,

Ip and Li (2001) have only proposed a simple empirical estimator of the wavelet coefficient,

and have not given the asymptotic distribution of the estimator. In our paper, we proposed

the asymptotic distributions of the statistic. In addition, the location estimators of the

jump points, we proposed, have been shown to have the minimax convergence rate, which

is the optimal rate for the estimation of change points, even if the observations are not a

sequence of i.i.d. random variables.

The paper is organizes as follows. Section 2 introduce the nonparametric model

and wavelet method. Section 3 provides the estimation of the wavelet coefficient. The

estimations of jump sizes and change points are considered in Section 4. Section 5 discusses

the asymptotic distribution of the estimators and the estimation of unknown variance.

Proofs are collected in the Appendix.

§2. Model and Notations

A nonparametric model is defined as follows:

Yi = T (Xi) + σ(Xi)εi, (2.1)

where we assume that E(εi|Xi) = 0 and E(ε2
i |Xi) = 1 and {εi, i = 1, 2, · · · } is a sequence

of random variables. T (x) = E(Y |X = x), σ2(x) = Var (Y |X = x). {(Xi, Yi), i = 1, 2, · · · }
is a sequence of random vectors which satisfying some mixing dependent conditions. Here

we relax {(Xi, Yi), i = 1, 2, · · · } to allow for dependent observations in a time series.

In fact, we can re-write the model (2.1) as follows:

(Yi − T (Xi))2 = σ2(Xi) + σ2(Xi)(ε2
i − 1), (2.2)

where E((ε2
i − 1)|Xi) = 0, and we assume that E((ε2

i − 1)2|Xi) = v.

In this paper, we assume that σ2(x) has an α-cusp at ti, i = 1, 2, · · · , p. σ2(x) is

smooth except at those discontinuous points. When σ2(x) have p discontinuous points in

[a, b]. We can re-write σ2(x) as follows:

σ2(x) = C(x) + D(x),

where D(x) =
p∑

i=1
diI[ti,b](x) with a < t1 < t2 < · · · < tp < b, and C(x) is twice continu-

ously differentiable on (a, b). Let di = σ2(ti+)− σ2(ti−) denote the size of a jump of the

function σ2(x) at point ti. Our interest is to estimate p, di and ti, i = 1, 2, · · · , p.
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To obtain the desired results, we make the following assumptions about the model.

Let U be a open neighborhood of the origin of R and [a, b] ⊂ U .

(A1) The p.d.f. f(x) of X1 is bounded away from zero and infinity on some open

subset U . That is, there exists some positive constant such that M−1 6 f(x) 6 M , x ∈ U .

(A2) The conditional p.d.f. f(y|x) of Xi, given X1 = x, is also bounded away from

zero and infinity on U .

(A3) {Xi, i = 1, 2, · · · } is strictly stationary and α-mixing. Its mixing coefficient

α(µ) = o(ρ−µ) for some large ρ > 0.

(A4) We assume that f(x) is a twice bounded derivative function, and T (x) and C(x)

are continuous third order differentiable on U .

(A5) Let {(ε2
i −1), i = 1, 2, · · · } be a sequence of i.i.d. random variables and for each

i, ε2
i − 1 is independent of {(Xi, Yj−1), j 6 i}.
Assumptions (A1) and (A2) are necessary for the kernel estimation with dependent

data. (A3) is to simplify proofs. (A4) is to meet the continuity requirement for kernel

smoothing. (A5) is also made for simplicity of proofs.

Before given the estimators of wavelet coefficient of the volatility, we need to propose

some assumptions for wavelet and introduce some notations. In this paper, we mainly use

the notations in Chen, Choi and Zhou (2008).

Assumption that {Xi, 1 6 i 6 n} is a realization from model (2.1), Denote

In(x0) = {i : 1 6 i 6 n, |Xi − x0| 6 δn},
I(s, δn) =

{
k :

∣∣∣a +
k

2J
(b− a)− s

∣∣∣ 6 δn

}
,

where δn = 2−J and k = [2Jθ], (0 < θ < 1), J = J(n) is often a sequence with J → ∞
as n → ∞. let Nn(x0) = #In(x0) denote the number of points in In(x0). Dn = {0, 1, 2,

· · · , 2J − 1}.
We choose wavelet ψ(x) and scale function φ(x) satisfying the following conditions.

