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Abstract
A unbalanced one-way random model is considered for assessing the proportion of workers

whose mean exposure exceed the occupational exposure limit (OEL) based on exposure measure-

ments to the worker. Hypothesis testing for the relevant parameter of interest is proposed when

the exposure data are unbalanced. The method is based on the generalize inference. A simulation

study is conducted to compare it with that of Krishnamoorthy and Guo (2005). Simulation results

suggest that the proposed method appears to be better, especially in very unbalanced design.
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§1. Introduction

Exposure levels at workplaces are commonly assessed by the proportion of exposure

measurements exceeding the occupational exposure limit (OEL). Some of recent work on

exposure monitoring has focused on the use of the one-way variance component model

to incorporate the between works and within works source of variability (see Rapport, et

al. (1993), Rapport, et al. (1995), Lyles, et al. (1997a, b) and Maxim, et al. (2000)).

When the model is used to analyze logged exposure data, the interested parameter (the

proportion of measurements exceeding a OEL) is a function of overall mean and the

variance components in the model. A hypothesis testing problem involving this parameter

is addressed in Lyles, et al. (1997a, b), they proposed some large sample approximation

methods.

The concepts of generalized inference introduced by Tsui and Weerahandi (1989)

and Weerahandi (1993) appear to be appropriate for above hypothesis testing problem.

Recently, Krishnamoorthy and Mathew (2002) used the generalized inference approach
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for testing problem with balanced data. Mu, et al. (2007) considers a balanced two-

way random effects model for studying the mean exposure level of a factory. As pointed

out by Lyles, et al. (1997b), collecting balanced data seems to be unrealistic because

of the workers burden, and unavailability of the workers during the sampling period.

Furthermore, exposure data sets are typically small, and hence methods are really needed

for small unbalanced data. More recently, Krishnamoorthy and Guo (2005) provided

a generalized p-value approach for testing problem applying the results of Thomas and

Hultquist (1978) when the data are unbalanced. However, the results of Thomas and

Hultquist (1978) suggested that the approximation is not work well in cases where the

variance components ratio (of the between variance and the within variance) less than

0.25 and the data is extremely unbalanced.

In this paper, we provide a different approach to construct the generalized p-value

using the results of Li and Li (2005). The article is organized as follows. A brief review

of the generalized inference is given in next section. Furthermore, the unbalanced one-

way random model and the problem of hypothesis testing of interested parameter are

introduced. Section 3 presents the hypothesis testing problem along with a solution based

on a generalized test variable for the proportion of exposure measurements. In Section 4,

a simulation study is employed to compare the proposed method given in Section 3 with

the method by Krishnamoorthy and Guo (2005). The sizes and powers are numerically

evaluated and presented. Simulation results indicate that the proposed method appears

to be better, especially in the cases where the variance components ratio less than 0.25

and the data is extremely unbalance.

§2. Preliminaries

2.1 Generalized p-value

Tsui and Weerahandi (1989) introduced the concept of generalized inference for test-

ing hypothesis. Consider an observable random vector X with a probability distribution

Pη(·), where η = (θ, δ) is an unknown vector in parameter space Ω, θ = θ(η) is a real-

valued parameter of interest, and δ is the nuisance parameter. Assume that Θ is the

parameter space of θ, and x is the observed value of X. The problem of interest is to test

the one-sided hypothesis H0 : θ ≤ θ0 versus H1 : θ > θ0.

Definition 2.1 Let R = R(X;x, η) be a function of X, x, and η = (θ, δ). R is

said to be a generalized test variable if it has the following properties:
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(a) The observed value r = R(x;x, η) does not depend on the nuisance parameter δ.

(b) R has a probability distribution free of unknown parameters.

(c) For fixed x and δ, P{R(X;x, η) ≥ r|θ} is nondecreasing in θ.

Following condition Property (a)–(c) of Definition 2.1, a ‘large’ observed value r =

R(x;x, η) suggests evidence against H0, we can used the generalized p-value

p = sup
θ≤θ0

P{R(X;x, η) ≥ r|θ} = P{R(X;x, η) ≥ r|θ0}

to test H0 : θ ≤ θ0 versus H1 : θ > θ0, and small p-value indicates that the observed does

not support H0.

