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Abstract
Censored regression (“Tobit”) model is one of important regression models and has been

widely used in econometrics. However, studies for variable selection problem in censored regression

model are rare at the present references. In this paper, for censored regression model we propose a

LASSO-type approach, diverse penalty L1 constraint method (DPLC), to select variables and esti-

mate the corresponding coefficients. Furthermore, we obtain the asymptotic properties of nonzero

elements’ estimation of regression coefficient. Finally, extensive simulation studies show that DPLC

method almost possesses the same performance of selecting variables and estimation as generally

best subset selection method (GBSS).
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§1. Introduction

Limited dependent variable (LDV) models are important regression models and have

been widely used in econometrics studies. Moreover, many important advances of econo-

metrics studies are related to LDV model. Censored regression (“Tobit”) model studied

in this paper is a special LDV model for which response variable has a nonnegative lim-

itation, where only segment of response variable being not less than 0 can be measured.

Details as following model,

Y +
i = (x′iβ0 + ei)+, i = 1, 2, · · · , n, (1.1)

where Y +
i = YiI(Yi ≥ 0) and I(·) denotes the indicator function of a set, {xi} is a sequence

of vector with length p, {ei} is a sequence of non-observable random errors, and β0 is the

unknown p-vector of regression coefficient. The distribution function F of ei has median
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zero and positive derivative f(0) at zero. This regression model with the nonnegativity

constraints on the dependent variables is named as censored regression (“Tobit”) model.

This model commonly presents in econometrics when the output variable is con-

strained from above or below. For example, we want to use data on the number of tickets

sold from previous concerts to study the demand for concert tickets. The concert tickets,

however, are occasionally sold out and the demand variable would be restricted by the

size of the auditorium. Analogously, another example is that we want to investigate sales

of a particular good, but when sales are less than preset value C, we record the sales C,

so the sales variable would be censored at C.

Censored regression models have been widely studied. Powell (1984) introduced and

studied the asymptotic properties of the least absolute deviations (LAD) estimate βL1
n of

β0, which is a Borrel-measurable solution of the minimization problem
n∑

i=1
|Y +

i − (x′iβ
L1
n )+| = inf

β∈B

n∑
i=1

|Y +
i − (x′iβ)+|.

Since
n∑

i=1
|Y +

i − (x′iβ)+| is not convex in β, the analysis of βL1
n is quite difficult. However,

by using uniform laws of large numbers, he established the strong consistency of βL1
n when

{xi, i = 1, · · · , n} are independently random variables with E‖xi‖3 being bounded, where

‖ · ‖ denotes the Euclidean norm of a vector. By extending a technique due to Huber

(1967), he also established its asymptotic normal distribution under some conditions.

Pollard (1990) used the maximal inequalities to improve the relevant result of Powell on

asymptotic normality. He relaxed the assumptions and simplified the proof to some extent.

Chen and Wu (1993) studies the strong consistency of βL1
n by using a different method

when xi is bound. Rao and Zhao (1993) obtained the asymptotic normality of βL1
n under

weaker conditions. Recently Zhao and Fang (2004) used randomly weighting method to

derive the approximate distribution for model (1.1), and Fang, Jin and Zhao (2005) studied

the strong consistency and Bahadur strong representation of β̂n, where {xi} is a sequence

of random variable. Linear hypothesis testings in the censored regression models have

been studied by Zhao (2004) and Wang, Wu and Zhao (2009).

Model (variable) selection is an important issue of building model. For the least

square regression, there are a large number of well variable selection methods, including the

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), Mallows’s

Cp and so on. Two basic elements focused on by these variable selection criterions are

goodness of model fit and model complexity. These criterions use various methods to

describe the trade-offs between these two basic aspects and make the related predict error

be minimized. However, for the censored regression model, there are few works on model
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selection. Jin, Fang and Zhao (2005) presented some selection procedure based on the

information theoretic criteria and shown these procedures to be consistent.

A novel variable selection approach, the Least Absolute Shrinkage and Selection Op-

erator (LASSO), was proposed by Tibshirani (1996). This method simultaneously deal

with variable selection and estimation by solving a single minimization problem. Fu and

Knight (2000) established some asymptotic properties for LASSO-type estimators. Fan

and Li (2001) proposed Smoothly Clipped Absolute Deviation (SCAD) approach and ob-

tained its optimal properties. Efron et al. (2004) introduced the Least Angel Regression

(LARS) method and discussed its connection with LASSO.

