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Abstract

Lee and Spurrier® present a new procedure for making successive comparisons between or-
dered treatments. Their procedure has important applications for problems where the treatments
can be assumed to satisfy a simple ordering, such as for a sequence of increasing dose-levels of a
drug. The advantage of their procedure is that it provides more chance to detect when changes
in the treatment means occur than other test procedures (for example: test in Hayter[4]). The
disadvantage of their procedure is that it is not as powerful as other test procedures. In this paper
we propose a test procedure which try to keep the advantage of Lee and Spurrier’s procedure and
promote the power performance of their test procedure.
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81. Introduction
Consider the one-way analysis of variance model
Xij = pi + €4, 1<i<k 1<j<n,,

where the ¢;; are independent N(0,0?) random variables. Let X;, 1 < i < k, be the
ith sample mean based upon n; observations, and let S? be an unbiased estimate of
o? distributed independently of the X; as S% ~ o2x2/v for some degrees of freedom v.

Usually, the mean squared error in the analysis of variance will be used as the estimate

k
S? with v = >"n; — k.
i=1
Suppose that the data represent information on & treatments which can be assumed to
satisfy the simple ordering pq < pg < --- < ug. A problem that has received considerable

attention is that testing the null hypothesis

Ho:py=--- = pg
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against the simple ordered alternative hypothesis
Hy:pp <o < g

with at least one strict inequality. Bartholomew!! derived the likelihood ratio test for this
problem. Williams !5 16 proposed a different test procedure for this problem based on
the statistic fi — X1, and Marcus!’® discussed a modification of Williams’s test, which
uses the statistic fig — 1, where fi, fio, - - - , g are the maximum likelihood estimators of
W1, 2, - -+, g under the order restriction py < pg < -+ < pg.

It is also useful to be able to make direct comparisons of the treatments through the
generation of a set of simultaneous confidence intervals. Hayter* proposed a one-sided
studentized range test (OSRT) which provides simultaneous one-sided lower confidence
bounds for the ordered pairwise comparisons p; — pt, 1 < j <@ < k. Lee and Spurrier!®l
proposed successive comparisons test (LST) for ordered treatments which provides simul-
taneous one-sided lower confidence bounds for the successive ordered pairwise comparisons
Wiv1 — pi, 1 < ¢ <k —1. LST procedure provides more chance to detect when changes
in the treatment means occur than ORST. However, this procedure is not as powerful as
ORST in rejection the null hypothesis that the treatment effects are all equal in favour
of the alternative hypothesis of simple order. In this paper we propose a test procedure
which try to keep the advantage of Lee and Spurrier’s procedure and promote the power
performance of their test procedure.

Consider the subset of pairwise differences

2 — H1, 3 — [2, 0y g — HE—1, Mk — H1-

Let the one-sided critical points d = di ., r be defined by the equation

Xii1—X; Xp—X
Ho( max A - <d, i ! < d) =1-aq, (1.1)
1<i<k—1 S\/l/ni+1+1/ni S\/l/nk—l—l/nl
the two-sided critical points d’ = d}, , , p be defined by the equation
X1 — X Xp—X
Ho( max [Xint d <d, X ! < d') =1-a. (1.2)
1<i<k—1 S\/l/niﬂ—i—l/ni S\/l/nk—l—l/nl

We construct the following sets of one-sided simultaneous confidence intervals for

successive comparisons and pr — pi1:

_ _ 1 1
i = i € (X = Xy = Sdy | —— + = 400),  1<i<h-1,
Niy1 Ny
_ _ 1 1
Mk—mE(Xk—Xl—Sd *+*,+OO>, (1.3)
ng m
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and two-sided simultaneous confidence intervals

— — 1 1 — — 1 1
Mit1 — i € (Xi—i-l_Xi_Sd/H7+77Xi+1_Xi+Sdl ——F*), 1<i<k—1,
i+l Ty ni+1 Ny
S & N Y & B
W¢4“e<xk—xg—5d S Xy - X1+ Sd 47+—). (1.4)
ng N ng M

The critical points d, o,z and dj, , , p depend upon the covariance matrix R of the normal
random variables
X1 — X; X, —X
=D 1<i<k-1,  f= e
o/ 1/nip1+1/n; o/ 1/ng +1/nq

which has 1’s on the diagonal and 0’s everywhere else except for

v Iillit2  1<i<k-2
n; + nig1) (Nig1 + Nig2) -
™ME=Tk1= 2Tk )
’ ’ \/(nl + ng)(m + nk)
VM E—1

Tk—1,k = Tkk—1 = .
\/(nl + ng—1)(n1 + ng)

Tiitl = Titli = —
VI

Obviously, the critical values d, d’' are larger than those of LST, but smaller than those of
OSRT. So this procedure provides simultaneous confidence intervals for successive com-
parisons which are shorter than those provided by OSRT, but longer than those provided
by LST. By the following discussion, we will find that this procedure has a substantially
more power than LST, but less power than OSRT. Along with the increasing of k, the
inferior positions of the proposed procedure decrease sharply.

