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Abstract

Consider a discrete time risk model
Un:(Un71+Yn)(1+Tn)an7 7’L:1’27-~-7

where Uy = = > 0 is the initial reserve of an insurance company, r, the interest rates, Y, the total
amount of premiums, X, the total amount of claims and U, the reserve at time n. Under some

mild conditions on Y,, and r,, we obtain the uniform asymptotics relation for the finite time ruin
N __
probabilities ¢ (z, N) ~ > Fx((1+71) - (147rn)x) as x — oo, where ¢)(z, N) = P( OénigN U, <0
k=1 <n<
|Uop = m), N > 1, Fx(x) is the tail distribution of X1, and the uniformity is with respect to N > 1.
Keywords: Discrete time risk model, heavy-tailed, interest rate, finite time ruin probability,

asymptotics.
AMS Subject Classification: 60K10.

§1. Introduction

Consider a discrete time risk model, in which the surplus at time n, U,, is expressed
by a recursion:
Up=Un-1+Yn)(1+1,) — X, n=12--, (1.1)
n >

where Uy = = > 0 is the initial surplus, {r,; 1} is a sequence of non-negative real
numbers, {X,;n > 1} and {Y,;n > 1} are two sequences of independent identically
distributed (i.i.d.) random variables with common distribution function Fx and Fy,
respectively. 7, denotes the interest rate during the nth period, i.e., from time n — 1 to
time n; Y, is the amount of premium income during the nth period, and is received at
the beginning of the nth period, i.e. at time n — 1; X,, represents the claim amount of the
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nth period, and is paid at the end of the nth period, i.e. at time n. {X,} and {Y,,} are
assumed to be independent.

The ruin probabilities of finite time horizon for a risk model with surplus process
{Un;n > 1}are given by

Y(z,N) = P(OglllgNUn<0‘U0:x) for x>0 and N=1,2,---. (1.2)

The asymptotics of ¢(x, N) is a classical topic in risk theory. For the discrete time
risk model (1.1), Ng et al. (2002) discussed the asymptotics of ¢ (z, N) for a special case
where r, =r forn=1,2,---, and A,, := X, — Y,,(1 4+ r) follows the Pareto law with tail
P(Ay, > x) ~ 2~ *L(z). They proved that for each N > 1,

(1+7,)(N+1)a _ (1—}-7’0‘)
(I4+7r>)—1

The uniformity for asymptotics of ¢ (x, N) is another interesting topic. Up to now,

U(z, N) ~

2 L(z).

the uniformly result for the risk model (1.1) is remain undiscussed. This paper is intend to
derive the uniformly asymptotics of ¥ (x, V) for this model, following the method used for
a discrete time risk model which is slightly different from risk model (1.1) and is detailed
as follows. Assume that the premiums are received and the claims are paid at the end of
each period of time, then the claim amount minus the premium amount can be taken as
one term — a gloss loss sequence {W,,;n > 1} which has heavy-tailed distribution function

(d.f.) F(z). In this case, the surplus of this model is given by a recursion
Up=Up-1(1+1y) — Wh, n=12---. (1.3)

The uniform asymptotics of ¢ (x, N) defined in (1.2) for the risk model (1.3) have been
discussed in several references. When r, = 0 for all n > 1, Korschunov (2002) obtained
that, under certain conditions on the heavy tail of the gloss loss, it holds uniformly for
N =1,2,--- that
1 z+Np
vV~ [ P,
Ky

+oo
as r — 400, where p = / F(x)dz. When r,, = r for all n > 1, Jiang and Tang (2003)

0
gave an asymptotic relation for ¢(z, N), generalizing the corresponding result of Ng et al.

(2002). They proved that under certain conditions,

N __
Yz, N) ~ kZ F((1+7)"z)
=1
holds uniformly for N =1,2,---, that is
Y(z, N)

~ — 1| =0.
S F((1+r)ha)
k=1

lim sup
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In this paper, we consider the risk model (1.1), in which the premiums are received
and the claims are paid at different time and the interest rates are variable. We shall

prove that under some reasonable conditions,
N __
Pz, N) ~ 30 Fx((L+r1)-- (1+rk)z)
k=1

holds uniformly for N =1,2,---.
The rest of the paper is organized as follows. In Section 2, some notations and
preliminaries are provided. The main results are stated in Section 3. In Section 4, the

proofs of the main results are provided.

§2. Notations and Preliminaries

First we give some notations. For two positive infinitesimals A(x) and B(z), A(z) <
B(z) if limsup A(x)/B(z) < 1, A(x) 2 B(z) if hf_l)gf A(z)/B(x) > 1, and A(z) ~ B(z)
it A(z) < B(z) and A(z) > B(x).

Like many researches in insurance mathematics, we restrict our interest to the case
of heavy tails. An important subclass of heavy-tailed distribution functions is R_,, the
regularly varying class. An extended version of R_, is the so-called extended regularly

varying (ERV) class.