Generally, for linear regression model,

Zi = T ′iβ0 + ei, i = 1, 2, · · · , n,

where {Ti} is a sequence of vector with length p, {ei} is a sequence of non-observable

random errors, and β0 is an unknown p-vector of regression coefficient. LASSO estimator

is defined as a minimizer of
n∑

i=1
(Zi − T ′iβ)2 + λn

p∑
j=1

|βj |.

It can be equivalently defined as a minimizer of
n∑

i=1
(Zi − T ′iβ)2,

subject to
p∑

j=1
|βj | ≤ s ∗

p∑
j=1

|βLS
j |, where βLS

j is the usual least square estimator. This

definition of LASSO estimator illustrates it’s remarkable ability, some elements of β exactly

are estimated as 0. In fact, estimated value of β goes from nonzero to 0 as the shrinkage

coefficient s varies from 1 to 0.

In the present paper, we propose a parallel approach for censored regression model

by LASSO method in linear regression model. Our proposed estimator of β is a minimizer

of the criterion function,
n∑

i=1
|Y +

i − (x′iβ)+|+ λn

p∑
j=1

|βj |. (1.2)

It can be equivalently defined as a minimizer of the objective function
n∑

i=1
|Y +

i − (x′iβ)+|,

subject to
p∑

j=1
|βj | < s ∗

p∑
j=1

|βL1
j |, where βL1

j is the usual LAD estimator. Since penalty

parameter is constant with regards to different components of β, we name this method as

constant penalty L1 constraint method (CPLC).
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Fu and Knight (2000), however, pointed out that LASSO method just correctly sets

unnecessary coefficients to 0 with nonzero probability and LASSO estimator is not con-

sistent if λn > 0 as sample size increases. In view of this flaw, we need to modify and

extend the objective function (1.2). Note that penalty parameter λn plays a curial rule

in offsetting between estimation of β0 and variable selection. Large values of λn tend to

focus on variables selection, more precisely, remove more variables as well as increasing

bias of estimation. And small values tend to weaken variable selection and reduce bias of

estimation. Thus we want to use diverse penalty parameters for different elements of β,

a large value λ is used for regression coefficient which is close to 0 (need to be removed)

and a small value is set to regression coefficient which is significantly not equal to 0. In

other word, our estimator is a minimizer of the following objective function with diverse

penalty parameters:

Zn(β) =
1
n

n∑
i=1

|Y +
i − (x′iβ)+|+ 1

n

p∑
j=1

λnj |βj |, (1.3)

where λnj is the penalty parameter. We denote this penalized L1 estimator by β̂n. Cor-

responding to CPLC, we name this method as diverse penalty L1 constraint method

(DPLC).

In this paper, main results are introduced in the next section. In section 3, extensive

simulation studies are conducted to evaluate the performance of the proposed variable

selection method. The proofs of main results are given in section 4.

§2. Main Results

Let β0 = (β1
0 , β2

0)T , where β1
0 is a vector of length s and β2

0 is a vector of length p− s.

Without loss of generality, assume that all elements of β1
0 is nonzero and β2

0 = 0. For

simplicity, write

µi = x′iβ0, Sn =
n∑

i=1
I(µi > 0)xix

′
i.

We need some assumptions before presenting our main results, described as follow,

(A1) e1, e2, · · · are i.i.d. random variables such that the distribution function F of e1

has median zero and positive derivative f(0) at zero.

(A2) The parameter space B to which β0 belongs is a bounded open convex set of

Rp (with a closure B) and 0 also belongs to B.

(A3) Sn/n −→ V 2 as n →∞.
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(A4) For any γ > 0, there exists a finite α > 0 such that

1
n

n∑
i=1

‖xi‖2I(‖xi‖ > α) < γ, for n large enough.

(A5) For any γ > 0, there exists a finite δ > 0 such that

1
n

n∑
i=1

‖xi‖2I(‖µi‖ ≤ δ) < γ, for n large enough.

Under conditions (A1)–(A5), we will study the asymptotic property of β̂n. The fol-

lowing theorem shows that β̂n is a consistent estimator of β0 when λnj = o(n).

