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Abstract
This paper is concerned with the estimation of varying-coefficient model that is frequently

used in statistical modeling. The wavelet procedures are developed to estimate the coefficient

functions. The advantage of this approach is to avoid the restrictive smoothness requirement for

nonparametric function of the traditional smoothing approaches for varying-coefficient model, such

as kernel and local polynomial methods. Furthermore, the convergence rate of the wavelet estima-

tors is derived and the asymptotic normality is established. Finite sample properties are studied

through Monte Carlo simulations.

Keywords: Varying-coefficient models, wavelet, least-square estimation, asymptotic nor-

mality, convergence rate.

AMS Subject Classification: Primary 62H12; secondary 62A10.

§1. Introduction

In recent years, many useful data-analytic modeling techniques have been proposed to
relax traditional parametric models and to exploit possible hidden structure. For an intro-
duction to these methods, see books by Hastie and Tibshirani (1990), Green and Silverman
(1994) and Fan and Gijbels (1996), among others. In dealing with high-dimensional data,
many powerful approaches have been incorporated to avoid so-called “curse of dimensional-
ity”. Examples include additive modeling (Hastie and Tibshirani, 1990), low-dimensional
interaction modeling (Friedman, 1991; Gu and Wahba, 1993; Stone et al., 1997), multiple-
index models (Hardle and Stoker, 1989), partially linear models (Green and Silverman,
1994) and their hybrids (Carroll et al., 1997). An important alternative to the additive and
other models is the varying-coefficient model, proposed by Hastie and Tishirani (1993), in
which the coefficients of classical linear models are replaced by nonparametric functions
and hence the regression coefficients are allow to vary as functions of other factors.

The varying-coefficient models is defined as

yi = xτ
i β(ti) + εi, (1.1)
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where yi’s are responses; xi = (xi1, · · · , xip)τ and ti are design points; β(t) = (β1(t), · · · ,
βp(t))τ is p-dimensional vector of unknown functions; εi’s are errors with mean 0 and
variance σ2 and superscript ’τ ’ denotes the transpose of a vector or matrix.

The varying-coefficient models are simple and useful extension of classical linear mod-
els. The appeal of the model (1.1) is that via allowing coefficient β1, · · · , βp to depend
on t, the modeling bias can significantly be reduced and “curse of dimensionality” can be
avoided. Another advantage of this model is its interpretability. It is well-recognized that
the model (1.1) has extremely wide applications, For example, see Wu et al. (1998) for de-
tails on novel applications of varying-coefficient models to longitudinal data. For nonlinear
time series applications, see Chen and Tsay (1993) and Cai, Fan and Yao (2000).

Many methods were developed to estimate the coefficient functions in (1.1). These
methods were all based on some nonparametric regression techniques, such as local poly-
nomial fitting (Cai, Fan and Li, 2000), kernel methods (Wu et al., 1998), smoothing splines
estimation (Chiang et al., 2001) and B-spline approximation (Lu and Mao, 2004), and so
on.

In this paper, the wavelet procedure, which was used to estimate the nonparametric
curve by Antoniadis et al. (1994), is applied to the varying-coefficient models. The wavelet
estimators of coefficient functions are constructed and their large sample properties are
derived. The main reason for adopting the wavelet approaches for the varying-coefficient
models is that an important assumption by all the existing approaches for coefficient func-
tions βj(t)’s is their high smoothness. But in reality, the assumption may not be satisfied.
In some practical areas, such as signal and image processing, objects are frequently in-
homogeneous. For wavelet approach it is well known that the hypotheses of degrees of
smoothness of the underlying function is less restrictive. Due to these abilities to adapt
to local features of curves, many authors have also applied wavelet procedures to estimate
nonparametric models. See for example recent works by Antoniadis et al. (1994), Donoho
and Johnstone (1994), Hall and Patil (1995), Liang et al. (1999), Qian and Cai (1999),
Zhou and Yao (2004), and so on.

