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Abstract

We propose two estimators, an integral estimator and a discretized estimator, for the wavelet
coefficient of volatility in time series models. These estimators can be used to detect the changes
of volatility in time series models. The location estimators of the jump points, we proposed, have
been shown to have the minimax convergence rate, which is the optimal rate for the estimation
of change points. The jump sizes and locations of change points can be consistently estimated
by wavelet coefficients. The convergency rates of these estimators are derived and the asymptotic
distributions of the statistics are established.

Keywords: Change points in volatility, wavelet coefficient, kernel estimation, local polyno-
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8§1. Introduction

The analysis of change points in nonparametric models has attracted increasing in-
terests. Many attempts have been contribute to test and estimate the jumps and their
sizes in volatility model for time series, because of its importance in hedging strategies
and risk management. However, the continuous-time model has a severe limitation when
jumps exist in underlying sample data. This paper develops a theory of estimating change
points in the volatility of a nonparametric model. Wang (1995) first employed the wavelet
method to detect jumps in a continuous-time model with a constant volatility. Wong, Ip,
Li and Xie (1999) have shown that the wavelet coefficient has significantly large absolute
values near the jump points across fine levels, while having relatively small values when
the location shifts away from the jump points.

In this paper, we propose two estimators for the wavelet coefficient of volatility in
time series models. The first one is an integral estimator. This estimator is very simple

and intuitive in constructing the estimator for the wavelet coefficient. The second one is
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a discretized estimator for the wavelet coefficient. These estimators can be used to detect
the change of volatility in time series models. The locations and sizes of change points of
volatility are proposed and the convergency rates of these estimators are derived. Wong,
Ip and Li (2001) have only proposed a simple empirical estimator of the wavelet coefficient,
and have not given the asymptotic distribution of the estimator. In our paper, we proposed
the asymptotic distributions of the statistic. In addition, the location estimators of the
jump points, we proposed, have been shown to have the minimax convergence rate, which
is the optimal rate for the estimation of change points, even if the observations are not a
sequence of i.i.d. random variables.

The paper is organizes as follows. Section 2 introduce the nonparametric model
and wavelet method. Section 3 provides the estimation of the wavelet coefficient. The
estimations of jump sizes and change points are considered in Section 4. Section 5 discusses
the asymptotic distribution of the estimators and the estimation of unknown variance.

Proofs are collected in the Appendix.

8§2. Model and Notations

A nonparametric model is defined as follows:
where we assume that E(g;|X;) = 0 and E(¢?|X;) = 1 and {g;,4 = 1,2,---} is a sequence
of random variables. T'(z) = E(Y|X = x), o%(z) = Var (Y|X =2). {(X;,Y;),i=1,2,---}
is a sequence of random vectors which satisfying some mixing dependent conditions. Here

we relax {(X;,Y;),i =1,2,---} to allow for dependent observations in a time series.
In fact, we can re-write the model (2.1) as follows:
(Yi = T(X,))* = 0*(X) + 0*(Xi)(e7 — 1), (2.2)
where E((¢? — 1)|X;) = 0, and we assume that E((e? — 1)?|X;) = v.
In this paper, we assume that o%(z) has an a-cusp at t;, i = 1,2,---,p. o2(x) is
smooth except at those discontinuous points. When o?(x) have p discontinuous points in

[a,b]. We can re-write o2(x) as follows:
o?(z) = C(z) + D(x),
P
where D(x) = »_ dily, p) () with a <11 <tz <--- <t, <b, and C(z) is twice continu-
i=1

ously differentiable on (a,b). Let d; = o%(t;+) — 0(t;—) denote the size of a jump of the

function 0’2(.%') at point ¢;. Our interest is to estimate p, d; and t;, 1 =1,2,--- ,p.
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To obtain the desired results, we make the following assumptions about the model.
Let U be a open neighborhood of the origin of R and [a,b] C U.

(A1) The p.d.f. f(x) of X; is bounded away from zero and infinity on some open
subset U. That is, there exists some positive constant such that M~! < f(x) < M, z € U.

(A2) The conditional p.d.f. f(y|z) of X;, given X; = z, is also bounded away from
zero and infinity on U.

(A3) {X;,i = 1,2,---} is strictly stationary and a-mixing. Its mixing coefficient
a(u) = o(p™") for some large p > 0.