Theorem 2.1 Assume that in the model (1.1), the conditions (A1)–(A5) hold and

λnj/n → λ0j ≥ 0, 1 ≤ j ≤ p. Then β̂n − arg min(Z(β)) −→ 0 in probability, where

Z(β) = f(0)(β − β0)′V 2(β − β0) +
p∑

j=1
λ0j |βj |.

In particular if λnj = o(n), β̂n is a consistent estimator of β0 since β0 is minimizer of Z(β).

From this theorem, we can see that Z(β) is strictly convex function in β, function

(β − β0)′V 2(β − β0) achieves its minimization at point β0 and minimizer of
p∑

j=1
λ0j |βj |

is 0. If λ0j > 0 for some j ∈ {1, · · · , s}, then Z(β) does not attain its minimization at

points β0 and 0. Consequently, β̂n is not a consistent estimator of β0, which also indicates

that CPLC is not a consistent estimation method for β0. Furthermore, we investigate the

root-n consistency of β̂n by the next theorem.

Theorem 2.2 Assume that in the model (1.1), the conditions (A1)–(A5) hold and

λnj/
√

n → λ0j ≥ 0, 1 ≤ j ≤ p. Then
√

n(β̂n − β0) −→ arg min(U(t)) in distribution,

where

U(u) = W T u + f(0)uT V 2u +
s∑

j=1
λ0j sgn(β0j)uj +

p∑
j=s+1

λ0j |uj |, (2.1)

and W has a distribution with N(0, V 2). In particular if λnj = o(
√

n), β̂n behaves like

the LAD estimator of β0.

Theorem 2.1 and Theorem 2.2 suggest that {λnj} can play a different role in penalizing

nonzero and zero components of β. Compared to the elements βj 6= 0, we can give heavier

penalty for βj = 0. For example, we choose λnj/
√

n → 0 for 1 ≤ j ≤ s and λnj/
√

n → M ,

M is large enough for s + 1 ≤ j ≤ p. Function Zn(β) can not get its minimization until

βj = 0, j = s + 1, · · · , p. So we not only get a consistent estimator of β0, β̂n, but also can

achieve the goal of selecting the variables whose coefficients are not significantly equal to

zero. These conclusions will be validated by extensive simulation results.
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§3. Simulation Studies

In this section, we use extensive simulation studies to evaluate the performance of

variables selection and estimation of our proposed method for censored regression model.

To apply our theorems, we need to construct suitable penalty parameter {λnj}. Due to

penalty parameters having different influence for nonzero and zero parameters, we need

to use the LAD estimator βL1
n of β0. Denote the components of βL1

n and their standard

error by aj and bj respectively, j = 1, · · · , p. We define λnj as,

λnj = η ∗
(√n|bj |
|aj |

)τ
, τ > 1, η > 0. (3.1)

Noting that aj/bj converges to a normal distribution with mean 0 and variance 1 if the j-th

element of β0 equals to 0. Then λnj/
√

n = η ∗nτ/2−1/2/|aj/bj |τ is very large in probability

for n large enough. If the j-th element of β0 = θ 6= 0, then
√

n(aj − θ) → N(0, σ2) and
√

nbj → σ in probability. Therefore, λnj/
√

n = η ∗ n−1/2((
√

nbj)/(ςn/
√

n + θ))τ → 0 in

probability, where ςn follows distribution as N(0, σ2).

For selection of regularization parameters (η, τ), we can use cross validation (CV)

or general cross validation (GCV) to do that. Here, we respectively minimize BIC type

criterion,

BIC(η, τ) =
Ln(β̂(η, τ))

Ln(βL1
n )

+
log n

2
∗ ]{i : β̂i 6= 0, i = 1, · · · , p},

and GCV type criterion,

GCV(η, τ) =
1
n

Ln(β̂(η, τ))

(1− ]{i : β̂i 6= 0, i = 1, · · · , p}/n)2
,

to selection (η, τ), where Ln(β) =
n∑

i=1
|Y +

i − (x′iβ)+|.
Numeric examples are conducted to compare DPLC method (1.3) with CPLC method

(1.2) and the generally best subset selection method (GBSS). In GBSS method, the subset

which respectively minimizes BIC type criterion and GCV type criterion among all the

possible subsets is chosen as the best subset. To reduce the computing complexity, here τ

takes 1.5 for DPLC.

