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Abstract

We extend the comparison method and present a new method to derive sharp closed-form
semiparametric bounds on small value probability P(X < t), where X € [0, M] is a random vari-
able with EX = m; and EX? = ms fixed. The proofs of our results are elementary.
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§1. Introduction

Bounds of small value probability arise naturally in many areas of probability, statis-

tics, economics, and operations research. There is a long history of studying them, back
x

to works of Chebyshev. Although Markoffl!] (see also [2], [3]) obtained sup / f)da(t)

T 1
and inf / f)dy(t) given moments / t"dy(t) and stated that the bounds are sharp
—1 —1

at discrete distributions, his results have no expressions and are hard to use. Since then,
various applicable approaches have been addressed. Among these attempt, Karlin and
Studden!® and Isiil?l independently propose duality theory to deal with moment prob-
lems. The later then generalizes the duality results to the multivariate case. Bertsimas
and Popescul® present a semidefinite optimization program to transform a moment prob-
lems into semidefinite metrics and obtained supP(0 < X < ¢) for X > 0. In 2007,
Vandenbergel” obtained inf P(X € C) for C C R"™. Other results related moment prob-

lems, see [8], [9], [10] and the references therein.
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In this paper, we are interested in bounding the small value probability P(X < t),
where X € [0, M] is a random variable with EX = mj and EX? = my fixed . In this
attempt, we first extend comparison method, define a new random variable X, related to
X , find the relationship between EX* and EX(])’“, and then give elementary proofs of the
closed-form semiparametric bounds on P(X < ¢). Our results strengthen the following
two known results (see e.g. [6], [11], [12]): P(X = 0) < 1 —m?2/my and P(X < t) <
(mg —m2)/(mg — 2mat + t2).

The remaining of this paper is organized as follows. As a warm up, we present the
known comparison method and illustrate an example in Section 2. The statements of our
main results, Theorem 3.1, Theorem 3.2, and Theorem 3.3 are given in Section 3 together

with their proofs.

§2. Preliminaries

We begin with the known comparison method and then illustrate an example as
application.

Lemma 2.1 (see [10], [11]) Let P(X = 0) = ¢o < 1 for any random variable
X € [0,M] with EX* = mj, fixed and define a nonnegative random variable X, with
P(Xo<z)=(1-¢y) 'P(0 <X <) for x > 0. Then the following holds.

(i) X L Xo - 1y>q, in distribution, where Xy and U are independent, U is uniformly
distributed over (0, 1).

(i) EX* = EXE(1 — qo).

Proof (i) if z > 0, then

P(Xo . 1U>q0 > $) = P(X() >z, 1U>q0 = 1) = P(XO > $)P(1U>q0 = 1) = P(X > x)
(i) EX} = / kx"1P(Xo > x)dz = EXF/(1 — qo). O
0

Example 1 If X is a non-negative integer valued random variable with EX* = m;,

(k=1,2) given and (n — 1)m; < mg <n-my < n(n— 1) for positive integer n, then

P(X:0)<17(2n—1)m1—m2 my

n(n —1) - mo
Proof Let P(X =0) = gy < 1 and denote X as in Lemma 2.1, then P(Xy = 0) = 0.
Define a three points distribution V' as follows
0 W.P. 1 —P; — Py,
V=4qn-1 W.P. Py,
n W.P. Po,
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where Py = (nmy — mg)/(n — 1), Po = (my1 + mg — nmq)/n, P1 + P2 = ((2n — 1)m; —
ma)/n(n —1).
Then it is easy to check that EX* = EV¥, k = 1,2. We next define
0 W.P. 1—(1—qo) '(P1+Pa),
Vo=qn—-1  W.P. (1-q) !Py,
n W.P. (1—qo) 1Py,

or equivalently in distribution,
v Vo - L(>qp), Where Vp and U are independent, U ~ U(0,1).
Thus by Lemma 2.1 (i),

PX=0)=q = P(lwsqg) =0) +P(Lysq) =1)P(Xo=0)
1HP

P(Lr>qo) = 0) + P(L(r>q0) = 1)P(Vo = 0)
(2n — 1)m1 — M2
n(n—1)

IA

P(V=0)=1— (P +Py)=1—

This finishes the proof. O

§3. Main Results

In this section, we extend comparison method, obtain the sharp closed-form semi-

parametric bounds on P(X < ¢) and give elementary proofs of the results.

Theorem 3.1 Let P(X < t) = ¢ < 1 for any random variable X € [0, M] with
EX* = my, fixed and define a random variable t < Xo < M with P(Xy < #) = (1 —
q)"'P(t < X < z) for z >t and P(X(y < x) = 0 otherwise. Then the following holds.

