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Abstract

A unbalanced one-way random model is considered for assessing the proportion of workers
whose mean exposure exceed the occupational exposure limit (OEL) based on exposure measure-
ments to the worker. Hypothesis testing for the relevant parameter of interest is proposed when
the exposure data are unbalanced. The method is based on the generalize inference. A simulation
study is conducted to compare it with that of Krishnamoorthy and Guo (2005). Simulation results
suggest that the proposed method appears to be better, especially in very unbalanced design.
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§1. Introduction

Exposure levels at workplaces are commonly assessed by the proportion of exposure
measurements exceeding the occupational exposure limit (OEL). Some of recent work on
exposure monitoring has focused on the use of the one-way variance component model
to incorporate the between works and within works source of variability (see Rapport, et
al. (1993), Rapport, et al. (1995), Lyles, et al. (1997a, b) and Maxim, et al. (2000)).
When the model is used to analyze logged exposure data, the interested parameter (the
proportion of measurements exceeding a OEL) is a function of overall mean and the
variance components in the model. A hypothesis testing problem involving this parameter
is addressed in Lyles, et al. (1997a, b), they proposed some large sample approximation
methods.

The concepts of generalized inference introduced by Tsui and Weerahandi (1989)
and Weerahandi (1993) appear to be appropriate for above hypothesis testing problem.
Recently, Krishnamoorthy and Mathew (2002) used the generalized inference approach
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for testing problem with balanced data. Mu, et al. (2007) considers a balanced two-
way random effects model for studying the mean exposure level of a factory. As pointed
out by Lyles, et al. (1997b), collecting balanced data seems to be unrealistic because
of the workers burden, and unavailability of the workers during the sampling period.
Furthermore, exposure data sets are typically small, and hence methods are really needed
for small unbalanced data. More recently, Krishnamoorthy and Guo (2005) provided
a generalized p-value approach for testing problem applying the results of Thomas and
Hultquist (1978) when the data are unbalanced. However, the results of Thomas and
Hultquist (1978) suggested that the approximation is not work well in cases where the
variance components ratio (of the between variance and the within variance) less than
0.25 and the data is extremely unbalanced.

In this paper, we provide a different approach to construct the generalized p-value
using the results of Li and Li (2005). The article is organized as follows. A brief review
of the generalized inference is given in next section. Furthermore, the unbalanced one-
way random model and the problem of hypothesis testing of interested parameter are
introduced. Section 3 presents the hypothesis testing problem along with a solution based
on a generalized test variable for the proportion of exposure measurements. In Section 4,
a simulation study is employed to compare the proposed method given in Section 3 with
the method by Krishnamoorthy and Guo (2005). The sizes and powers are numerically
evaluated and presented. Simulation results indicate that the proposed method appears
to be better, especially in the cases where the variance components ratio less than 0.25

and the data is extremely unbalance.

§2. Preliminaries

2.1 Generalized p-value

Tsui and Weerahandi (1989) introduced the concept of generalized inference for test-
ing hypothesis. Consider an observable random vector X with a probability distribution
P,(-), where n = (,6) is an unknown vector in parameter space €2, § = 6(n) is a real-
valued parameter of interest, and ¢ is the nuisance parameter. Assume that © is the
parameter space of 6, and z is the observed value of X. The problem of interest is to test

the one-sided hypothesis Hy : 0 < 0y versus Hy : 6 > 6.
Definition 2.1 Let R = R(X;x,n) be a function of X, x, and n = (0,9). R is

said to be a generalized test variable if it has the following properties:
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(a) The observed value r = R(z;z,n) does not depend on the nuisance parameter .
(b) R has a probability distribution free of unknown parameters.

(c) For fixed = and 0, P{R(X;x,n) > r|0} is nondecreasing in 6.

Following condition Property (a)—(c) of Definition 2.1, a ‘large’ observed value r =

R(x;x,n) suggests evidence against Hyp, we can used the generalized p-value

p = sup P{R(X;z,n) = r|0} = P{R(X;z,n) = r|fo}
0<6g

to test Hy : 0 < 0y versus Hi : 0 > 6, and small p-value indicates that the observed does
not support Hy.

2.2 The Model for Exposure Assessment

We now describe the one-way variance components model to the exposure data given
in Rapport (1995) and Lyles, et al. (1997a). Let X;; denote the jth shift-long exposure
measurement for the ith worker, assumed to be distributed as lognormal distribution,
j=1,2,--- b, i=1,2,--- ,a. Let Yj; = In(Xj;), so that Y;; follows a normal distribution.