We organized this paper in the following way. In Section 2, we calculate critical points
dk,,v,r and d;c, aw.R by simulation. In Section 3, we show how to short the length of the
confidence intervals given in (1.3), (1.4) using the relationship between step-down decision
procedures and confidence sets. In Section 4, we do a simulation for a comparison of the
power performance of the proposed procedure with those of LST and OSRT, and compare
their abilities of detecting when changes in the treatment means occur when the equality

is rejected. Section 5 illustrates the procedure with an example.

§2. Computation of Critical Points

There are many statist focusing on the calculation of the critical points for multiple
comparisons problems. Among them, Genz and Bretz®! proposed a numerical computation

method. Liu et al.? used a recursive integration technique.
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Table 1 Values of d(upper) and d'(lower) for a = 0.05

v\k 3 4 5 6 7 8 9
) 2.737 3.006 3.204 3.353 3.483 3.590 3.691
3.252 3.489 3.675 3.809 3.923 4.035 4.130
10 2.369 2.561 2.694 2.808 2.891 2.966 3.033
2.740 2.906 3.029 3.130 3.216 3.287 3.348
16 2.256 2.416 2.537 2.628 2.703 2.767 2.826
2.578 2.720 2.827 2.916 2.992 3.050 3.100
20 2.217 2.374 2.485 2.576 2.659 2.708 2.762
2.531 2.663 2.769 2.847 2.916 2.976 3.025
25 2.190 2.341 2.445 2.530 2.602 2.661 2.711
2.492 2.621 2.716 2.795 2.862 2.920 2.964
30 2.171 2.318 2.420 2.504 2.574 2.631 2.680
2.464 2.592 2.687 2.760 2.826 2.881 2.928
40 2.146 2.288 2.388 2.475 2.538 2.592 2.641
2.434 2.553 2.648 2.717 2.783 2.832 2.877
60 2.126 2.264 2.362 2.437 2.501 2.556 2.599
2.402 2.524 2.608 2.680 2.739 2.788 2.830
120 2.101 2.235 2.333 2.406 2.467 2.519 2.564
2.371 2.486 2.570 2.640 2.695 2.744 2.782
00 2.077 2.211 2.303 2.375 2.434 2.483 2.528
2.344 2.452 2.537 2.600 2.656 2.699 2.738

Miwa et al.l'3l developed a method based on the computation of the orthant proba-

bility for a general multivariate normal vector with a positive definite correlation matrix.

However, It’s a pity their methods can’t be employed here for our special correlation ma-

trix R. We advise to get the critical points dj o,z and dj, , , p by simulation. We present

some critical points in the balanced cases when all of the sample sizes n; are equal. Table 1

shows the simulation results for o = 0.05, different & and v. The case v = oo denotes that

o2 is known. To get one critical value we perform 100,000 simulated samples generated by

MATLAB. We further repeated this process 10 times and computed the average of the 10

estimated upper « points. For other cases, the critical values can be simulated similarly.

To compare the critical points among the proposed procedure, LST and ORST, some

values of them in the balanced cases are reported together in Table 2, where ¢ = ¢ o, R+,
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¢ = ¢}, o r+» Which can be found in Liu et al.O satisfy

Xi1—X; XX,
P X )10, Py X Xl )oi-a

max < max <c
1<i<k=1S4/1/ni41+1/n; 1<i<k=154/1/n;41+1/n;

and h = hy, q,,, which can be found in Hayter® | satisfy

X, —X;
PH0< max gh):l—a.
1<i<j<k S,/ 1/7’Lj + 1/TL,L
Table 2 Compare critical points h(first), d(second) with ¢(third),
d'(fourth) with ¢(fifth) when o = 0.05

V\k 3 4 5 6 7 8 9
5 | 3.872 4520 5000 5380 5.696 5961  6.197
2737 3.006 3.204 3.353 3483  3.590  3.691
2.565  2.881  3.103  3.275 3415 3532  3.634
3252  3.4890  3.675  3.809  3.923  4.035  4.130
3.031 3.319 3531  3.697 3.835 3951  4.053
10 | 3.353  3.833 4180 4.452  4.676  4.864  5.029
2.369 2561  2.694 2.808  2.891 2966  3.033
2227 2456 2615 2737 2835 2918  2.990
2740  2.906  3.029 3130 3216  3.287  3.348
2569  2.778 2929  3.047  3.143 3225  3.296
30 | 3.070  3.460 3.736  3.948 4121 4265  4.391
2171 2318 2420 2504 2574 2631  2.680
2.042 2227 2353 2449 2525 2589  2.644
2464 2592 2.687 2760  2.826 2881  2.928
2.321 24838 2606 2.697 2770 2.832  2.885
oo | 2943 3295 3539  3.725 3875  4.000  4.107
2077 2211 2303 2375 2434 2483  2.528
1.960 2126 2.238 2322 2389 2445  2.493
2.344 2452 2537 2600 2.656 2699  2.738
2212 2361 2464 2543 2607 2.659  2.704