The paper is organized as follows. In Section 2, the wavelet estimation procedures
are introduced. Section 3 establishes the main results. The proofs of the main results are
provided in Section 4. In Section 5, some finite sample properties of wavelet and local
linear estimators are studied via some simulation examples.

§2. Wavelet Estimation of Varying-Coefficient Models

Suppose that we have a sample {yi, xi, ti}n
i=1 from model (1.1). For simplicity,

throughout this paper we will assume that the design points {ti}n
i=1 are fixed, while
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{xi}n
i=1 are i.i.d. random sample from x. But, by replacing the expectation E(·) with

the conditional expectation E(·|t), our results can be easily extended to the situation in
that {ti}n

i=1 are random and x can depend on t. Without loss of generality, let t ∈ [0, 1].
The wavelet technique is applied to estimate the coefficient functions in model (1.1). The
detailed procedure is summarized below.

For convenience, we first introduce some symbols and definitions along the line An-
toniadis et al. (1994). (For more information of wavelet analysis, see Vidakovic, 1999).
Suppose that φ(·) is given scaling function in Schwarz space with order l. A multires-
olution analysis of L2(R) consists of an increasing sequence of closed subspace {Vm},
m = · · · ,−2,−1, 0, 1, 2, · · · , where L2(R) is the set of square integral functions over real
line. The associated integral kernel of Vm is given by

Em(t, s) = 2m ∑
k∈Z

φ(2mt− k)φ(2ms− k),

where Z denotes the set of integers. The projection of h(t) onto Vm is
∫

R
Em(·, t)h(t)dt.

Let Ai = [si−1, si] be a partition of the interval [0, 1] with ti ∈ Ai. Then the wavelet
estimator of β(t) = (β1(t), · · · , βp(t))τ is the solution of minimizing the following weighted
local least-squares equation

n∑
i=1

(yi −
p∑

j=1
xijbj)2

∫

Ai

Em(t, s)ds

with respect to b = (b1, · · · , bp)τ .
Let xi = (xi1, · · · , xip)τ , X = (x1, · · · , xn)τ , Y = (y1, · · · , yn)τ and

W (t) = diag
( ∫

A1

Em(t, s)ds, · · · ,

∫

An

Em(t, s)ds
)
.

The estimator of of β(t) = (β1(t), · · · , βp(t))τ is given by

β̂(t) = (β̂1(t), · · · , β̂p(t))τ = (XτW (t)X)−1XτW (t)Y. (2.1)

In the above wavelet estimator m act as a tuning parameter, such as the bandwidth
does for standard kernel smoothers. A key aspect of wavelet estimators is that the tuning
parameter ranges over a much more limited set of values than is common with other
nonparametric regression techniques. In practice only a small number of values of m (say
three or four) need to be considered. The optimal m can be selected by cross-validation
procedure.

The weight
∫

Ai

Em(t, s)ds can be calculated by the cascade algorithm given by An-

toniadis et al. (1994). Thus, the wavelet estimator can be easily calculated.
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§3. Asymptotic Properties of the Proposed Estimators

We begin with the following assumptions required to derive the large sample properties
of the proposed estimators in Section 2.

A1. x1, · · · , xn are i.i.d. samples from x and E(xxτ ) is no-singular. εi’s are i.i.d random
errors with mean 0 and variance σ2. Furthermore, suppose that each element of xxτ

and xε has finite (3 + δ)th moments (δ > 0).

A2. βj(·)′s belong to Sobolev space with order υ > 1/2.

A3. βj(·)′s satisfy the Lipschitz of order condition of order γ > 0.

A4. φ(·) is in the Schwarz space with order l ≥ υ, satisfies the Lipschtz condition with
order l and has a compact support. Furthermore, φ̂(ξ)− 1 = O(ξ) as ξ → 0, where
φ̂(·) is the Fourier transform of φ(·).

A5. max(|si − si−1|) = O(1/n).

A6. Furthermore, we also assume that for some Lipschitz function k(·),

ρ(n) = max
∣∣∣si − si−1 − k(si)

n

∣∣∣ = o(n−1).