In our simulation studies, observations are generated from censored regression model

(1.1). The components of x follow normal distribution with mean 1 and variance 1, and

the correlation of xi and xj is ρ|i−j| with ρ = 0.5. we take different true parameters

(β′0 = (1,−1, 0, 0, 1, 0) and (3,−1.5, 0, 0, 2, 0)) and different sample sizes (n = 50, 100 and

150). All of the simulation procedures repeat for 1000 times. We use model error, Ln/n, to
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measure the performance of each model fitting, and compare model error of each variable

selected method to the full least absolute derivation estimation. The relative value is

named as relative model error (RME).

Table 1 Variables selection results for true parameters β′0 = (1,−1, 0, 0, 1, 0)

Avg. No. of 0 Coefficients

n Method MRME correct incorrect

CPLC(BIC) 1.018 1.292(0.926) 0.006(0.084)

CPLC(GCV) 1.023 1.413(0.919) 0.009(0.107)

50 DPLC(BIC) 1.030 2.248(0.887) 0.017(0.144)

DPLC(GCV) 1.035 2.350(0.828) 0.019(0.151)

GBSS(BIC) 1.024 2.312(0.764) 0.016(0.133)

GBSS(GCV) 1.028 2.427(0.716) 0.017(0.144)

CPLC(BIC) 1.012 1.501(0.905) 0(0)

CPLC(GCV) 1.011 1.448(0.913) 0(0)

100 DPLC(BIC) 1.017 2.467(0.773) 0(0)

DPLC(GCV) 1.016 2.403(0.819) 0(0)

GBSS(BIC) 1.015 2.465(0.688) 0(0)

GBSS(GCV) 1.013 2.395(0.722) 0(0)

CPLC(BIC) 1.008 1.537(0.909) 0(0)

CPLC(GCV) 1.006 1.414(0.901) 0(0)

150 DPLC(BIC) 1.012 2.552(0.705) 0(0)

DPLC(GCV) 1.010 2.422(0.786) 0(0)

GBSS(BIC) 1.011 2.592(0.605) 0(0)

GBSS(GCV) 1.010 2.477(0.686) 0(0)
∗Standard deviations are in parentheses.

First, we evaluate ability of different variable selected methods in fitting model and

discriminating nonzero coefficients from zero coefficients. Here the error distribution takes

standard normal distribution N(0, 1). Table 1 and Table 2 respectively present mean

relative model error (MRME), average numbers of zero coefficients selected correctly (zero

coefficients correctly estimated as zero value) and average numbers of zero coefficients

selected incorrectly (nonzero coefficients incorrectly estimated as zero value) with true

parameters β′0 = (1,−1, 0, 0, 1, 0) and (3,−1.5, 0, 0, 2, 0). From columns 3 in Table 1 and

Table 2, the MRMEs of different variable selection procedures are very close to 1 which

indicates that models constructed by various methods fit well. Columns 3 also shows that
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Table 2 Variables selection results for true parameters β′0 = (3,−1.5, 0, 0, 2, 0)

Avg. No. of 0 Coefficients

n Method MRME correct incorrect

CPLC(BIC) 1.019 1.450(0.924) 0(0)

CPLC(GCV) 1.024 1.565(0.930) 0(0)

50 DPLC(BIC) 1.029 2.481(0.738) 0.001(0.032)

DPLC(GCV) 1.033 2.577(0.679) 0.001(0.032)

GBSS(BIC) 1.028 2.436(0.699) 0(0)

GBSS(GCV) 1.032 2.549(0.642) 0(0)

CPLC(BIC) 1.012 1.631(0.894) 0(0)

CPLC(GCV) 1.011 1.587(0.898) 0(0)

100 DPLC(BIC) 1.017 2.625(0.646) 0(0)

DPLC(GCV) 1.016 2.580(0.678) 0(0)

GBSS(BIC) 1.016 2.637(0.572) 0(0)

GBSS(GCV) 1.014 2.554(0.629) 0(0)

CPLC(BIC) 1.009 1.684(0.894) 0(0)

CPLC(GCV) 1.007 1.567(0.911) 0(0)