Then the one-way random effect model for the Yj; is given as
YLJZM+aZ+€Z]7 j:17277b’b72217277a7 (21)

where p is the overall mean, «;’s and €;;’s are mutually independent normal random vari-

ables with zero means and variances o2 and o2, respectively. Define Y = (Y11, , Ya,)'s
a
Z = diag(1p,,- -, 1p,), and n = >_ b;, the model (2.1) can be written as
i=1
Y =ply+ Za+e, (2.2)

where 1, € R® is a matrix with all elements being 1. Thus Y ~ N (ul,,02Z'Z + 021,,).
Let «; represents the random effects due to the ith worker, the mean exposure for the

ith worker is given as follows
g, = E(Xijlai) = E(exp(Yij)|ai) = exp(p + o + 02/2). (2.3)

Let 6 be the probability that mean exposures exceed the occupational limit (OEL). Then,

we have

In(OEL) — pu — J?/2>’ (2.4)

Oa

0 = P(j1, > OEL) = P(In(uz,) > In(OEL)) = 1 — q>(
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where ®(-) denotes the standard normal cumulative distribution function. The hypothesis

of interest in our problem is
Hy:0> A VS. Hi:0<A,

where A is a specified quantity, usually small. It follows from (2.4) that the above hy-

pothesis is equivalent to
Hy :n>1n(OEL) VS. H; :n <In(OEL), (2.5)

where ) = u + z1_a04 + 02/2, and 21_4 is the 100(1 — A)th percentile of the standard

normal distribution.

83. Proposed Method

We shall now derive a generalized test variable for the hypothesis testing (2.5). Define

Y, — imj/bi, Y. — zl imj/n, S, = ibi(yi. _V.)2 and S, = 21 i(y;j _V.)2
When godel (2.1) is bai;négd, that is, by :1?32 =---=b, =0b, 51 and S;}lzjvzz independent
scaled chi-squared distributions. Inference on the variance components is based on these
distributional properties, see Krishnamoorthy and Mathew (2002). In the unbalanced
case, S1 and Se are still independent, and Sy still has a scaled chi-squared distribution.

However, unless 02 = 0, S; no longer has a scaled chi-squared distribution.

Thomas and Hultquist (1978) recommended a statistic Sy, instead of Sy, where

a

S =ty (Ve =V, Y = Vija, by— af( D h). 3

i=1 i=1 i=1
Set 01, = E(S14/n1) = 02+ bpo?. The term Sy, represents the unweighed sum of squares
of the treat means and by, represents the harmonic mean of the b; values. They showed
that Sy, /61, is well approximated by x2_; except in cases where the variance components
ratio A = 02 /02 < 0.25 and the design is extremely unbalanced.

Using this fact, Krishnamoorthy and Guo (2005) proposed the generalized p-value for
hypothesis testing (2.5) using the approximation generalized test variables. Unfortunately,
using the above results, we see that the test is not satisfactory in cases where A = 02 /02 <
0.25 and the design is extremely unbalanced. Now we apply the results of Li and Li (2005)

to reconsider the problem.
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Set Q1 = (2'Z)71Z" = diag((1/b1)1,,,- -, (1/ba)1}, ) be an a x n matrix, and Qg be
an (n — a) x n matrix such that Q1Q4 = 0, and Q2Q% = I,,_,. It follows that

Y = Q1Y ~ N(uly, 021, + 02D),
QoY ~ N(0,02I,_,), Y and Q»Y are mutually independent,
where D = diag(1/b1,1/b2,--- ,1/b,), and I, is an identify matrix of order m.

Let H = (H{, H)) with Hy = (1/y/a) - 1, and Hs be an (a — 1) X a matrix such that
H1H) =0, and HoH), = I,_1. Then we have

H\Y
Y On ([ Y*) o2n v otHpm ) (3.2)
HY 0

Set T=H,Y, and A= HyDH). Tt is easy to see that Y = (1/y/a)-H1Y, Slu:?/HéHg?:
T/T, and SQ = Y,leQQY.

Following from (3.2), we have

T 1 1
aop, a
~ N , . . Sy ~aixi ., (3.3)
T 0 %O—EHZDH{ 05la1+0ZA

where (7,*,, T) and Ss are mutually independent. It is easy to see (7%,, T, S2) is a sufficient
statistic. Hence the interval estimation can be constructed based on them. Let 3", ¢t and

s9 denote the observed values of the random Y, T and Sy. Following (3.3), define

R = r(Y;y,1m)
. Y - 1 [ s10 — T'(02A"Y + 021, 1)7T - 5902 /5 5203] 1/2
= h

b
Vbrol + 02 T'(0214—1 +02A)71T Sy 1+
. |:31u — T/(O'gél\*l + O’?Ia_l)flT . SQU?/SQ] 1/2 n 52052 _
P T (02141 + 02A)~1T1/2 T

where [a]y = max{a,0}, (Y. — p)/\/bno2 + 02 ~ N(0,1) and (02I,_1 + 02A)~1 /2T ~
N(0,I,_1) are dependent. Let Wy ~ N(0,1), Wi ~ N(0,I,_1), Wa ~ x2_,, and Wy, W,

and Wy are mutually independent. Then we have

L= WA 1/2
R & g [bh51 W Wasa/Wa | o2
Vaby, Wiy Wal+
S1u — W{AWlSQ/WQ 1/2 S9
| Wi, L ow,

= R"—n, (3.4)
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where < denotes “approximately distributed”.