2.2 The Model for Exposure Assessment

We now describe the one-way variance components model to the exposure data given

in Rapport (1995) and Lyles, et al. (1997a). Let Xij denote the jth shift-long exposure

measurement for the ith worker, assumed to be distributed as lognormal distribution,

j = 1, 2, · · · , bi, i = 1, 2, · · · , a. Let Yij = ln(Xij), so that Yij follows a normal distribution.

Then the one-way random effect model for the Yij is given as

Yij = µ + αi + εij , j = 1, 2, · · · , bi, i = 1, 2, · · · , a, (2.1)

where µ is the overall mean, αi’s and εij ’s are mutually independent normal random vari-

ables with zero means and variances σ2
α and σ2

ε , respectively. Define Y = (Y11, · · · , Yaba)
′,

Z = diag(1b1 , · · · , 1ba), and n =
a∑

i=1
bi, the model (2.1) can be written as

Y = µ1n + Zα + ε, (2.2)

where 1a ∈ Ra is a matrix with all elements being 1. Thus Y ∼ N(µ1n, σ2
αZ ′Z + σ2

εIn).

Let αi represents the random effects due to the ith worker, the mean exposure for the

ith worker is given as follows

µxi = E(Xij |αi) = E(exp(Yij)|αi) = exp(µ + αi + σ2
ε/2). (2.3)

Let θ be the probability that mean exposures exceed the occupational limit (OEL). Then,

we have

θ = P(µxi > OEL) = P(ln(µxi) > ln(OEL)) = 1− Φ
( ln(OEL)− µ− σ2

ε/2
σα

)
, (2.4)
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where Φ(·) denotes the standard normal cumulative distribution function. The hypothesis

of interest in our problem is

H0 : θ ≥ A vs. H1 : θ < A,

where A is a specified quantity, usually small. It follows from (2.4) that the above hy-

pothesis is equivalent to

H0 : η ≥ ln(OEL) vs. H1 : η < ln(OEL), (2.5)

where η = µ + z1−Aσα + σ2
ε/2, and z1−A is the 100(1 − A)th percentile of the standard

normal distribution.

§3. Proposed Method

We shall now derive a generalized test variable for the hypothesis testing (2.5). Define

Y i· =
bi∑

j=1
Yij/bi, Y ·· =

a∑
i=1

bi∑
j=1

Yij/n, S1 =
a∑

i=1
bi(Y i· − Y ··)2, and S2 =

a∑
i=1

bi∑
j=1

(Yij − Y i·)2.

When model (2.1) is balanced, that is, b1 = b2 = · · · = ba = b, S1 and S2 have independent

scaled chi-squared distributions. Inference on the variance components is based on these

distributional properties, see Krishnamoorthy and Mathew (2002). In the unbalanced

case, S1 and S2 are still independent, and S2 still has a scaled chi-squared distribution.

However, unless σ2
α = 0, S1 no longer has a scaled chi-squared distribution.

Thomas and Hultquist (1978) recommended a statistic S1u, instead of S1, where

S1u = bh

a∑
i=1

(Y i· − Y
∗
··)

2, Y
∗
·· =

a∑
i=1

Y i·/a, bh = a
/( a∑

i=1
1/bi

)
. (3.1)

Set θ1u = E(S1u/n1) = σ2
ε + bhσ2

α. The term S1u represents the unweighed sum of squares

of the treat means and bh represents the harmonic mean of the bi values. They showed

that S1u/θ1u is well approximated by χ2
a−1 except in cases where the variance components

ratio λ = σ2
α/σ2

ε < 0.25 and the design is extremely unbalanced.