150 DPLC(BIC) 1.012 2.732(0.526) 0(0)

DPLC(GCV) 1.011 2.632(0.627) 0(0)

GBSS(BIC) 1.011 2.696(0.540) 0(0)

GBSS(GCV) 1.009 2.568(0.635) 0(0)
∗Standard deviations are in parentheses.

model fitting is better and better when sample size increases. The average numbers of zero

coefficients selected incorrectly in columns 5 in Table 1 and Table 2, which approach to zero

and especially equal to 0 when sample size is large (i.e. 100 and 150), suggest that nonzero

coefficients can not be estimated with zero. From Columns 4 in Table 1 and 2, the average

numbers of zero coefficients correctly selected by DPLC methods are almost as many as

these by GBSS methods while CPLC methods choose the fewest average numbers. And the

average numbers of zero coefficients correctly selected are much closer to true numbers of

zero coefficients, 3, as sample size increases. Compared to GCV criterion, for small sample

size (i.e. 50) BIC criterion correctly selects fewer numbers of zero coefficients while BIC

correctly selects more numbers for large sample size (i.e. 100 and 150). For example,

in Table 1 DPLC(BIC) selects 2.248 zero coefficients and DPLC(GCV) selects 2.350 for

sample size 50, while DPLC(BIC) selects 2.467 and DPLC(GCV) selects 2.403 for sample

size 100. At the same time, compared to Table 1 with β′0 = (1,−1, 0, 0, 1, 0), Table 2 with
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β′0 = (3,−1.5, 0, 0, 2, 0) have larger average numbers of zero coefficients selected correctly,

i.e. when sample size is 150, DPLC(BIC) selects 2.552 for Table 1 and 2.732 for Table 2.

Table 3 Parameters estimation results for true β′0 = (1,−1, 0, 0, 1, 0)

β̂1 β̂2 β̂5

n Method Mean SE Mean SE Mean SE

CPLC(BIC) 0.919 0.250 -0.884 0.306 0.931 0.266

CPLC(GCV) 0.905 0.251 -0.864 0.306 0.921 0.265

50 DPLC(BIC) 0.945 0.257 -0.924 0.302 0.962 0.243

DPLC(GCV) 0.940 0.259 -0.916 0.302 0.957 0.245

GBSS(BIC) 0.997 0.247 -1.005 0.309 1.014 0.264

GBSS(GCV) 0.997 0.245 -1.005 0.308 1.014 0.257

CPLC(BIC) 0.919 0.164 -0.897 0.211 0.944 0.182

CPLC(GCV) 0.924 0.164 -0.903 0.211 0.947 0.182

100 DPLC(BIC) 0.970 0.166 -0.947 0.206 0.979 0.166

DPLC(GCV) 0.973 0.165 -0.950 0.207 0.980 0.168

GBSS(BIC) 1.011 0.164 -1.003 0.196 1.003 0.174

GBSS(GCV) 1.010 0.164 -1.004 0.198 1.002 0.178

CPLC(BIC) 0.941 0.137 -0.917 0.170 0.949 0.140

CPLC(GCV) 0.949 0.136 -0.931 0.169 0.954 0.142

150 DPLC(BIC) 0.990 0.132 -0.981 0.168 0.986 0.129

DPLC(GCV) 0.993 0.132 -0.986 0.168 0.989 0.134

GBSS(BIC) 1.001 0.130 -0.995 0.165 1.003 0.136

GBSS(GCV) 1.003 0.130 -0.997 0.167 1.006 0.142

Next we investigate the performance of nonzero coefficients’ estimators by using 6

different variable selected procedures mentioned above. Table 3 and Table 4 respectively

present mean values of nonzero coefficients’ estimators (Mean) and their standard errors

(SE) with true parameters β′0 = (1,−1, 0, 0, 1, 0) and (3,−1.5, 0, 0, 2, 0). From columns 3,

5 and 7 in Tables 3 and 4, DPLC methods possess more exact Mean values than CPLC,

almost the same ones as GBSS. For example with sample size 100 and the nonzero values of

true parameters (3,−1.5, 2), Mean estimators are (2.921,−1.405, 1.950) for CPLC(GCV),