Definition 2.1 Let X be a non-negative random variable with d.f. F. X (or its
d.f.) has a regularly varying tail if F(z) = 2=*L(x) for some a > 0, where L(z) is a slowly
varying function as x — co. We write F' € R_,,.
Definition 2.2 A non-negative random variable X with d.f. F'is said to be in the
ERV class, if there exist constants 1 < a < 3 < oo, such that for y > 1,
y =P < liminf F;(xy) < lim sup F;($y) <y “,

or equivalently, for v <1,

F F
P < lim inf M < lim sup M < p“.

We write F' € ERV(—a, —f). If a = 3, then F € R_,,.
Remark 1 For a d.f. F with F' € ERV(—a, —f3), it holds obviously that

F L
lim b =1 for any fixed L > 0. (2.1)

Relation (2.1) characterizes the class, L, of long-tailed distributions. We write F' € L.
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We provide here a result given by Ng et al. (2002), which will be needed in our proofs.
Theorem Ng  Suppose that the d.f. F; € L for i > 1. Then we have that, for

eachn > 1,
P(lglggn S > a:> ~ P(S, > ), (2.2)

where S, = > X; and X; has d.f. F;(z).
i=1

§3. Main Results

Recall that the risk model (1.1). First we provide the asymptotic result of ¢ (z, N)
for each N > 1.

Theorem 3.1 Suppose that Fx € ERV(—a,—f3) for some 1 < a < 3 < oc.
Assume that Y] has finite mean g := E(Y]) and finite variance D(Y7). Then for each
N>1,

Y(z, N) ~k%1FX((1+r1)-~(1+rk)x) (3.1)
holds, that is
lim | Ylz, N) —1|=0.
3 Fx((L+)--(1+r)e)

The uniform asymptotic result of ¢ (x, N) for the risk model (1.1) is as follows.

Theorem 3.2 Suppose that Fx € ERV(—a,—f) for some 1 < a < 3 < oc.
Assume that Y] has finite mean p := E(Y)), finite variance D(Y7) and

lim T e r (3.2)
n—oo n
for some r > 0. Then
N _
(@, N)~ > Fx((14+r)) - (1+7r)x) (3.3)
k=1
holds uniformly for N > 1, that is
N
lim sup ¥(z, V) -1/ =0.
z—oo N>1 | N —
T Y Fx((4r) - (L4 7k)z)
k=1
84. Proofs

To prove the main results, we need some lemmas. The last two lemmas came from
Jiang and Tang (2003), for the proofs of these two lemmas, readers may refer to Jiang and
Tang (2003).
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Lemma 4.1 Let FF = Fyx * F_y, Fx is the d.f. of X concentrated on (0,+00)
and Fy € ERV(—a,—f3) for 1 < a < 3 < oo, F_y is the d.f. of —Y, while Y is a
non-negative random variable with finite mean p = E(Y) and finite variance D(Y’). Then
F(x) ~ Fx(z) and F(x) € ERV(—a, —03).

Proof of Lemma 4.1  For every ¢ > 0, by the independence of X and Y and the

law of total expectation,

F(z)=P(X -Y >1x)

/+OO P(X =Y >z|Y =y)dP(Y <y)

—00

v

/ P(X —y>ax)dP(Y <vy)
ly—EY[<t

> P(X >z+pu+t)P(Y —EY| <t)

> P(X>a:+u+t)<1—Dt(2Y)).

Letting t = z/n for x > 0 and n = 1,2,---, by Remark 1 and Definition 2.2,

F P(X DY
liminf 23 > liminf{ (X >+ pta/n) (1— n”D( ))}
z—00 FX(CU) T—00 P(X > x) x2
> fiming P& > (4 D/njz + p)
T—00 P(X > x)
> (n + 1)—5.
n
Letting n — oo in the above inequality, then
F
liminf 22 > 1,
z—oo [y (m)
On the other hand,
) F(x) ) PX-Y>z) . P(X > x)
lim sup = <limsup ————— < limsup ———= = 1.
x—>oop FX(IL') B a:—>oop P(X > a:) - x—>oop P(X > IL')
Hence, F'(z) ~ Fx(x). Note that
F(zy) _ F(zy) Fx(ay) Fx()
F(z)  Fx(ay) Fx(z) F(x)
for every y > 1, it is easy to known that F' € ERV(—«, —3). Lemma 4.1 is proved. O

Lemma 4.2 Let n be some positive integer, F' = F} * Fy * --- ¥ F},, where F, is
the d.f. of X; and Fy € ERV(—a,—f3) for 1 < a < 3 < oo for k = 1,2,--- ,n. Then
F € ERV(—a, —f) and

F(z) ~ Fr(z) + Fa(z) + - + Fu(z). (4.1)
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Lemma 4.3 Let ' = F; x F5, where F; and F5 are the d.f.’s of X; and Xo,
respectively, which is concentrated on (—oo, 00). If F'1 € ERV(—a, —3) for1 < a < 3 < o0
and Fa(x) < cFy(x) for some ¢ > 0, then

F(z) S (1+4c¢)F1(x). (4.2)
Proof of Theorem 3.1 Note that

Un = (Unfl + Yn)(l + Tn) - Xn

= U1 ) (1 )4 SR ) (1)~ (KL (L))~ Ko
then
v(@. N)
= P<0g7111£N (A47) - (L+7)] U, < 0)