Using this fact, Krishnamoorthy and Guo (2005) proposed the generalized p-value for

hypothesis testing (2.5) using the approximation generalized test variables. Unfortunately,

using the above results, we see that the test is not satisfactory in cases where λ = σ2
α/σ2

ε <

0.25 and the design is extremely unbalanced. Now we apply the results of Li and Li (2005)

to reconsider the problem.
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Set Q1 = (Z ′Z)−1Z ′ = diag((1/b1)1′b1 , · · · , (1/ba)1′ba
) be an a× n matrix, and Q2 be

an (n− a)× n matrix such that Q1Q
′
2 = 0, and Q2Q

′
2 = In−a. It follows that

Y = Q1Y ∼ N(µ1a, σ
2
αIa + σ2

εD),

Q2Y ∼ N(0, σ2
εIn−a), Y and Q2Y are mutually independent,

where D = diag(1/b1, 1/b2, · · · , 1/ba), and Im is an identify matrix of order m.

Let H = (H ′
1,H

′
2)
′ with H1 = (1/

√
a) · 1′a and H2 be an (a− 1)× a matrix such that

H1H
′
2 = 0, and H2H

′
2 = Ia−1. Then we have
(

H1Y

H2Y

)
∼ N

(( √
aµ

0

)
, σ2

αIa + σ2
εHDH ′

)
. (3.2)

Set T =H2Y , and Λ=H2DH ′
2. It is easy to see that Y

∗
··=(1/

√
a) ·H1Y , S1u =Y

′
H ′

2H2Y =

T ′T , and S2 = Y ′Q′
2Q2Y .

Following from (3.2), we have




Y
∗
··

T


 ∼ N







µ

0


 ,




1
abh

(bhσ2
α + σ2

ε)
1√
a
σ2

εH1DH ′
2

1√
a
σ2

εH2DH ′
1 σ2

αIa−1 + σ2
εΛ





 , S2 ∼ σ2

εχ
2
n−a, (3.3)

where (Y ∗
··, T ) and S2 are mutually independent. It is easy to see (Y ∗

··, T, S2) is a sufficient

statistic. Hence the interval estimation can be constructed based on them. Let y∗··, t and

s2 denote the observed values of the random Y
∗
··, T and S2. Following (3.3), define

R = r(Y ; y, η)

= y∗·· −
Y
∗
·· − µ√

bhσ2
α + σ2

ε

[
bh

s1u − T ′(σ2
αΛ−1 + σ2

εIa−1)−1T · s2σ
2
ε/S2

T ′(σ2
αIa−1 + σ2

εΛ)−1T
+

s2σ
2
ε

S2

]1/2

+

+ zp

[s1u − T ′(σ2
αΛ−1 + σ2

εIa−1)−1T · s2σ
2
ε/S2

T ′(σ2
αIa−1 + σ2

εΛ)−1T 1/2

]1/2

+
+

s2σ
2
ε

2S2
− η,

where [a]+ = max{a, 0}, (Y ∗
·· − µ)/

√
bhσ2

α + σ2
ε ∼ N(0, 1) and (σ2

αIa−1 + σ2
εΛ)−1/2T ∼

N(0, Ia−1) are dependent. Let W0 ∼ N(0, 1), W1 ∼ N(0, Ia−1), W2 ∼ χ2
n−a, and W0, W1

and W2 are mutually independent. Then we have

R
d∼ y∗·· −

W0√
abh

[
bh

s1u −W ′
1ΛW1s2/W2

W ′
1W1

+
s2

W2

]1/2

+

+ zp

[s1u −W ′
1ΛW1s2/W2

W ′
1W1

]1/2

+
+

s2

2W2
− η

= R∗ − η, (3.4)
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where d∼ denotes “approximately distributed”.

Using the first expression in (3.4), it is easy to see that the observed value of R is 0,

and the distribution of R is stochastically monotone in η. Although the second expression

in (3.4) has a distribution free of any unknown parameters, but the actual distribution of

R does depend on unknown parameters. However, using the second expression in (3.4), R

is an approximate generalized test variable. Thus the generalized p-value for testing (2.5)

is defined as

p = P(R ≥ 0|η = ln(OEL)) = P(R∗ ≤ ln(OEL)|η = ln(OEL)).

Since the distribution of R using second expression, given y∗··, s1u, s2, is free of any unknown

parameters, the Monte Carlo method can be used to compute the generalized p-value. The

following algorithm can be used for obtaining it.