(2.992,−1.482, 1.993) for DPLC(GCV) and (3.001,−1.499, 2.000) for GBSS(GCV). Gen-

erally, standard errors SE for DPLC is a little bigger than these for GBSS, but a little less

than these for CPLC. When the sample size increases, the Means are much closer to true

coefficients (i.e. for DPLC(GCV) with true parameters (3,−1.5, 2), (2.979,−1.464, 1.985)
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Table 4 Parameters estimation results for true β′0 = (3,−1.5, 0, 0, 2, 0)

β̂1 β̂2 β̂5

n Method Mean SE Mean SE Mean SE

CPLC(BIC) 2.921 0.241 -1.392 0.286 1.931 0.244

CPLC(GCV) 2.906 0.243 -1.371 0.285 1.922 0.242

50 DPLC(BIC) 2.981 0.242 -1.469 0.267 1.985 0.218

DPLC(GCV) 2.979 0.244 -1.464 0.270 1.985 0.214

GBSS(BIC) 3.009 0.229 -1.504 0.257 2.011 0.233

GBSS(GCV) 3.006 0.228 -1.503 0.256 2.011 0.226

CPLC(BIC) 2.916 0.171 -1.400 0.194 1.947 0.166

CPLC(GCV) 2.921 0.172 -1.405 0.194 1.950 0.167

100 DPLC(BIC) 2.991 0.158 -1.481 0.172 1.991 0.145

DPLC(GCV) 2.992 0.158 -1.482 0.172 1.993 0.147

GBSS(BIC) 3.000 0.154 -1.499 0.176 2.002 0.151

GBSS(GCV) 3.001 0.155 -1.499 0.177 2.000 0.155

CPLC(BIC) 2.922 0.141 -1.409 0.163 1.946 0.131

CPLC(GCV) 2.933 0.140 -1.421 0.161 1.952 0.133

150 DPLC(BIC) 2.989 0.127 -1.488 0.142 1.994 0.120

DPLC(GCV) 2.990 0.126 -1.489 0.142 1.994 0.122

GBSS(BIC) 2.999 0.128 -1.497 0.144 2.002 0.116

GBSS(GCV) 3.000 0.128 -1.498 0.145 2.002 0.122

for sample size 50 and (2.990,−1.489, 1.994) for sample size 150) and the SEs also sharply

descend (i.e. for DPLC(GCV) with true parameters (3,−1.5, 2), (0.244, 0.270, 0.214) for

sample size 50 and (0.126, 0.142, 0.122) for sample size 150).

To study robustness of different variable selected methods, error distribution is drawn

from two other distributions: standard Cauchy distribution (Cauchy) and mixture dis-

tribution (0.5 ∗ N(0, 1) + 0.5 ∗ Cauchy) which represents that observations are sampled

from N(0, 1) with 50% outlier from Cauchy distribution. Here we just describe results

for true β0 = (3,−1.5, 0, 0, 2, 0) with sample size 100. Table 5 illustrates the mean rel-

ative model error (MRME), average numbers of zero coefficients selected correctly and

average numbers of zero coefficients selected incorrectly. Mean values of nonzero coef-

ficients’ estimators and their standard errors are gave in Table 6. From Table 5, the

MRMEs are almost equal to 1 for each variable selected methods. DPLC have the al-

most same average numbers of zero coefficients selected correctly as GBSS while CPLC
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Tables 5 Robust property of variables selection results for true parameters

β′0 = (3,−1.5, 0, 0, 2, 0) with sample size 100

Avg. No. of 0 Coefficients

Error distr. Method MRME correct incorrect

CPLC(BIC) 1.013 2.009(0.878) 0.013(0.113)

CPLC(GCV) 1.012 1.966(0.884) 0.012(0.109)

Mixture DPLC(BIC) 1.013 2.871(0.375) 0.012(0.126)

DPLC(GCV) 1.012 2.837(0.420) 0.010(0.118)

GBSS(BIC) 1.012 2.891(0.330) 0.018(0.172)

GBSS(GCV) 1.012 2.862(0.365) 0.018(0.172)

CPLC(BIC) 1.013 2.208(0.786) 0.046(0.224)

CPLC(GCV) 1.012 2.169(0.806) 0.039(0.209)

Cauchy DPLC(BIC) 1.011 2.924(0.304) 0.054(0.312)

DPLC(GCV) 1.011 2.904(0.342) 0.050(0.303)

GBSS(BIC) 1.011 2.940(0.242) 0.067(0.330)

GBSS(GCV) 1.010 2.923(0.274) 0.059(0.309)
∗Standard deviations are in parentheses.