The above conditions are mild and easily satisfied. The similar conditions are as-
sumed in the nonparametric regression of Antoniadis et al. (1994). In addition, since the
functions belonging to Sobolev space with order υ > 3/2 are continuously differential, A3
is redundant when υ > 3/2 and A2 is weaker than smoothness.

Now let’s establish the large sample properties of the estimators described in the
Section 2.

Theorem 3.1 Suppose that Assumption A1-A5 hold. Then for any t ∈ (0, 1)

max
1≤j≤p

|β̂j(t)− βj(t)| = O(n−1/3 log(n)) a.s. (3.1)

provided υ > 3/2, γ > 1/3 and 2m = O(n1/3).

Remark 1 When t = ti is the design point, (3.1) admits the result of Theorem
3.3 of Zhou and You (2004). Theorem 3.1 gives the convergence rate of the estimators
β̂j(t)’s for any t ∈ (0, 1). Theorem 3.1 also states that the convergence rate of wavelet
estimators of coefficient functions is comparable with the optimal convergence rate of the
nonparametric estimation in nonparametric models.
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To obtain asymptotic normality result, we need to consider an approximation to β̂j(t)
based on its values at dyadic points of order m. That is, define

β̂d
j (t) = β̂j(t(m)),

where t(m) =[2mt]/2m. Furthermore, let β̂d(t)=(β̂d
1(t), · · · , β̂d

p(t))τ . The β̂d
j (t) is piecewise-

constant approximation to β̂j(t) at resolution 2−m. The reason that β̂j(t) is approximated
by β̂d

j (t) is that the variance of β̂j(t) is stable at the dyadic points but fails to converge at
non-dyadic points. The detail discussion see Antoniadis et al. (1994).

Theorem 3.2 Suppose that Assumption A1-A6 hold and E(‖x‖4) < ∞, where ‖·‖
denotes Euclidean norm. Let v∗ = min(3/2, υ, γ + 1/2) − ε and ε = 0 for υ 6= 3/2, ε > 0
for υ = 3/2. If n2−m →∞ and n2−2mv∗ → 0, then

√
n2−m(β̂d(t)− β(t)) D−→ N(0, [E(xxτ )]−1σ2k(t)ω2

0), (3.2)

where ω2
0 =

∑
k∈Z

φ2(k) and Z is the set of integers.

Remark 2 According to Wu et al. (1998), continuous second derivative of βj(·)
are required to achieve the asymptotic normality. In our result, however, it suffices for
βj(·)’s to belong Sobolev space with order υ > 1/2. This highlights the power of wavelet
procedures.

Remark 3 To use the above asymptotic normality result to obtain confidence
intervals for βj(t) at given t. One needs to consistently estimate E(xxτ ) and the noise

variance σ2. E(xxτ ) can be estimated by (1/n)
n∑

i=1
xix

τ
i and σ2 can be estimated as follows:

σ̂2 =
1
n

n∑
i=1

(yi − ŷi)2,

where ŷi = xτ
i β̂(ti).

§4. Proofs of the Main Results

In order to prove the main results we first present several lemmas.

Lemma 4.1 Suppose that Assumption A4 holds, Then we have

(a) E0(t, s) ≤ ck/(1+ |t−s|)k and Em(t, s) ≤ 2mck/(1+2m|t−s|)k, where k is a positive
integer and ck is a constant depending on k only.

(b) sup
0≤t,s≤1

|Em(t, s)| = O(2m).
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(c) sup
0≤t≤1

∫ 1

0
Em(t, s)ds ≤ c, where c is a positive constant.

The proofs can be found in Antoniadis et.al (1994).

Lemma 4.2 Suppose that Assumption A4 and A5 hold and r(t) satisfies Assump-
tion A2 and A3. Then

sup
0≤t≤1

∣∣∣r(t)−
n∑

i=1
r(ti)

∫

Ai

Em(t, s)ds
∣∣∣ = O(n−γ) + O(ηm),

where

ηm =





(1/2m)γ−1/2 if 1/2 < υ < 3/2,
√

m/2m if υ = 3/2,

1/2m if υ > 3/2.