Algorithm 1:

(1) For a given data set, compute y∗··, s1u, s2;

(2) For j = 1, 2, · · · , N , generate

W0 ∼ N(0, 1), W1 ∼ N(0, Ia−1), W2 ∼ χ2
n−a;

(3) Compute the corresponding value R∗
j using the second expression in (3.4);

(4) End j loop.

Then the simulated generalized p-value for testing (2.5) is [Number of R∗
j > ln(OEL)]/N .

Remark 1 If all the bi’s are equal, it can be easily verified that the R in (3.4)

simplifies to the generalized pivot variable given in Krishnamoorthy and Mathew (2002).

§4. Simulation Study

We shall now study the size and power properties of the generalized test. The method

(LI) described in Section 3 is now compared with that provided by Krishnamoorthy and

Guo (2005) (KG) through a simulation study. The criteria for analyzing the performance

of the methods are to compare the sizes and powers properties of tests.

In the simulation, five unbalanced patterns were selected, which are shown in Table

1 and 2. Without loss of generality, µ = 0 is assigned. Note that

Y 1·, · · · , Y a· i.i.d. ∼ N(0, (λ + 1/bi)σ2
ε),

S2 ∼ σ2
εχ

2
n−a, (Y 1·, · · · , Y a·) and S2 are mutually independent, (4.1)
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where λ = σ2
α/σ2

ε . Also, Y
∗
·· and S1u depend on only Y i·’s, bi’s and a. For each unbalanced

pattern and σ2
α, σ2

ε , and A, a Monte Carlo method of evaluating the size and power of the

proposed test in Section 3 is given in the following algorithm.

Algorithm 2:

(1) For i = 1 to M , generate (y1·, · · · , ya·, s2) according to (4.1), and compute y∗·· and

s1u by (3.1), respectively;

(2) Use Algorithm 1 to compute the generalized p-value pi;

(3) End i loop;

(4) If the parameters µ, σ2
α, σ2

ε , and A are chosen such that η = ln(OEL), [Number of

pi < α]/M is a simulated estimate of the size; if the parameters µ, σ2
α, σ2

ε , and A

are chosen such that η < ln(OEL), [Number of pi < α]/M is a simulated estimate

of the power.

The Monte Carlo method of evaluating the size and power of the test can be found

in Section 4 of Krishnamoorthy and Guo (2005).

Tables 1 and 2 give the size and the power values of the test at the significant level

α = 0.05 with M = 5000 and N = 10000. For computing the size, we choose θ = A = 0.05.

For computing the power, we choose θ = 0.002 and A = 0.05 in Table 1, and choose A =

0.05 and µx/OEL = 0.2 in Table 2, where the mean exposure µx = exp(µ + (σ2
α + σ2

ε)/2).

The numerical results in Table 2 show that both LI and KG method can have the

sizes below the nominal level when λ is not too small. The sizes by LI test maintain

stated level across all values of λ for all patterns, although it produces very conservative

interval when λ is small. In contrast, the sizes by KG test may be exceeding the nominal

level. Especially, the simulated sizes by KG sizes are very large in cases with small λ

and very unbalanced designs. The powers of the two tests are increasing with the sample

sizes. Although the powers by LI test are sometimes little than ones by KG test, they are

generally vary little.

The simulation study indicates that both the LI and KG tests are useful for large

values of λ, and the LI method is good for all values of λ. In summary, the LI test are

recommended for extremely unbalanced designs in situations where λ is thought to be

small. In any other situation, LI and KG tests can be recommended.
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Table 1 Monte Carlo estimates of the sizes and powers