Tables 6 Robust property of parameters estimation results for true

β′0 = (3,−1.5, 0, 0, 2, 0) with sample size 100

β̂1 β̂2 β̂5

Error distr. Method Mean SE Mean SE Mean SE

CPLC(BIC) 2.827 0.234 -1.286 0.275 1.897 0.183

CPLC(GCV) 2.834 0.232 -1.295 0.271 1.901 0.184

Mixture DPLC(BIC) 2.977 0.200 -1.453 0.253 1.974 0.181

DPLC(GCV) 2.981 0.193 -1.458 0.243 1.976 0.185

GBSS(BIC) 2.989 0.220 -1.490 0.264 1.996 0.213

GBSS(GCV) 2.988 0.220 -1.491 0.265 1.995 0.214

CPLC(BIC) 2.740 0.339 -1.167 0.374 1.843 0.251

CPLC(GCV) 2.752 0.328 -1.182 0.362 1.849 0.251

Cauchy DPLC(BIC) 2.921 0.336 -1.376 0.359 1.937 0.298

DPLC(GCV) 2.924 0.335 -1.385 0.353 1.939 0.291

GBSS(BIC) 2.975 0.339 -1.438 0.384 1.960 0.316

GBSS(GCV) 2.982 0.321 -1.448 0.368 1.965 0.315
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have the least ones. However, average numbers selected incorrectly are a little bigger

than 0 for all methods. Table 6 also shows that DPLC methods have more exact Mean

values than CPLC, but a little less than GBSS. From Tables 2, 4 and Tables 5, 6, aver-

age numbers of zero coefficients selected correctly is much closer to the true number 3,

and average numbers selected incorrectly and Means further deviate from true parame-

ters when the tails of error distributions become thicker. For instance with DPLC(BIC),

average numbers selected correctly and incorrectly are (2.625, 0) and Means of nonzero co-

efficients are (2.991,−1.481, 1.991) for N(0, 1), (2.871, 0.012) and (2.977,−1.453, 1.974) for

Mixture, (2.924, 0.054) and (2.921,−1.376, 1.937) for Cauchy. We also see that the stan-

dard errors SEs augment as the tails of error distributions are heavier. For example with

DPLC(BIC), SEs are (0.158, 0.172, 0.145) for N(0, 1), (0.200, 0.253, 0.181) for Mixture and

(0.336, 0.359, 0.298) for Cauchy.

§4. Proof of Main Theorems

Hereafter, denote by c a positive constant independent of sample size n, which may

stand for various values in different places of formulae.

For simplicity, we set γ = β − β0, γ̂n = β̂n − β0,

Ln(β) =
n∑

i=1
|Y +

i − (x′iβ)+|

and

Gn(γ) =
1
n

n∑
i=1

E(|(µi + x′iγ)+ − Y +
i | − |µ+

i − Y +
i |).

Seen in Rao and Zhao (1993), we have

Gn(γ) −→ G(γ) = f(0)γ′V 2γ, (4.1)

and for any sequence {εn} satisfying εn → 0, we get

Ln(β)− Ln(β0) = −W ′
nS1/2

n γ + f(0)γ′Snγ + op(1 + γ′Snγ),

uniformly for ‖γ‖ ≤ εn, (4.2)

where Wn =
n∑

i=1
S
−1/2
n xi sgn(ei)I(µi > 0). Hence,

1
n

(Ln(β)− Ln(β0)) = − 1
n

n∑
i=1

x′iγ sgn(ei)I(µi > 0) + f(0)γ′V 2γ

+ op

( 1
n

+ γ′V 2γ
)
, uniformly for ‖γ‖ ≤ εn. (4.3)
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Proof of Theorem 2.1 By the uniform law of large number, we know

1
n

(Ln(β)− Ln(β0))−Gn(γ) = op(1) uniformly for β in any compact set K.