0<n<N

= P< max { Z Xe[(L4r1) - (L4m)] ' = i Yk[(1+7“1)"'(1+rk_1)]_1} N x)
k=1

= P max z [+ 71+ (L )] X = Ya(1+ 7] > @),
For every 0 < k < N, Yj has finite mean p and finite variance D(Y7), 7 is a non-
negative real number, then —Y},(1+7) also has finite mean and finite variance. Note that
Fx, € ERV(—a, —f) for some 1 < a < 3 < 0o, then by Lemma 4.1, F(z) ~ Fx, (z) and
Fi(x) € ERV(—a, —f), where Fy(x) = Fx, * F_y, (147,)(x). By Lemmas 4.1 and 4.2 and
Theorem Ng,

v(x,N) = P

/N

Jmax kzl[(m) ()] X = V(7)) > )

N
~ P+ ()] X = V(L4 )] > )
k=1
N 1
~ 2P +r) - (L)) [Xe = V(1 4 7)] > )
k=1
N __
= > Fr((T+r) - (1+rg) Xk > x)
k=1
N __
~ 2 Fx(@@+r) - (L+7p)).
k=1
This ends the proof of Theorem 3.1. g
Proof of Theorem 3.2  From the assumption that
ry4-o+r,
—— 7 as n — oo,
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o0

one can easily show that Y ((1+72) - (14+7))", a > 1 converges as n — oo, and thus
k=1

for every e > 0 there exists a large enough integer m = m(e) > 1 such that

o0

o ((T+re)--(14ry)) “<e (4.3)
k=m+1

Applying successively Theorem 3.1, we know that there exists some M = M(e) > 0
such that forall 1 < N <mand z > M,

(1—e) kév:lFX(x(l—i—rl) o (I4mk)) < ¢z, N) < (1+e€) §1FX(QU(1+T1) o (14mk)). (4.4)

Now we consider N > m. By (4.9),

N N
U@, N) > p(z,m) > (1 - 6)(k§1—k:Z+I)FX(x(1 1) (14 ).

Since Fx € ERV(—a, —3) for some 1 < a < 3 < oo, there exists positive number zy such
that o
FX (:Ey) < yfa
Fx(z) ~
holds for all zy > = > xy (See ref.[6], Proposition 2.2.1). Then by (4.9) and (4.11), it is
clear that

(4.5)

% Fx(a(l+m)-—(1+m) < > Fx(e@+r) 1+
k=m+1 k=m+1

> ((Ltra) - (L) “Fx(z(l+71))
k=m+1

6?_)(( (1 + 7'1))

IN

IN

Fx(@(l+r1)- (L+m)).

AN
EMZ

Hence it holds for all N > m that

N N __
b, N) = (1= X Fx(@+r)-(1+m)) e 3 Fx(al+r)- (1+7)))
k=1 k=1
= (1—e)ngleX(m(l—i—rl)---(l—i—rk)).

L) ()] X~ i1+ )] > )

+7“1) v (1 +74k)]71Xk > x)

N
o

INA
-
I
=
90

N
max Y [(L+r)- (L) 'K+ X [(L+m)-- (L+m)] 7 Xy > ),
0<n<mk 1 k:m+1
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o0

From the assumption (3.2) we know that > ((1471) 7 (1 +7g)--- (1 +74)) %2 converges
k=1

as n — oo, and thus for every € > 0 there exist m = m(e) large enough such that

o0

S (A 4r) M +r) - (T4r) 2 < e (4.6)
k=m+1

Hence by (4.11) and (4.12),
N

P(k:ZH[(l 1) (L) X > )
< P( i [(L471) - (L4 7)] Xy > ioj (T+7r)-- (14 Tk)>_1/2x>
k=m+1 e
< P(k:GH(Xk > (1 +r1)1/2 (1 +Tk)1/2$)>
< § P(Xp > (1+7)Y2 - (14 7rp) )
k=m+1
< k§+1((1 + 7"1)_1(1 7o) (14 Tk))_a/zp(X S (14 71)2)
< eFx(a(l+n))

< eP( max i[(l—l—rl)---(l—l—rk)]_le>x).

0<n<m

Therefore, by Lemma 4.2 and the inequality (4.10) we obtain that

vl N) < (U OP(max 3 [(14m)- - (1)) X > x)

< (149 (X +7r1)--- (14 71))

< (1+¢)

2 ZFX
k=1

N __
kal Fx(.r(l +T1) s (1 +Tk)).

Consequently we get uniformly for N > m,

(1= 3 Fxlalt+ ) (14 1)

< Y, N)S(1+ 6)2 kévleX(a;(l +7r1) (1 +7g)). (4.7)

From (4.10) and (4.13), we get to know that the two-sided inequality
N _ N __
(1=e? % Fx(@(+r)-- (L+7) Sz, N) < (1 +6)? 3 Fx(z(l+7r1) - (1+73))
k=1 k=1

holds uniformly for all N > 1. Hence, the result in (3.3) follows from the arbitrariness of
€ > 0. This ends the proof of Theorem 3.2. O
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