Using the first expression in (3.4), it is easy to see that the observed value of R is 0,
and the distribution of R is stochastically monotone in 1. Although the second expression
in (3.4) has a distribution free of any unknown parameters, but the actual distribution of
R does depend on unknown parameters. However, using the second expression in (3.4), R
is an approximate generalized test variable. Thus the generalized p-value for testing (2.5)

is defined as
p=P(R >0|n =In(OEL)) = P(R* <In(OEL)|n = In(OEL)).

Since the distribution of R using second expression, given §*, s14, S2, is free of any unknown
parameters, the Monte Carlo method can be used to compute the generalized p-value. The

following algorithm can be used for obtaining it.

Algorithm 1:
(1) For a given data set, compute 7, s1,, S2;
(2) For j =1,2,---, N, generate

Wo~N(O,1),  Wi~N@O,I1), Worx2_y;

(3) Compute the corresponding value R}'f using the second expression in (3.4);
(4) End j loop.

Then the simulated generalized p-value for testing (2.5) is [Number of R} > In(OEL)]/N.

Remark 1 If all the b;’s are equal, it can be easily verified that the R in (3.4)
simplifies to the generalized pivot variable given in Krishnamoorthy and Mathew (2002).

§4. Simulation Study

We shall now study the size and power properties of the generalized test. The method
(LI) described in Section 3 is now compared with that provided by Krishnamoorthy and
Guo (2005) (KG) through a simulation study. The criteria for analyzing the performance
of the methods are to compare the sizes and powers properties of tests.

In the simulation, five unbalanced patterns were selected, which are shown in Table

1 and 2. Without loss of generality, u = 0 is assigned. Note that
Yi, -, Ya iid. ~ N, (A+1/b;)c?),

Sy ~o2x% ., (Y1.,---,Y,) and Sy are mutually independent, (4.1)
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where A = o2 /o2, Also, Y and Sy, depend on only Y.’s, b;’s and a. For each unbalanced
pattern and o2, 02, and A, a Monte Carlo method of evaluating the size and power of the

proposed test in Section 3 is given in the following algorithm.

Algorithm 2:

(1) For i = 1 to M, generate (§y.," - ,Y,.,S2) according to (4.1), and compute 7* and
s1u by (3.1), respectively;

(2) Use Algorithm 1 to compute the generalized p-value p;;
(3) End i loop;

(4) If the parameters y, 02, 02, and A are chosen such that 7 = In(OEL), [Number of

o) Ve

pi < a]/M is a simulated estimate of the size; if the parameters yu, 02, o2, and A

are chosen such that n < In(OEL), [Number of p; < a]/M is a simulated estimate

of the power.

The Monte Carlo method of evaluating the size and power of the test can be found
in Section 4 of Krishnamoorthy and Guo (2005).

Tables 1 and 2 give the size and the power values of the test at the significant level
a = 0.05 with M = 5000 and N = 10000. For computing the size, we choose § = A = 0.05.
For computing the power, we choose # = 0.002 and A = 0.05 in Table 1, and choose A =
0.05 and p,/OEL = 0.2 in Table 2, where the mean exposure i, = exp(u + (02 + 02)/2).

The numerical results in Table 2 show that both LI and KG method can have the
sizes below the nominal level when X is not too small. The sizes by LI test maintain
stated level across all values of A\ for all patterns, although it produces very conservative
interval when A is small. In contrast, the sizes by KG test may be exceeding the nominal
level. Especially, the simulated sizes by KG sizes are very large in cases with small A
and very unbalanced designs. The powers of the two tests are increasing with the sample
sizes. Although the powers by LI test are sometimes little than ones by KG test, they are
generally vary little.

The simulation study indicates that both the LI and KG tests are useful for large
values of A, and the LI method is good for all values of A\. In summary, the LI test are
recommended for extremely unbalanced designs in situations where A is thought to be

small. In any other situation, LI and KG tests can be recommended.