Therefore, from definition of Zn(β) and (4.1),

Zn(β)− 1
n

Ln(β0)− Z(β) = op(1) uniformly for β in any compact set K. (4.4)

From (4.4) and β̂n being bound, the proof of this theorem is completed. ¤

To prove Theorem 2.2, we need following lemma,

Lemma 4.1 For any given u ∈ Rp, we have

M(u)−M(û) ≥ (u− û)′D(u− û)/2,

where M(u) = u′Du/2 − a′u +
s∑

j=1
λjuj +

p∑
j=s+1

λj |uj |, D is a positive definite matrix,

λ1, · · · , λs are constants, λs+1, · · · , λp are nonnegative constants, and û is a minimizer of

M(u).

Proof Proof of this lemma can be refer to Proposition 2 of Xu and Ying (2008).

¤

First, define

Bn(u) = n−1/2
n∑

i=1
x′iu sgn(ei)I(µi > 0) + f(0)u′V 2u

+
s∑

j=1

λnj√
n

sgn(βoj)uj +
p∑

j=s+1

λnj√
n
|uj |.

Let ũn is a minimizer of Bn(u).

Proof of Theorem 2.2 We know β̂n is a consistent estimator of β0. From the

definition of Zn(β), we have

Zn(β̂n)− Zn(β0)

=
1
n

n∑
i=1

x′iγ̂n sgn(ei)I(µi > 0) +
1
n

f(0)γ̂′nSnγ̂n

+
s∑

j=1

λnj

n
(|β̂nj | − |βoj |) +

p∑
j=s+1

λnj

n
|β̂nj |+ op

( 1
n

+ γ̂′nV 2γ̂n

)

=
1
n

n∑
i=1

x′iγ̂n sgn(ei)I(µi > 0) + f(0)γ̂′nV 2γ̂n

+
s∑

j=1

λnj

n
sgn(βoj)(β̂nj − βoj) +

p∑
j=s+1

λnj

n
|β̂nj |+ op

( 1
n

+ γ̂′nV 2γ̂n

)

=
1
n

Bn(ûn) + op

( 1
n

(1 + û′nV 2ûn)
)
, (4.5)
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where ûn =
√

n(β̂n − βo).

Since n−1/2
n∑

i=1
xi sgn(ei)I(µi > 0) → N(0, V 2), then Bn(u) L→ U(u). We know ũn

P→
arg min(U(u)) and arg min(U(u)) = Op(1) such that

n−1/2ũn
P→ 0. (4.6)

From (4.5) and (4.6),

Zn(β0 + n−1/2ũn)− Zn(β0) =
1
n

Bn(ũn) + op

( 1
n

(1 + ũ′nV 2ũn)
)
. (4.7)

From Lemma 4.1, we know

Bn(ûn)−Bn(ũn) ≥ f(0)(ûn − ũn)′V 2(ûn − ũn). (4.8)

Hence, combining (4.5), (4.7) and (4.8),

Zn(β̂n)− Zn(β0 + n−1/2ũn)

=
1
n

(Bn(ûn)−Bn(ũn)) + op

( 1
n

(1 + ũ′nV 2ũn + û′nV 2ûn)
)

≥ 1
n

f(0)(ũn − ûn)′V 2(ũn − ûn) + op

( 1
n

(1 + ũ′nV 2ũn + û′nV 2ûn)
)

≥ c

n
(ũn − ûn)′V 2(ũn − ûn) + op

( 1
n

(1 + 2ũ′nV 2ûn)
)
.

And Zn(β̂n)− Zn(β0 + n−1/2ũn) ≤ 0, so the next expression is validated,

ũn
d= ûn.

Consequently, the theorem is proved. ¤
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删失回归模型中一个LASSO型变量选择和估计方法

王占锋 吴耀华 赵林城

(中国科学技术大学统计与金融系, 合肥, 230026)

删失回归模型是一种很重要的模型, 它在计量经济学中有着广泛的应用. 然而, 它的变量选择问题在现今

的参考文献中研究的比较少. 本文提出了一个LASSO型变量选择和估计方法, 称之为多样化惩罚L1限制方法,

简称为DPLC. 另外, 我们给出了非0回归系数估计的大样本渐近性质. 最后, 大量的模拟研究表明了DPLC方

法和一般的最优子集选择方法在变量选择和估计方面有着相同的能力.

关键词: 删失回归模型, 最小绝对偏差, 变量选择, LASSO.

学科分类号: 62F05, 62G05.
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