(B1) Both ψ(x) and φ(x) have finite supports, say, [−A,A], A > 1, and ψ(x) = 0,

x ∈ [−1, 1]. And both have derivatives with bounded variation.

(B2) The wavelet function ψ(x) has the following properties

∫ A

−A
ψ(x)dx = 0,

∫ A

−A
xψ(x)dx = 0,

∫ A

1
ψ(x)dx 6= 0,

∫ A

1
xψ(x)dx 6= 0,

0 <
∣∣∣
∫ A

y
ψ(x)dx

∣∣∣ <
∣∣∣
∫ A

1
ψ(x)dx

∣∣∣, 0 <
∣∣∣
∫ −y

−A
ψ(x)dx

∣∣∣ <
∣∣∣
∫ −1

−A
ψ(x)dx

∣∣∣,

where 1 < y < A.
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From the wavelet ψ(x) and scale function φ(x), we can obtain the orthogonal wavelet

basis on L2[a, b].

{φper
i,k (x), k ∈ Ii;ψ

per
J,k (x), k ∈ IJ , J > i},

where

φper
i,k (x) =

∞∑
n=−∞

1√
b− a

φi,k

(x− a

b− a
+ n

)
, ψper

J,k (x) =
∞∑

n=−∞
1√

b− a
ψJ,k

(x− a

b− a
+ n

)

with φi,k(x) = 2i/2φ(2ix− k), ψJ,k(x) = 2J/2ψ(2Jx− k) and IJ = {0, 1, 2, · · · , 2J − 1}.
Now, the wavelet coefficient of the volatility function σ2(Xi) of model (2.1) is defined

as follow

βJ,k =
∫ b

a
σ2(x)ψper

J,k (x)dx. (2.3)

§3. Estimation of the Wavelet Coefficient

Wong, Ip and Li (2001) proposed a simple empirical estimator of βJ,k, which is defined

as

WJ,k =
b− a

N

N∑
i=1

ψper
J,k (wi)

1
Nn(x)

∑
i∈In(wi)

(
yi − 1

Nn(x)
∑

m∈In(wi)

ym

)2
, (3.1)

where N → ∞, wi are those points to divide the interval [a, b] into N + 1 sub-intervals,

that is wi = a + i(b− a)/N .

Let K(x) be a probability density function with bounded support [−C, C], for some

constant C > 0. When σ2(x) is smooth, we have the following estimator:

σ2
n(x) =

n∑
i=1

Kn,h(Xi − x)(Yi − T (Xi))2

n∑
i=1

Kn,h(Xi − x)
,

where h = hn is a sequence of bandwidths, with h → 0 and nh →∞ as n →∞. When

Kn,h(Xi − x) = Kh(Xi − x) = K
((Xi − x)

h

)
,

σ2
n(x) is the kernel estimation (see Nadaraya (1964)) and when

Kn,h(Xi − x) = Kh(Xi − x)
n∑

j=1
Kh(Xj − x)(Xj − x)2

−Kh(Xi − x)(Xi − x)
n∑

j=1
Kh(Xj − x)(Xj − x),

σ2
n(x) is the local linear smoothers(see Fan and Gijbels (1996)). We only consider the

kernel estimator.
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Now, we can propose two estimators of wavelet coefficient of the volatility in model

(2.1), as follows

UJ(k) =
∫ b

a
ψper

J,k (x)

n∑
i=1

Kn,h(Xi − x)(Yi − T (Xi))2

n∑
i=1

Kn,h(Xi − x)
dx, (3.2)

WJ(k) =
b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Kn,h(Xj − wi)(Yj − T (Xj))2

n∑
j=1

Kn,h(Xj − wi)
, (3.3)

where N and wi are the same as those in (3.1).

The first estimator is integral estimator. This estimator is simple and intuitive. The

second one is descretized estimator. This one is simple in computation. We can obtain

the estimator (3.1) from (3.3) by choosing the kernel function

K(x) =





1
2
, ‖x‖ 6 1;

0, ‖x‖ > 1.