Acknowledge  The author cordially thank referees for their valuable comments

which lead to the improvement of this paper.
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Table 1 Monte Carlo estimates of the sizes and powers

Size Power
a (b1, -+ ,bg) o2ja? | 02| LI KG | LI KG
3 (5,10,15) 0.05 | 0.5 0.037 0.039 | 0.077 0.078

0.10 | 0.5 | 0.044 0.046 | 0.100 0.098
0.25 | 0.5 | 0.061 0.049 | 0.115 0.111
0.50 | 0.5 0.051 0.051 | 0.122 0.118
0.75 | 0.5 ]0.047 0.052 | 0.136 0.131
1.00 | 0.5 | 0.049 0.047 | 0.123 0.117
10 (1 2s,10 8s) 0.05 | 0.5]0.044 0.095 | 0.145 0.207
0.10 | 0.5 | 0.055 0.094 | 0.202 0.248
0.25 | 0.5]0.064 0.073 | 0.296 0.314
0.50 | 0.5 ] 0.055 0.065 | 0.381 0.388
0.75 | 0.5 ] 0.053 0.057 | 0.417 0.424
1.00 | 0.5 | 0.046 0.049 | 0.433 0.433
10 | (1 2s,4 2s,6 28,8 28,10 2s) | 0.05 | 0.5 | 0.040 0.066 | 0.121 0.168
0.10 | 0.5 ] 0.054 0.080 | 0.171 0.210
0.25 | 0.5]0.052 0.072 | 0.260 0.291
0.50 | 0.5 0.051 0.063 | 0.328 0.351
0.75 | 0.5 ] 0.046 0.054 | 0.376 0.396
1.00 | 0.5 | 0.049 0.054 | 0.403 0.424
16 (1 4s,2 45,8 8s) 0.05 | 0.5 ]0.046 0.084 | 0.143 0.207
0.10 | 0.5 | 0.058 0.090 | 0.205 0.255
0.25 | 0.5 ] 0.054 0.084 | 0.364 0.396
0.50 | 0.5 ] 0.055 0.065 | 0.490 0.501
0.75 | 0.5 ] 0.053 0.060 | 0.565 0.573
1.00 | 0.5 | 0.052 0.055 | 0.616 0.621
20 (1 5s,4 58,8 58,12 5s) 0.05 | 0.5]0.051 0.103 | 0.155 0.228
0.10 | 0.5 | 0.056 0.103 | 0.247 0.290
0.25 | 0.5 ] 0.050 0.080 | 0.431 0.450
0.50 | 0.5 ] 0.056 0.073 | 0.604 0.612
0.75 | 0.5 ] 0.051 0.062 | 0.678 0.680
1.00 | 0.5 | 0.050 0.058 | 0.716 0.729
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Table 2 Monte Carlo estimates of the sizes and powers

Size Power
a (b1, -+ ,bg) o2ja? | 02| LI KG | LI KG
3 (5,10,15) 0.05 | 0.5 0.033 0.035 | 0.577 0.552

0.10 | 0.5 | 0.041 0.042 | 0.508 0.483
0.25 | 0.5 0.047 0.046 | 0.350 0.331
0.50 | 0.5 | 0.050 0.047 | 0.250 0.236
0.75 | 0.5 ] 0.050 0.053 | 0.209 0.196
1.00 | 0.5 | 0.049 0.047 | 0.161 0.150
10 (1 2s,10 8s) 0.05 | 0.5 ]0.040 0.082 | 0.982 0.983
0.10 | 0.5 | 0.053 0.090 | 0.969 0.970
0.25 | 0.5 ]0.055 0.074 | 0.939 0.942
0.50 | 0.5 ] 0.054 0.066 | 0.834 0.836
0.75 | 0.5 ]0.052 0.059 | 0.713 0.717
1.00 | 0.5 | 0.046 0.049 | 0.602 0.604
10 | (1 2s,4 2s,6 28,8 28,10 28) | 0.05 | 0.5 | 0.033 0.056 | 0.974 0.974
0.10 | 0.5 | 0.046 0.070 | 0.967 0.967
0.25 | 0.5]0.0561 0.070 | 0.910 0.919
0.50 | 0.5 ] 0.051 0.062 | 0.778 0.790
0.75 | 0.5 ]0.046 0.053 | 0.658 0.674
1.00 | 0.5 | 0.048 0.052 | 0.552 0.571
16 (1 4s,4 45,8 8s) 0.05 | 0.5 | 0.040 0.070 | 0.998 0.998
0.10 | 0.5 | 0.054 0.083 | 0.996 0.997
0.25 | 0.5 ] 0.057 0.083 | 0.988 0.988
0.50 | 0.5 ] 0.055 0.066 | 0.956 0.957
0.75 | 0.5 ] 0.053 0.060 | 0.876 0.878
1.00 | 0.5 | 0.052 0.055 | 0.799 0.803
20 (1 5s,4 58,8 58,12 5s) 0.05 | 0.5 0.046 0.090 | 0.999 0.999
0.10 | 0.5 ] 0.052 0.099 | 0.999 0.999
0.25 | 0.5]0.049 0.077 | 0.998 0.998
0.50 | 0.5]0.0564 0.071 | 0.983 0.984
0.75 | 0.5 ] 0.049 0.062 | 0.949 0.951
1.00 | 0.5 ] 0.048 0.056 | 0.881 0.884
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