(A4) We assume that f(x) is a twice bounded derivative function, and 7'(z) and C(x)
are continuous third order differentiable on U.

(A5) Let {(¢2—1),i=1,2,---} be a sequence of i.i.d. random variables and for each
i, €2 — 1 is independent of {(X;,Y;j_1),j < i}.

Assumptions (Al) and (A2) are necessary for the kernel estimation with dependent
data. (A3) is to simplify proofs. (A4) is to meet the continuity requirement for kernel
smoothing. (A5) is also made for simplicity of proofs.

Before given the estimators of wavelet coefficient of the volatility, we need to propose
some assumptions for wavelet and introduce some notations. In this paper, we mainly use
the notations in Chen, Choi and Zhou (2008).

Assumption that {X;, 1 <i < n} is a realization from model (2.1), Denote

In(xo) = {Z 01 < ) < n, |Xz — $0| < 5n},
!

I(s,én):{k: ‘a—i—%(b— ) — §5n}7

where 6, =27/ and k = [276], (0 < § < 1), J = J(n) is often a sequence with J — oo
as n — 00. let Ny(xg) = #I,(x0) denote the number of points in I,,(z¢). D, = {0,1,2,
27 — 1)
We choose wavelet 1(x) and scale function ¢(z) satisfying the following conditions.
(B1) Both 9(z) and ¢(x) have finite supports, say, [-A, A], A > 1, and ¢(x) = 0,
€ [-1,1]. And both have derivatives with bounded variation.

(B2) The wavelet function ¢ (x) has the following properties

/:: Y(x)dx =0, /i x(x)dr =0, /1A Y(x)dx # 0, /1A x(x)dx # 0,

)

0 < ‘/yAw(x)dx‘ < ‘/1A¢(x)dx, 0 < ‘/_;yd)(:p)dx‘ < )/_;1¢(x)dx

where 1 <y < A.
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From the wavelet ¢(z) and scale function ¢(z), we can obtain the orthogonal wavelet
basis on L?[a, b].

{65 (@), k € L5 (2), k € 15,0 > i},

where

e () = i ¢zk(x:a +n>, P (@) = § %Z)Jk(x_z +n>

n=—oo0 Vb — n=—oco Vb —

with ¢; () = 2/2¢(2% — k), yp(x) = 2729272 — k) and I; = {0,1,2,--- ,2/ —1}.
Now, the wavelet coefficient of the volatility function o(X;) of model (2.1) is defined

as follow

b
B = / 2(2) 8% () da (2.3)

§3. Estimation of the Wavelet Coefficient

Wong, Ip and Li (2001) proposed a simple empirical estimator of 3, which is defined

as

G S (o w D ) 6

i€ 1 (w; L) mel, (w;)
where N — oo, w; are those points to divide the interval [a,b] into N + 1 sub-intervals,
that is w; = a + (b —a)/N.
Let K(x) be a probability density function with bounded support [—C, C], for some

constant C' > 0. When o2(x) is smooth, we have the following estimator:

> Ko (Xi — @) (Vi — T(X0)?
0%(1‘) == n )

Yo Knn(Xi —x)
=1

where h = h,, is a sequence of bandwidths, with h — 0 and nh — oo as n — co. When

Kon(Xi — 2) = Kp(X; — 2) = K((Xh_x)>

2
n

of(z) is the kernel estimation (see Nadaraya (1964)) and when

Kon(Xi—a) = Kn(X; ) ilKh(Xj—xij—x)?
~ Ky (X 2)(X;  2) 3 KX, — 2)(X; - ),
e

o2(z) is the local linear smoothers(see Fan and Gijbels (1996)). We only consider the

n

kernel estimator.
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Now, we can propose two estimators of wavelet coefficient of the volatility in model
(2.1), as follows

. > Ko (X — ) (¥; — T(X;))?
Usk) = | 453 (@) = de, (32)
¢ ;Kn,h(Xz - :‘C)
. > Ko (X = w)(¥; ~ T(X)))*
Wik) =~ 2w (w) ———; : (3:3)
i=1 ; Ith(Xj - UJZ)

where N and w; are the same as those in (3.1).
The first estimator is integral estimator. This estimator is simple and intuitive. The
second one is descretized estimator. This one is simple in computation. We can obtain

the estimator (3.1) from (3.3) by choosing the kernel function

The estimator (3.1) has some drawbacks, because the bandwidth h selected in this
estimator cannot reach the optimal value, that is, hopt = Cn~1/% for some constant C.
The estimator (3.1) has a larger mean integration square error than the estimators (3.2)
and (3.3), which have the optimal bandwidths.