Size Power

a (b1, · · · , ba) σ2
α/σ2

ε σ2
ε LI KG LI KG

3 (5,10,15) 0.05 0.5 0.037 0.039 0.077 0.078

0.10 0.5 0.044 0.046 0.100 0.098

0.25 0.5 0.051 0.049 0.115 0.111

0.50 0.5 0.051 0.051 0.122 0.118

0.75 0.5 0.047 0.052 0.136 0.131

1.00 0.5 0.049 0.047 0.123 0.117

10 (1 2s,10 8s) 0.05 0.5 0.044 0.095 0.145 0.207

0.10 0.5 0.055 0.094 0.202 0.248

0.25 0.5 0.054 0.073 0.296 0.314

0.50 0.5 0.055 0.065 0.381 0.388

0.75 0.5 0.053 0.057 0.417 0.424

1.00 0.5 0.046 0.049 0.433 0.433

10 (1 2s,4 2s,6 2s,8 2s,10 2s) 0.05 0.5 0.040 0.066 0.121 0.168

0.10 0.5 0.054 0.080 0.171 0.210

0.25 0.5 0.052 0.072 0.260 0.291

0.50 0.5 0.051 0.063 0.328 0.351

0.75 0.5 0.046 0.054 0.376 0.396

1.00 0.5 0.049 0.054 0.403 0.424

16 (1 4s,2 4s,8 8s) 0.05 0.5 0.046 0.084 0.143 0.207

0.10 0.5 0.058 0.090 0.205 0.255

0.25 0.5 0.054 0.084 0.364 0.396

0.50 0.5 0.055 0.065 0.490 0.501

0.75 0.5 0.053 0.060 0.565 0.573

1.00 0.5 0.052 0.055 0.616 0.621

20 (1 5s,4 5s,8 5s,12 5s) 0.05 0.5 0.051 0.103 0.155 0.228

0.10 0.5 0.056 0.103 0.247 0.290

0.25 0.5 0.050 0.080 0.431 0.450

0.50 0.5 0.056 0.073 0.604 0.612

0.75 0.5 0.051 0.062 0.678 0.680

1.00 0.5 0.050 0.058 0.716 0.729
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Table 2 Monte Carlo estimates of the sizes and powers

Size Power

a (b1, · · · , ba) σ2
α/σ2

ε σ2
ε LI KG LI KG

3 (5,10,15) 0.05 0.5 0.033 0.035 0.577 0.552

0.10 0.5 0.041 0.042 0.508 0.483

0.25 0.5 0.047 0.046 0.350 0.331

0.50 0.5 0.050 0.047 0.250 0.236

0.75 0.5 0.050 0.053 0.209 0.196

1.00 0.5 0.049 0.047 0.161 0.150

10 (1 2s,10 8s) 0.05 0.5 0.040 0.082 0.982 0.983

0.10 0.5 0.053 0.090 0.969 0.970

0.25 0.5 0.055 0.074 0.939 0.942

0.50 0.5 0.054 0.066 0.834 0.836

0.75 0.5 0.052 0.059 0.713 0.717

1.00 0.5 0.046 0.049 0.602 0.604

10 (1 2s,4 2s,6 2s,8 2s,10 2s) 0.05 0.5 0.033 0.056 0.974 0.974

0.10 0.5 0.046 0.070 0.967 0.967

0.25 0.5 0.051 0.070 0.910 0.919

0.50 0.5 0.051 0.062 0.778 0.790

0.75 0.5 0.046 0.053 0.658 0.674

1.00 0.5 0.048 0.052 0.552 0.571

16 (1 4s,4 4s,8 8s) 0.05 0.5 0.040 0.070 0.998 0.998

0.10 0.5 0.054 0.083 0.996 0.997

0.25 0.5 0.057 0.083 0.988 0.988

0.50 0.5 0.055 0.066 0.956 0.957

0.75 0.5 0.053 0.060 0.876 0.878

1.00 0.5 0.052 0.055 0.799 0.803

20 (1 5s,4 5s,8 5s,12 5s) 0.05 0.5 0.046 0.090 0.999 0.999

0.10 0.5 0.052 0.099 0.999 0.999

0.25 0.5 0.049 0.077 0.998 0.998

0.50 0.5 0.054 0.071 0.983 0.984

0.75 0.5 0.049 0.062 0.949 0.951

1.00 0.5 0.048 0.056 0.881 0.884
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不平衡单因素随机模型在职业接触评价中的应用

李 新 民

(山东理工大学理学院应用数学研究所, 淄博, 255049)

在职业接触评价中, 单因素随机模型可用于评价工人接触均值超过职业接触限值的概率. 当数据不平衡

时, 本文利用广义推断研究了关于此概率的假设检验, 并对此方法与已有方法进行了模拟对比研究. 模拟结果

表明, 本文所给方法优于已有方法, 特别是在数据极不平衡时效果更优.
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