Table 2 shows that ¢ < d < h and ¢ < d’ are true. Along with the increasing of k,
the degrees of the differences between ¢ and d and ¢ and d’ become narrower, but the

differences between ¢ and h become larger.
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§3. Step-Down

In this section we short the confidence intervals produced by the proposed procedure
based on a step-down test. First, we introduce the step-down test we need here. It
should be noted that the step-down procedure here is not the classical step-down. In fact
it only contains some sub-steps of the classical step-down. The reason for that we do
not use the classical one is that the classical one does not afford manageable inversions to
confidence sets to provide more information about the bounds for ;1 —p; (see Hayter and
Hsul?l). Second, we derive the confidence intervals based on the duality between confidence
intervals and hypothesis testing. The technique by which we derive the confidence intervals

has been used in Hayter and Hsul® and Hayter et al.l%.

3.1 Step-Down Test

Here we give a step-down test for testing the null hypothesis Hy : pu1 = --- = ug
against the simple ordered alternative hypothesis H4 : pu1 < -+ < pp with at least one

strict inequality as follows:

(1) If (X5, — X1)/(S\/T/np + 1/n1) < d and (Xis1 — Xi)/(S\/1 /it + 1/ni) < d,

1 <i<k—1— not reject Hy, no declaration is made about uy,--- , ug.
If (X} — X1)/(S\/1/ng +1/n1)<d and | Jnax 1(Yi+1 — X,)/(S\/1/nip1 +1/n;)>d
i<k

— reject Hy, declare ;1 > p; if (X4 —YZ)/(S\/m) > d.

If (Xi— X1)/(S\/1/ng +1/n1) > d — reject Hp, declare py > 1, go to the next
step.

(2) If  Jnax (Xit1 — X4)/(Sv/1/nit1 + 1/n;) < ¢ — no declaration is made about
the relationship between ;1 and p; for 1 <i <k —1.

If max (X1 — X:)/(Sy/1/nis1 +1/n;) > ¢ — declare piy1 > py if (Xip1 — X;)

1<i<k—1

/(S 1/niy1 +1/n;) > c.
This step-down only contains some sub-steps of classical step-down, so it controls the

familywise error rate at a. Another thing should be noted is that this step-down procedure

has the same power performance as the procedure (1.3) for our test problem.

3.2 Confidence Intervals

Consider the acceptance sets given by

pe—p1 <0 = A, 1 <i<k)={(X;1<i<k):

Xiv1 — X — (i1 — i) <dSV1/nip +1/n; )1 <i <k —1,
Xp— X1 — (e — 1) <dSv/1/ng+1/ng }
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and

pr— 1 >0 = Ay <k)={(Xi,1<i<k):

1<4
Xi Y (uzqu—ui)SCS\/I/nHl—I—l/ni,lSigk—l}.

Each of these acceptance sets has a coverage probability of exactly 1—«. These acceptance
sets A(ui, 1 < i < k) can be inverted to form the following 1 — « level confidence sets for
e — 1 and g —pe, 1 <t < k-1

If

Yk —Yl > dSy/ 1/nk—|—1/n1

= i1 — i € [Xip1 — X5 — eSV1/nip1 + 1/ng, +00); e — p1 € (0, +00).

If

Yk—yl<d5 1/nk+1/n1
= Mir1 — Ui € [ i+l — X —dS\/l/anrl‘f‘l/nl,—l—OO)

i — p1 € [ X — X1 — dSy/1/ng + 1/ny, +00). (3.1)

Notice that the generated confidence intervals always correspond to the step-down
procedure. These confidence intervals provide the same confidence intervals for successive
pairwise comparisons as (1.3) when X — X; < dS \/m and shorter ones when
X — X1 >dS\/1/ng +1/n1.

In the same way we can short the two-sided confidence intervals for successive com-

parisons in (1.4). We don’t discuss it in more detail.

8§4. Power Study

To test k ordered treatments being all equal and detect when changes in the treatment
means occur when the equality is rejected, we can use our proposed procedure, LST or
OSRT. In this section our primary goal is to compare the power performance and the
ability of detecting between these procedures.