The estimator (3.1) has some drawbacks, because the bandwidth h selected in this

estimator cannot reach the optimal value, that is, hopt = Cn−1/5 for some constant C.

The estimator (3.1) has a larger mean integration square error than the estimators (3.2)

and (3.3), which have the optimal bandwidths.

To obtain the properties of estimators of change points in volatility, we propose some

assumptions as follows.

(C1) lim
n→∞ 22J(log n)3/n = 0, lim

n→∞ 25J/n = ∞, lim
n→∞ 2Jh2 log n = 0.

(C2) lim
n→∞n2J/(Nh)2 = 0.

(C3) lim
n→∞ 2J/n = 0, lim

n→∞ 23J/n = 0.

Theorem 3.1 Assume (A1)-(A5) are true, Let ti, i = 1, 2, · · · , p be p jump points

of σ2(x), and the corresponding jump sizes be denoted di, i = 1, 2, · · · , p.

(a) If (C1) is satisfied, then for all k ∈ I(ti, 2−J(b− a)), we have

UJ(k) = 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx + Op(n−1/2), (3.4)

where an = Op(bn) denotes lim
n→∞ an/bn = C in probability for some constant C and for

k /∈
p⋃

i=1
I(ti, 2−J(b− a)), we have

UJ(k) = Op(n−1/2). (3.5)
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(b) If (C1) and (C2) are satisfied, the (3.4) and (3.5) hold for the discretized estimator

WJ(k) of the wavelet coefficient.

§4. Estimation of Jump Size and Change Points

Suppose σ2(x) has p jump points, where p is a finite integer. We assume that σ2(x)

is differentiable at all points except for these jump points. Without loss of generality, that

|di+1| < |di|, i = 1, 2, · · · , p − 1. The estimators of ti are denoted as tUi or tWi and the

estimators of di are denoted as dU
i or dW

i . The estimators ti and di are constructed as

follows:

(1) Find the first change point t1: tU1 =a+k1(b−a)/2J , where k1 =arg max
k

|UJ(k)|.
(2) Find the second change point t2: tU2 =a+k2(b−a)/2J , where k2 =arg max

k∈Q2

|UJ(k)|,
Q2 = [a, b]− I(t1, 2−JA(b− a)).

(3) Continue the procedure until the location tp: tUp = a + kp(b− a)/2J , where kp =

arg max
k∈Qp

|UJ(k)|, Qp = [a, b]−
p−1⋃
i=1

I(ti, 2−JA(b− a)).

Making the procedure we can obtain all jump points of σ2(x) by using the integral

estimator UJ(k). These procedures also hold for the discretized estimator WJ(k). The

estimators of jump sizes of change points ti, i = 1, 2, · · · , p can be defined as follows:

dU
i =

2J/2UJ(ki)

(b− a)1/2

∫ A

1
ψ(x)dx

, dW
i =

2J/2WJ(ki)

(b− a)1/2

∫ A

1
ψ(x)dx

.

The following theorems establish convergence rates for above methods.

Theorem 4.1 Assume (A1)-(A5) are true.

(a) If (C3) is satisfied,

|dU
i − di| = Op((2−Jn)−1/2), i = 1, 2, · · · , p.

(b) If (C2) and (C3) is satisfied,

|dW
i − di| = Op((2−Jn)−1/2), i = 1, 2, · · · , p.

Theorem 4.2 Assume (A1)-(A5) are true.

(a) If (C3) is satisfied,

|tUi − ti| = Op(2−J), i = 1, 2, · · · , p.

(b) If (C2) and (C3) is satisfied,

|tWi − ti| = Op(2−J), i = 1, 2, · · · , p.
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§5. Detection and Unknown Variance

In the former chapter, we assume p is known. Now, we consider the case that p is

unknown. We define some elements as follows

Mn(x) =
f0.5(a + x(b− a))UJ([2Jx])

σ2(a + x(b− a))
, M∗

n(x) =
f0.5(a + x(b− a))WJ([2Jx])

σ2(a + x(b− a))
,

where 0 6 x 6 1. The following results play a role in detecting the change points of σ2(x).

Theorem 5.1 Assume (A1)-(A5) are true.