To obtain the properties of estimators of change points in volatility, we propose some
assumptions as follows.

(C1) lim 22/(logn)?/n =0, lim 2%/ /n = oo, lim 2/h2%logn = 0.

n—oo n—oo n—oo

(C2) lim n2?/(Nh)? =0.

n—oo
(C3) lim 27/n =0, lim 23/ /n =0.
n—oo n—oo

Theorem 3.1  Assume (Al)-(A5) are true, Let t;, ¢ = 1,2,--- ,p be p jump points
of 0?(x), and the corresponding jump sizes be denoted d;, i = 1,2,--- , p.

(a) If (C1) is satisfied, then for all k € I(¢;,277(b — a)), we have

A
U (k) = 2-72(b — a)V/2d; / ¥(@)dz + 0, (n~1/2), (3.4)
1

where a, = Op(b,) denotes lim a,/b, = C in probability for some constant C' and for
n—oo

p
k¢ U I(t;,277(b—a)), we have
i=1

Us(k) = Op(n~/?). (3.5)
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(b) If (C1) and (C2) are satisfied, the (3.4) and (3.5) hold for the discretized estimator
W (k) of the wavelet coefficient.

84. Estimation of Jump Size and Change Points

Suppose o?(x) has p jump points, where p is a finite integer. We assume that o2(z)
is differentiable at all points except for these jump points. Without loss of generality, that
\dis1| < |di], i = 1,2,--+ ,p — 1. The estimators of ¢; are denoted as t/ or t!' and the
estimators of d; are denoted as d¥ or d/V. The estimators ¢; and d; are constructed as
follows:

(1) Find the first change point t1: t =a+kj(b—a)/2”, where ki =arg max|U;(k)|.
k

(2) Find the second change point to: t5 =a+ko(b—a)/27, where ko =arg max|U; (k)|
keQ2
Q2 = [CL, b] — I(tl, 27‘]14(() - a,))

(3) Continue the procedure until the location t,: tg =a+ ky(b—a)/27, where k, =

p—1
arg maX|UJ(k)|¢ QP = [a7 b] - U I(ti7 2_JA(b - (1))
keQy i=1

Making the procedure we can obtain all jump points of o?(x) by using the integral
estimator Uy(k). These procedures also hold for the discretized estimator W;(k). The
estimators of jump sizes of change points ¢;, i = 1,2, ,p can be defined as follows:

272U (k;) W 2712 W, (k)
= 1/2 A ) dZ = 1/2 A :
(b—a) /1 Y(x)dx (b—a) /1 Y(x)dx

The following theorems establish convergence rates for above methods.

dv

7

Theorem 4.1 Assume (A1l)-(A5) are true.
(a) If (C3) is satisfied,

|d'£]_d7«| :Op((Q_Jn)_1/2)7 L= 1727"' y D-
(b) If (C2) and (C3) is satisfied,
‘dyv_dl‘ :OP((2_Jn)_1/2>7 i = 1727"' > D-

Theorem 4.2  Assume (Al)-(Ab) are true.
(a) If (C3) is satisfied,

|t7{]_tl|20p(2_(])7 221727 ,y D-
(b) If (C2) and (C3) is satisfied,

|t'}/‘/_ti|zop(2_J)’ Z:1a2a , P-
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§5. Detection and Unknown Variance

In the former chapter, we assume p is known. Now, we consider the case that p is
unknown. We define some elements as follows

1%t alb - a)Uy(2’a])
o?(a+x(b—a))

_ 1O (at (b — a))Wy(([2"a])

M () o?(a+z(b—a))

o Mp(x)

)

where 0 < z < 1. The following results play a role in detecting the change points of o2 (z).

Theorem 5.1  Assume (Al)-(Ab) are true.
(a) If (C1) is satisfied. When there is no change point in o2(x),

P{A(5,) (kz”v)l/2 sup My (a)| = a(b) < 2} — exp(~2exp(~2).