Let p = (p1, -+, ) and A = {p: pp < -+- < pg}, then A is a convex set. Table
3 gives simulation results to compare the power performance of the proposed procedure
(3.1), denoted by ‘PRO’, with those of OSRT and LST for 3 < k < 9, a = 0.05 and o2
being known to be 1. Here for simplicity we fix n = 1 and consider the center direction
(1,2,--- ,k)'/v/2 and the edge direction (1,---,1,2)/+/2 in the set A, because they are

among the extreme cases.
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Table 3 demonstrates that the power performance of ORST procedure is the best, the
power performance of LST is the worst. Both ORST and the proposed procedure have
substantially more power than LST. The power dominations of ORST and PRO over LST

are getting greater with k£ becoming larger when the true direction is the center direction.

Table 3 Power comparison between the three procedures

k

Direction | Procedure 3 4 5 6 7 8 9
Center OSRT 0.198 0.316 0.480 0.666 0.830 0.937 0.984
PRO 0.198 0.301 0.436 0.594 0.747 0.863 0.938
LST 0.145 0.152 0.161 0.166 0.168 0.172 0.173
Edge OSRT 0.113 0.101 0.095 0.090 0.087 0.083 0.080
PRO 0.113 0.099 0.091 0.088 0.081 0.080 0.077
LST 0.097 0.086 0.078 0.074 0.070 0.069 0.066

Table 4 Detecting ability comparison between three procedures
k
Direction | A | procedure 3 4 5 6 7 8 9

Center PRO 0.160 0.130 0.107 0.093 0.081 0.076 0.067

LST 0.168 0.131 0.107 0.093 0.081 0.076 0.067

OSRT | 0.141 0.092 0.066 0.0561 0.040 0.034 0.029

6 PRO 0.852 0.810 0.777 0.752 0.729 0.710 0.694

LST 0.852 0.810 0.777 0.752 0.729 0.710 0.694

OSRT |0.822 0.749 0.691 0.644 0.601 0.568 0.538

Edge 2 PRO 0.148 0.117 0.100 0.087 0.076 0.071 0.064

LST 0.170 0.130 0.109 0.093 0.081 0.075 0.068

OSRT | 0.141 0.092 0.068 0.051 0.040 0.034 0.029

6 PRO 0.841 0.800 0.770 0.745 0.723 0.706 0.688

LST 0.850 0.808 0.777 0.751 0.728 0.710 0.690

OSRT | 0.820 0.746 0.690 0.643 0.601 0.567 0.538

Table 4 compares the abilities of detecting between this three procedures. For sim-
plicity we let n = 1, o = 0.05 and suppose o2 is known to be 1. We consider the center
direction A x (1,2,--- , k) and the edge direction A x (1,---,1,2)’, A = 2,6. We repeat
100,000 samples to get the probability of detecting g > pxr—1 for each procedure. Table 4
tells that, along the edge direction, the detecting ability of the PRO procedure is close to
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the detecting ability of LST, and, lager k is, higher the close degree is. Along the center
direction, the PRO procedure has the same detecting ability as LST when £ > 5. The
detecting ability of the OSRT always becomes weaker with k being larger.

So, when our interest is to test k ordered treatments being all equal and provide useful
information regarding the changes occurring in adjacent populations, the PRO procedure

is an attractive alternative, especially when k£ is large.

§5. Example

The construction of simultaneous confidence intervals for successive differences of

treatment effects is illustrated by the following example.

Example 1 Bhalla and Sokall? studied the effect of density on the dry weight of
hybrid houseflies. In this experiment k = 7 different densities were considered correspond-
ing to 2560, 1280, 640, 320, 160, 80 and 40 individuals per 36g of medium. In each case
n = 5 replicates were obtained and the sample averages in milligrams were reported as
X1 =0.74; X5 = 0.73; X3 = 1.40; X4 = 1.57; X5 = 2.24; X = 2.63; X7 = 3.23 and a
pooled estimate S = 0.283 was obtained with v = 28 degrees of freedom.

Liu et al.l¥ derived the 99% confidence level confidence intervals for the successive

differences of the treatment effects using LST as following

M2 — p1 € (05847 +OO)7 M3 — p2 € (00967 +OO), e — 3 € (_0404¢ —|—OO),
fi5 — pa € (0.096, +00),  pig — 15 € (—0.184, +00), 7 — pg € (0.026, +00).  (5.1)

By these confidence intervals they established that ps > pe, ps > pg and pr > pg. If
the one-sided studentized range test was used, they obtained the interval for u; — g is
(—0.047,4+00) and found the inference p7 > pg cannot be drawn.

Next we show what the conclusion is when the proposed procedure (3.1) is used for
this example. We can get the critical point d satisfying (1.1) as d = 3.250 by simulation
for this example. Notice that X7 — X; = 2.49 > ds\/2/7 = 0.492. By the procedure
(3.1), we can arrive the same confidence intervals and the same conclusions for successive

comparisons as (5.1).
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