Lemma 4.2 follows easily from Theorem 3.2 in Antoniadis et al. (1994).

Lemma 4.3 Let {Vi, i = 1, · · · , n} be a sequence of independent random variables
with mean zero and finite (2 + δ)th moments, and {aij , i, j = 1, · · · , n} a set of positive
numbers such that max

i,j
|aij | ≤ n−p1 for some 0 ≤ p1 ≤ 1 and

∑
i

aij = O(np2) for some

p2 ≥ max{0, 2/(2 + δ)− p1}. Then

max
1≤j≤n

∣∣∣ ∑
i

aijVi

∣∣∣ = O(n−(p1−p2)/2 log n) a.s..

The proof Lemma 4.3 can be found in Härdle et al. (2000) and Zhou and You (2004).
Proof of Theorem 3.1 From (2.1), we have

β̂(t)− β(t)

= (XτW (t)X)−1XτW (t)Y − β(t)

=
[ n∑

i=1
xix

τ
i wi(t)

]−1 n∑
i=1

xiwi(t)(xτ
i β(ti)− xτ

i β(t)) +
[ n∑

i=1
xix

τ
i wi(t)

]−1 n∑
i=1

xiwi(t)εi, (4.1)

where wi(t) =
∫

Ai

Em(t, s)ds. Let aij = wi(t), j = 1, 2, · · · , n. From Lemma 4.1, we have

max
i,j

|aij | = max
i

∣∣∣
∫

Ai

Em(t, s)ds
∣∣∣ = O(2m/n) = O(n−2/3) = O(n−p1)

and
∑
i

aij =
∑
i

wi(t) =
∫ 1

0
Em(t, s)ds = O(1) = O(np2),

where p1 = 2/3 and p2 = 0. (If p1 = 2/3 and p2 = 0, it suffices that δ in Lemma 4.3 is
greater than or equal to 1. This can be satisfied by Condition A.1). Hence, by Lemma
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4.2 and 4.3, we have

n∑
i=1

xix
τ
i wi(t) =

n∑
i=1

(xix
τ
i − E(x1x

τ
1))wi(t) +

( n∑
i=1

wi(t)− 1
)
E(x1x

τ
1) + E(x1x

τ
1)

= O(n−1/3 log n) + O(n−γ) + O(ηm) + E(x1x
τ
1) a.s., (4.2)

where
n∑

i=1
(xix

τ
i−E(x1x

τ
1))wi(t)=O(n−1/3 log n), which means that each element of

n∑
i=1

(xix
τ
i

−E(x1x
τ
1))wi(t) is O(n−1/3 log n). Similarly, by Lemma 4.2, we have

n∑
i=1

(xiwi(t)xτ
i )(β(ti)− β(t))

=
n∑

i=1
(xix

τ
i − E(x1x

τ
1))(β(ti)− β(t))wi(t) +

n∑
i=1

E(x1x
τ
1)(β(ti)− β(t))wi(t)

= O(n−1/3 log n) + O(n−γ) + O(ηm) a.s.. (4.3)

Moreover, Lemma 4.3 also lead to

n∑
i=1

xiwiεi = O(n−1/3 log n) a.s.. (4.4)

From (4.1)–(4.4),
β̂(t)− β(t) = O(n−1/3 log n) a.s..