(b) If (C1) and (C2) is satisfied. When there is no change point in o?(x),

PLAG) ()" sup V@) - a(8) < =} — exp(~2exp(-2),

@ 0<z<1
where
1/2 1/2 —1/2 k(l)'5
A(z) = [2log x|/, a(x) = |2logz|*/* + |2log x| log <27Tk8'5>7
A A
k1 :/ (¢ (2))*dz, ko :/ Yi(x)dz, v =E((ef - 1)?X;).
—A —A

Now, Let us estimate T'(z) and f(x) by a nonparametric technique. As we known, we
can estimate the density function by nonparametric kernel estimate. The kernel estimator
of f(x) is defined as follow

falw) = = 3 K (FTY,

=1

Similar to o%(z), the estimate of T'(z) can be estimated by kernel estimator or local linear

estimator. We can write as follow

Z ,Cn,h(Xi - x)Yz-
Tp(z) = =

Y Kun(Xi —x)
i=1

From Theorem 5.1, we can obtain the following corollary.

Corollary 5.1 If we use f,,(z) instead of f(z) and T},(x) instead of T'(z) in M, (x)
and M (z), the consequences of Theorem 5.1 hold for M, (x) and M} (x), respectively.
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Appendix

We denote
Kp(X; — )

il Kn(X; — )

Wj(z) = ;o KX —a) = K<M)

h
in the following proofs. For simplicity, without loss of generality, let

per

i,k(x):\/bl_—aéi,k@:Z)y "(ﬂ%(ﬂ?):\/bl_—a#u,k(gg:;t)

Lemma 1  Assume that (A1)-(A3) are true. K(x) is a continuously differentiable
kernel function with finite support [—C,C], and /K(m)dx =0, /acK(m)d:c = 0. Let
h — 0, nh — 0o as n — oo, then

(a) for any positive integer i, we have

S Knp(Xy — 2)(Xy — 2)" = nh' Mg f(2) + nh' g1 f'(2) + O(nh'tle,) as.
i=1

uniformly for = € [a, b], where

Kp(z) = K(%), cn = h% + (%)1/2, g = /w’K(:L‘)d:r

(b) assume that {(¢7 —1),t =1,2,---} satisfies (A1)-(A5), then

S (X, — 2)(e2 — 1) = O, ((nh)12),
t=1

3 KX =) (1) & = 1) = Oy( ()"

uniformly for z € [a, b].

Lemma 2 (a) Assume that ¢(z) satisfies the assumptions (B1)-(B3), and that

C(z) is a continuously differentiable function in the order of two. Denote
Kn(Xj — x)

S Ki(X; — )
7j=1

Wj(z) =

. KX —a) = K(Xj _"”).

h

Then, uniformly for k € D,,
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where

cn=h?+ (%)1/2.

(b) Furthermore, we have uniformly for k£ € D,

—a n J/2
' % Y% (wi) 32 Wi(w)[C(X;) — C(w;)] = Op(2N ) +0,(27 hey),
= 7j=1
—a J/2
S el C) = 0(3) + 0 )

Lemma 3 (a) Assume that K (x) is a kernel function with finite support [-C, C],

and A — 0 as n — oo. Denote

Kn(X; — X -
Wj(z) = = hXi2a) Kh(Xj—f)ZK( w7 x)
>, Kn(Xj —x)
j=1
We have
b n P
WEE ) 3o W) | 3 dil (1 < X5 < )] de = 27720 — )24, / e
a ’ 7j=1 =1

k(b —a)
D) = {k: | % TA(b-a)}
in which A is the support point.
(b) Furthermore, we have
b—a N, e n P
S () 30 Wi w) | X dil (t < X < b))
i=1 j=1 i=1
A J/2
2
20— a)2d; | ¢(2)dz+ O, —
(b= a)d: | wia)de +0,(F5)
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P
uniformly for k£ ¢ |J D(A).
1=1

The proofs of Lemma 1, Lemma 2 and Lemma 3 are to see the Lemma B.2, Lemma
A2 and Lemma A.3 of Chen, Choi and Zhou (2008).

Lemma 4 Suppose that K(z) is a kernel function with finite support [-C, C] and

h — 0 as n — oco. Denote

Wj(z) = X~ 7) ;o KX o) = K(

i Kp(X; — )
j=1

th— x)

Then

]; Wil(t; < X; <b)(e5 —1) = ]; W,I(t; <z <b)(e

SN
|
—_
N

show that

n n i—x b—ux
Wil(t < X; <bow < ti) = 3 Wyl ( . nggT,x«ei),
1 =1

J

where Y; = (X; —x)/h. As |Y;| > C, K(Y;) = 0 and for large enough n, z < t; implies

(t; — x)/h — oo. So that, for large n, we have

> ro( <y <P

J

L5
/

Y)I
1
li—x b—=z 9
3 K(Yj)I< 2 <Y < —,x<ti>ej = 0.