(a) If (C1) is satisfied. When there is no change point in σ2(x),

P
{

A(δn)
( n

k2v

)1/2
sup

06x61
|Mn(x)| − a(δn) < z

}
−→ exp(−2 exp(−z)).

(b) If (C1) and (C2) is satisfied. When there is no change point in σ2(x),

P
{

A(δn)
( n

k2v

)1/2
sup

06x61
|M∗

n(x)| − a(δn) < z
}
−→ exp(−2 exp(−z)),

where

A(x) = |2 log x|1/2, a(x) = |2 log x|1/2 + |2 log x|−1/2 log
( k0.5

1

2πk0.5
2

)
,

k1 =
∫ A

−A
(ψ′(x))2dx, k2 =

∫ A

−A
ψ2(x)dx, v = E((ε2

i − 1)2|Xi).

Now, Let us estimate T (x) and f(x) by a nonparametric technique. As we known, we

can estimate the density function by nonparametric kernel estimate. The kernel estimator

of f(x) is defined as follow

fn(x) =
1

nh

n∑
i=1

K
(Xi − x

h

)
.

Similar to σ2(x), the estimate of T (x) can be estimated by kernel estimator or local linear

estimator. We can write as follow

Tn(x) =

n∑
i=1

Kn,h(Xi − x)Yi

n∑
i=1

Kn,h(Xi − x)
.

From Theorem 5.1, we can obtain the following corollary.

Corollary 5.1 If we use fn(x) instead of f(x) and Tn(x) instead of T (x) in Mn(x)

and M∗
n(x), the consequences of Theorem 5.1 hold for Mn(x) and M∗

n(x), respectively.
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Appendix

We denote

Wj(x) =
Kh(Xj − x)

n∑
j=1

Kh(Xj − x)
, Kh(Xj − x) = K

(Xj − x

h

)

in the following proofs. For simplicity, without loss of generality, let

φper
i,k (x) =

1√
b− a

φi,k

(x− a

b− a

)
, ψper

J,k (x) =
1√

b− a
ψJ,k

(x− a

b− a

)
.

Lemma 1 Assume that (A1)-(A3) are true. K(x) is a continuously differentiable

kernel function with finite support [−C,C], and
∫

K(x)dx = 0,
∫

xK(x)dx = 0. Let

h → 0, nh →∞ as n →∞, then

(a) for any positive integer i, we have

n∑
t=1

Kh(Xt − x)(Xt − x)i = nhi+1qif(x) + nhi+2qi+1f
′(x) + O(nhi+1cn) a.s.

uniformly for x ∈ [a, b], where

Kh(x) = K
(x

h

)
, cn = h2 +

( log n

nh

)1/2
, qi =

∫
xiK(x)dx.

(b) assume that {(ε2
t − 1), t = 1, 2, · · · } satisfies (A1)-(A5), then

n∑
t=1

Kh(Xt − x)(ε2
t − 1) = Op((nh)1/2),

n∑
t=1

Kh(Xt − x)
(Xt − x

h

)
(ε2

t − 1) = Op((nh)1/2)

uniformly for x ∈ [a, b].

Lemma 2 (a) Assume that ψ(x) satisfies the assumptions (B1)-(B3), and that

C(x) is a continuously differentiable function in the order of two. Denote

Wj(x) =
Kh(Xj − x)

n∑
j=1

Kh(Xj − x)
, Kh(Xj − x) = K

(Xj − x

h

)
.

Then, uniformly for k ∈ Dn,
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)[C(Xj)− C(x)]dx = Op(2−J/2hcn),

∫ b

a
ψper

J,k (x)C(x)dx = O(2−5J/2),
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where

cn = h2 +
( log n

nh

)1/2
.

(b) Furthermore, we have uniformly for k ∈ Dn

b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Wj(wi)[C(Xj)− C(wi)] = Op

(2J/2

N

)
+ Op(2Jhcn),

b− a

N

N∑
i=1

ψper
J,k (wi)C(wi) = O

(2J/2

N

)
+ O(2−5J/2).