This completes the proof. ¤
Proof of Theorem 3.2 From the wavelet estimator (2.1) of β(t), it is easy to see

β̂(t)− β(t) =
( n∑

i=1
xix

τ
i wi(t)

)−1 n∑
i=1

xiwi(t)(yi − xτ
i β(t)). (4.5)

By Theorem 3.2 and 3.3 in Antoniadis et al. (1994), we have

n∑
i=1

xix
τ
i wi(t) = E(x1x

τ
1)(1 + op(1)). (4.6)

Let
n∑

i=1
xiwi(t)(yi − xτ

i β(t)) =
n∑

i=1
xiwi(t)xτ

i (β(ti)− β(t)) +
n∑

i=1
xiwi(t)εi

= Kn(t) + Ln(t), (4.7)

where Kn(t) =
n∑

i=1
xiwi(t)xτ

i (β(ti) − β(t)) and Ln(t) =
n∑

i=1
xiwi(t)εi. By Lemma 4.2, we

have

EKn(t) =
n∑

i=1
E(xix

τ
i )(β(ti)− β(t))wi(t)

= E(x1x
τ
1)(O(n−γ) + O(ηm)). (4.8)
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Let Knl(t) denote the lth element of Kn(t). The variance of Knl(t) can be written as

Var
( n∑

i=1
xilwi(t)xτ

i (β(ti)− β(t))
)

=
n∑

i=1
w2

i (t)(β(ti)− β(t))τCov (xixil, x
τ
i xil)(β(ti)− β(t))

≤
( n∑

i=1
w3

i (t)
)1/2{ n∑

i=1
wi(t)[(β(ti)− β(t))τCil(β(ti)− β(t))]2

}1/2
, (4.9)

where Cil = Cov (xixil, x
τ
i xil). Note that

n∑
i=1

w3
i (t) =

n∑
i=1

[ ∫

Ai

Em(t, s)ds
]3

=
n∑

i=1
E3

m(t, ui)(si − si−1)3,

where ui ∈ Ai. The number of terms contributing to the above sum is order O(2−m).
Hence, using the bound sup

t,s
E3

m(t, s) ≤ 23m,

n∑
i=1

w3
i (t) ≤ O(22mn−2). (4.10)

By Lemma 4.2, we have

n∑
i=1

wi(t)[(β(ti)− β(t))τCil(β(ti)− β(t))]2 = O(n−γ) + O(ηm). (4.11)

From (4.10) and (4.11), (4.9) is bounded by

O(n−12m){O(ηm) + O(n−γ)}1/2. (4.12)

By (4.8) and (4.12), we have

EK2
nl(t) = O(n−12m)(O(ηm) + O(n−γ))1/2 + (O(ηm) + O(n−γ))2.

Hence, from n2−2mv∗ → 0, √
n2−mKn = op(1). (4.13)

Now let’s verify the asymptotic normality of Ln(t(m)). From the proof of Theorem
3.3 of Antoniadis et al. (1994), we have

Cov (Ln(t(m))) = Ex1x
τ
1{n−12mσ2k(t)(ω2

0 + o(1)) + O(2mρ(n)) + O(22m/n2)}. (4.14)

Note that ELn(t(m)) = 0. By the Cramer-Wold Theorem, to derive the asymptotic nor-
mality of Ln(t(m)), it suffices to show that for any unit vector d ∈ Rp,

dτLn(t(m))/(dτCov (Ln(t(m)))d)1/2 D−→ N(0, 1). (4.15)
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Note that
dτLn(t(m)) =

n∑
i=1

wi(t(m))dτxiεi,

we shall appeal to a central limit theorem for weighted sums of i.i.d. random variables to
obtain (4.15). To complete the proof, we need to check

max
1≤i≤n

|w2
i (t

(m))|
dτCov (Ln(t(m)))d

→ 0.

From (4.14), we have

n2−mdτCov (Ln(t(m)))d = dτE(x1x
τ
1)dσ2k(t)ω0 + o(1). (4.16)

Also using max
1≤i≤n

|wi(t)|2 = O(22m/n2), we have

max
1≤i≤n

|w2
i (t

(m))|
dτCov (Ln(t(m)))d

=
O(22m/n2)
O(2m/n)

= o(1).

Hence (4.15) holds. That is
√

n2−mLn(t(m)) D−→ N(0,E(xxτ )σ2k(t)ω2
0). (4.17)

By(4.5), (4.6), (4.7), (4.13) and (4.17), Theorem 3.2 holds. ¤

§5. Numerical Simulations

In this section, we use the following examples to illustrate the performance of the
wavelet estimators of varying coefficient models.