7j=1

N

n
Hence,

Similarly, we can show that

Zl Wil(t; < Xj < b,z >b)(eF —1) =0,
]:
Zl Wj[(ti <z < b,Xj < ti)(é‘? — 1) = O,
]:
'Zl Wil(t; <z < b,X; > b)(e; —1) =0.
]:

This completes the proof of Lemma 4. ([l
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Lemma 5 (a) Denote
Kn(Xj —x)

Wi@) = —
21 Kh(Xj — :L’)

M),

, Kh(Xj—QC):K( -

Assume that (A1)-(A5) are true, then we have

W () 30 Wy (@)o(X)(e2 — 1)da = O, (n~1/?),

b—a X per

a 7=1
b n b n
= | ¥ Zl Wj(2)C(X;)(ef — Dz + [ 5 (x) El W;(x) D(X;)(ef — 1)da.
a 1= a J=

By Taylor’s expansion, we obtain C'(X;) = C(z) + C'(x)(X; — x) + (1/2)C"(&)(X; — z)?,

where §; lies between X; and z. From Lemma 1, we have

sup

S Kn(Xj — 2)(X; — 2)i(e2 — 1)‘ = 0,((nh)2hF),  i=0,1,2,
TEA

: J
j=1

where A = [a — dp, b + do] for some dy > 0. Hence

b n
Yh% (@) 3 Wy(2)C(X;)(e] — 1)dz = Op(n/?).

From Lemma 4. We have
b

Uik ()

M=
=
el
&
o
~
e
S~—
o
[N}
|
=
s
8

Jk

a 7j=1
P b n

= S d [ @I <o <8 S Wi@)(E - 1)do = Oy 1)
1= a j=

This implies that Lemma 5 holds for (a). Similarly, we can prove (b) of the Lemma 5.
|

Proof of Theorem 3.1  Note that U;(k) can be decomposed into two parts

Us(k) =US (k) + U? (k),
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where
b n
Ug (k)= [ ¢h5 () -21 W;(z)o?(X;)d,
a 1=
b n
U7 (k)= [ ¢55% () Zl Wj(x)o?(X;)(e] — 1)da.
a J=

From Lemma 2 and Lemma 3, we have

A
US (k) = 2777%(b — a)/?d; / Y(x)dz + 027/ 4 277 2pe,)
1

p
uniformly for k € I(t;,277 A(b — a)), and US (k) = 0,(27%//2 + 277//2h¢,,) for k ¢ U I(t;,
i=1
277 A(b — a)). From Lemma 5, it follows that
U7 (k) = Op(n="/%)

for all k € D,,. This implies that Theorem 3.1 hold for the integral estimation of the
wavelet coefficient. Similarly, we can prove Theorem 3.1 for the discretized estimation of

the wavelet coefficient. O
Proof of Theorem 4.1  The proof is straightforward from Theorem 3.1. O
Proof of Theorem 4.2  Assume that ¢?(x) has only a jump point #;. Note that

Uj;(k) can be decomposed into two parts
Us(k) = U5 (k) + U7 (k).

where UY (k) and UP (k) are the same as those in the proof of Theorem 3.1. It follows

from the similar arguments in Lemma 2 and 3
UG (k)] < C2712

for all k ¢ I(t;,277 A(b— a)), where C is a generic constant whose value may change from

line to line. By Lemma 3 we have
U5 (k)| = C27772
for k € I(t;,277 A(b — a)). By Lemma 5, we have
U7 (k) = Op(n™'7?).

From Assumption (C3), we have lim 27/n =0, lim 23//n = 0.
n—oo

n—oo
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Hence,
max{|U;(k)|,k € D,} = max{|Us(k)|,k € I(t;,2~7 A(b — a))}.

Hence,
ki _

When the number of change points of 0(x) is p, we can similarly prove above formula.
Hence, Theorem 4.2 holds for (a). Similarly, we can prove (b). This completes the proof
of Theorem 4.2. O

Proof of Theorem 5.1 The proof is straightforward from Corollary 2.1 in Chen,
Choi and Zhou (2008). O
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