Lemma 3 (a) Assume that K(x) is a kernel function with finite support [−C, C],

and h → 0 as n →∞. Denote

Wj(x) =
Kh(Xj − x)

n∑
j=1

Kh(Xj − x)
, Kh(Xj − x) = K

(Xj − x

h

)
.

We have
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)

[ p∑
i=1

diI(ti 6 Xj 6 b)
]
dx = 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx

uniformly for k ∈ I(ti, 2−J(b− a)), and

∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)

[ p∑
i=1

diI(ti 6 Xj 6 b)
]
dx = 0

uniformly for k /∈
p⋃

i=1
D(A). Where

D(A) =
{

k :
∣∣∣a +

k(b− a)
2J

− ti

∣∣∣ < 2−JA(b− a)
}

in which A is the support point.

(b) Furthermore, we have

b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Wj(wi)
[ p∑

i=1
diI(ti 6 Xj 6 b)

]

= 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx + Op

(2J/2

N

)

uniformly for k ∈ I(ti, 2−J(b− a)), and

b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Wj(wi)
[ p∑

i=1
diI(ti 6 Xj 6 b)

]
= Op

(2J/2

N

)
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uniformly for k /∈
p⋃

i=1
D(A).

The proofs of Lemma 1, Lemma 2 and Lemma 3 are to see the Lemma B.2, Lemma

A.2 and Lemma A.3 of Chen, Choi and Zhou (2008).

Lemma 4 Suppose that K(x) is a kernel function with finite support [−C, C] and

h → 0 as n →∞. Denote

Wj(x) =
Kh(Xj − x)

n∑
j=1

Kh(Xj − x)
, Kh(Xj − x) = K

(Xj − x

h

)
.

Then
n∑

j=1
WjI(ti 6 Xj 6 b)(ε2

j − 1) =
n∑

j=1
WjI(ti 6 x 6 b)(ε2

j − 1).

Proof We can easily obtain that I(ti 6 Xj 6 b)− I(ti 6 x 6 b) = I(ti 6 Xj 6 b,

x < ti) + I(ti 6 Xj 6 b, x > b) + I(ti 6 x 6 b,Xj < ti) + I(ti 6 x 6 b,Xj > b). It easy to

show that

n∑
j=1

WjI(ti 6 Xj 6 b, x < ti) =
n∑

j=1
WjI

( ti − x

h
6 Yj 6 b− x

h
, x < ti

)
,

where Yj = (Xj − x)/h. As |Yj | > C, K(Yj) = 0 and for large enough n, x < ti implies

(ti − x)/h →∞. So that, for large n, we have

n∑
j=1

K(Yj)I
( ti − x

h
6 Yj 6 b− x

h
, x < ti

)
= 0,

n∑
j=1

K(Yj)I
( ti − x

h
6 Yj 6 b− x

h
, x < ti

)
ε2
j = 0.

Hence,
n∑

j=1
WjI(ti 6 Xj 6 b, x < ti)(ε2

j − 1) = 0.

Similarly, we can show that

n∑
j=1

WjI(ti 6 Xj 6 b, x > b)(ε2
j − 1) = 0,

n∑
j=1

WjI(ti 6 x 6 b,Xj < ti)(ε2
j − 1) = 0,

n∑
j=1

WjI(ti 6 x 6 b,Xj > b)(ε2
j − 1) = 0.

This completes the proof of Lemma 4. ¤
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Lemma 5 (a) Denote

Wj(x) =
Kh(Xj − x)

n∑
j=1

Kh(Xj − x)
, Kh(Xj − x) = K

(Xj − x

h

)
.

Assume that (A1)-(A5) are true, then we have
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)σ2(Xj)(ε2

j − 1)dx = Op(n−1/2).

(b) Furthermore, the (C2) is satisfied, then we have

b− a

N

N∑
i=1

ψper
J,k (wi)

n∑
j=1

Wj(wi)σ2(Xj)(ε2
j − 1) = Op(n−1/2).

Proof From the decomposition of σ2(x), we have
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)σ2(Xj)(ε2

j − 1)dx

=
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)C(Xj)(ε2

j − 1)dx +
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)D(Xj)(ε2

j − 1)dx.