Example 1 Y = (−1 + 2 sin(πt/60))X1 + (1− 2 cos(π(t− 25)/15))X2 + ε.

Example 2 Y = (−1 + 2 sin(πt/2))X1 + 9β(t)X2 + ε, where

β(t) =





4t2(3− 4t) if 0 ≤ t ≤ 0.5

(4/3) · t(4t2 − 10t + 7)− 1.5 if 0.5 < t ≤ 0.75

(16/3) · t(t− 1)2 if 0.75 < t ≤ 1

and β(t) is a piecewise polynomial with discontinuity. t follows a uniform distribution on
[0, 1] and X1 and X2 are normally distributed with correlation coefficient 2−1/2. Further
the marginal distributions of X1 and X2 are standard normal and ε, t and (X1, X2) are
independent. The random ε follows a normal distribution with mean zero and variance
σ2. The σ2 is chosen so that the signal to noise is about 5 : 1, namely

σ2 = 0.2Var (m(t,X1, X2)) with m(t,X1, X2) = E(Y |t,X1, X2).
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For each of the above examples, we conducted 100 simulations with sample size n =
100 and 200. The functional coefficients were estimated respectively by the wavelet method
and local linear method. The performances of the estimators were evaluated in terms of
mean absolute deviation error (MADE), which is defined as

MADEj =
1
n

n∑
i=1

|β̂j(ti)− βj(ti)|.

The tuning parameter m in the wavelet estimation and h in the local linear estimation were
chosen by ‘leave-one-out’ cross-validation procedures. Figure 1 depicts the actual functions
and their estimated curves, which attain median performance among 100 simulations with
sample size n = 200. Table 1 summaries the simulation results with the mean and the
standard deviation of MADEj based on 100 simulations with sample size n = 100 and
200.

Example 1: A typical result
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Example 2: A typical result

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

7

8

9

Figure 1 Comparisons of the performance between the wavelet method and local
linear method. Solid curve — true functions; dashed curves — estimates based on the
wavelet method; dashdot curves — estimates based on the local linear method.
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Table 1 The mean (standard deviation) of MADE of the functional
coefficient estimators

Example 1 Example 2

Size Method MADE1 MADE2 MADE1 MADE2

n = 100
Wavelet 0.0449(0.0135) 0.2908(0.0782) 0.1968(0.0613) 0.3234(0.0669)

Local linear 0.0440(0.0116) 0.2445(0.0674) 0.1999(0.0475) 0.3541(0.0555)

n = 200
Wavelet 0.0305(0.0089) 0.1898(0.0465) 0.1502(0.0411) 0.2561(0.0440)

Local linear 0.0302(0.0081) 0.1752(0.0430) 0.1508(0.0333) 0.2778(0.0322)

From Figure 1, we see that both the wavelet method and local linear method gave
fairly good estimates for the functional coefficients in Example 1 and 2. Reduction of the
mean of MADE with growing sample size is clearly identified from Table 1. Table 1 also
show that, for the irregular functional coefficient like β2(t) in the Example 2, the wavelet
method slightly outperforms the local linear method in terms of the observed MADE,
but for smoothing functional coefficient the local linear slightly outperforms the wavelet
method.
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变系数模型的小波估计

卢一强 李志林

(解放军信息工程大学电子技术学院, 郑州, 450004)

变系数模型是近年来文献中经常出现的一种统计模型. 本文主要研究了变系数模型的估计问题, 提出运

用小波的方法估计变系数模型中的系数函数, 小波估计的优点是避免了象核估计、光滑样条等传统的变系数

模型估计方法对系数函数光滑性的一些严格限制. 并且, 我们还得到了小波估计的收敛速度和渐近正态性. 模

拟研究表明变系数模型的小波估计有很好的估计效果.

关键词: 变系数模型, 小波, 最小二乘估计, 渐近正态性, 收敛速度.

学科分类号: O212.7.
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