By Taylor’s expansion, we obtain C(Xj) = C(x) + C ′(x)(Xj − x) + (1/2)C ′(ξj)(Xj − x)2,

where ξj lies between Xj and x. From Lemma 1, we have

sup
x∈Λ

∣∣∣
n∑

j=1
Kh(Xj − x)(Xj − x)i(ε2

j − 1)
∣∣∣ = Op((nh)1/2hi), i = 0, 1, 2,

where Λ = [a− δ0, b + δ0] for some δ0 > 0. Hence
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)C(Xj)(ε2

j − 1)dx = Op(n−1/2).

From Lemma 4. We have
∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)D(Xj)(ε2

j − 1)dx

=
p∑

i=1
di

∫ b

a
ψper

J,k (x)I(ti 6 x 6 b)
n∑

j=1
Wj(x)(ε2

j − 1)dx = Op(n−1/2).

This implies that Lemma 5 holds for (a). Similarly, we can prove (b) of the Lemma 5.

¤

Proof of Theorem 3.1 Note that UJ(k) can be decomposed into two parts

UJ(k) = UC
J (k) + UD

J (k),
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where

UC
J (k) =

∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)σ2(Xj)dx,

UD
J (k) =

∫ b

a
ψper

J,k (x)
n∑

j=1
Wj(x)σ2(Xj)(ε2

j − 1)dx.

From Lemma 2 and Lemma 3, we have

UC
J (k) = 2−J/2(b− a)1/2di

∫ A

1
ψ(x)dx + Op(2−5J/2 + 2−J/2hcn)

uniformly for k ∈ I(ti, 2−JA(b− a)), and UC
J (k) = Op(2−5J/2 + 2−J/2hcn) for k /∈

p⋃
i=1

I(ti,

2−JA(b− a)). From Lemma 5, it follows that

UD
J (k) = Op(n−1/2)

for all k ∈ Dn. This implies that Theorem 3.1 hold for the integral estimation of the

wavelet coefficient. Similarly, we can prove Theorem 3.1 for the discretized estimation of

the wavelet coefficient. ¤

Proof of Theorem 4.1 The proof is straightforward from Theorem 3.1. ¤

Proof of Theorem 4.2 Assume that σ2(x) has only a jump point ti. Note that

UJ(k) can be decomposed into two parts

UJ(k) = UC
J (k) + UD

J (k),

where UC
J (k) and UD

J (k) are the same as those in the proof of Theorem 3.1. It follows

from the similar arguments in Lemma 2 and 3

|UC
J (k)| 6 C2−3J/2

for all k /∈ I(ti, 2−JA(b− a)), where C is a generic constant whose value may change from

line to line. By Lemma 3 we have

|UC
J (k)| > C2−J/2

for k ∈ I(ti, 2−JA(b− a)). By Lemma 5, we have

UD
J (k) = Op(n−1/2).

From Assumption (C3), we have lim
n→∞ 2J/n = 0, lim

n→∞ 23J/n = 0.
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Hence,

max{|UJ(k)|, k ∈ Dn} = max{|UJ(k)|, k ∈ I(ti, 2−JA(b− a))}.

Hence,

|tUi − ti| =
∣∣∣a +

ki

2J
(b− a)− ti

∣∣∣ < 2−JA(b− a).

When the number of change points of σ2(x) is p, we can similarly prove above formula.

Hence, Theorem 4.2 holds for (a). Similarly, we can prove (b). This completes the proof

of Theorem 4.2. ¤

Proof of Theorem 5.1 The proof is straightforward from Corollary 2.1 in Chen,

Choi and Zhou (2008). ¤
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时间序列中方差的结构变点的小波识别

王景乐 刘维奇

(山西大学数学科学学院, 太原, 030006)

本文给出了时间序列中方差的小波系数的两种估计: 连续估计和离散估计. 这两种估计可以用来检测时

间序列中方差的结构变点. 利用这两种估计我们给出了方差变点的位置和跳跃幅度的估计, 并且显示出这些

估计可达到最佳收敛速度. 同时, 我们还给出了这些估计的收敛速度以及检验统计量的渐进分布!

关键词: 方差变点, 小波系数, 核估计, 局部线形估计.

学科分类号: O212.7.
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