(i) (X —1t)+ 2 (Xo —t) - 1lysq in distribution, where X and U are independent, U

is uniformly distributed over (0,1). Notation x4 means max(0, z).
t
(ii) Denote hy = (1 — q)_l/ kz*'P(X < z)dz, then
0
EX® = (EXE — hp)(1 — q) + qt*. (3.1)
Proof (i) It is easy to check that

0, if <0,
P((X — t>+ < (L‘) =144q, if = 07

g+Pt<X <z+1), if z>0.
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By independence of Xy and U, U ~ U(0,1), we obtain

0, if z <0,
P((Xo—1)  Liysq <) =1 q, if z=0,

g+Pt<X <z+1), if > 0.

Hence, (X —t)+ 2 (Xo = 1) Lysgq)-
(ii) Notice that the definition of Xy implies

(1—¢q)"'P(X > z), if z>t¢,
P(Xo>2)=1—-P(Xo<x)=
1, it 0<z<t,

we then have

EX) = L/1 kz"1P(Xo > z)dz

t 00
= / ka*~tdz + / kz 11— ¢)7P(X > z)dx
0 t

00 t
= tF+(1-¢g) " (/ ka*'P(X > x)dx — / kzFP(X > x)dx)
0 0

t
= th+(1-¢7t (EXk - / kz"1P(X > x)dx)
0
t

= (1-—¢) YEXF—q¢F)+(1 - q)l/ kx*~1 . P(X < z)dz
0

= (1—¢q) "(EX" — qt*) + Iy

This finishes the proof of the theorem. O

Theorem 3.2 Given any random variable X € [0, M] with EX = m; and fixed
t > 0, then

(i) Tf0 <t <mq,then P(X <t) < (M —my)/(M —t), and the equality holds if and
only if X takes only two values ¢t and M, with P(X =t) = (M —my)/(M —t).

(i) If my <t < M, then trivially P(X <t) <1, and the equality holds if and only if
X takes only two values 0 and ¢, with P(X =t) = m,/t.

Proof Since part (ii) is trivial, we only show part (i). Denote P(X <t) =¢ < 1,
then by (3.1)

-1
At 0D (X)) + gt )
EXo—t—h1 EXo—t hi

M—t M —1 M-t~

(1-1q)
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since EXg < M and hy > 0.
Hence, ¢ = P(X <t) <1—(my —t)/(M —t) = (M —mq)/(M —t). This finishes
the proof of (i). O

Theorem 3.3 Given any random variable X € [0, M] with EX = mj, EX? = my
and t > 0 fixed, then

(i) If0<t<(Mmi—ma)/(M—my), then P(X <t) < (ma—m?)/(ma—2myt+1t?)
and the equality holds if and only if X takes only two values, ¢t and (mg —mqt)/(m; —t),
with P(X =t) = (ma —m3?)/(ma — 2myt + t2).

(ii) If (Mmy —ma)/(M —mq) <t < mgy/mj, then

mo — mqt

P(ngt)gl—m

and the equality holds if and only if X takes only three values, 0, ¢t and M, with P(X =
0) = (M —mq)t — (Mmq —mg))/Mt, P(X =t) = (Mmy —mg)/(M — t)t.

(iii) If mgo/my < t < M, then P(X < ¢) = 1 for two point distribution at 0 and
ma/m1, with P(X = ma/m1) = m?/ma.

Proof Since part (iii) is trivial, we only show part (i) and (ii). There are at least
two ways to prove part (i). One is based on the extended comparison method given below
in the proof of part (ii), so we omit it here. The other is based on the so called shift
Chebyshev’s inequality, a somewhat special technique. Namely, for any A > t, we have by

Chebyshev’s inequality

_ 2 2 _
P(th):P(A—XZA—t)gE(A X)? 22— 2\my +my

(A —1)? (A —1)?

Hence 2 )

— 92\ _
P(X <t) < inf mitma M2
A>t ()\ — t)2 mo — 2mqt + 12
where the infimum is achieved at
— mat Mmq —
A= g = T2ty for t < MM T M2
mi — t M — mi

by simple calculus.
To prove (ii), denote P(X < t) = ¢ < 1, then by (3.1)

mo —m —q)7!
(=) ™ = Ao (- DEXG ko) + ot — (1= (EXo—h)t ~ ot
~ EX§ —EXot — hy + it
N M (M —t)

EXO(XD — t) hg — hlt < hz — hlt
M(M —t) M(M —t) — M(M —t)
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since t < Xog < M.
Also

heg —hit = (1-— q)—1</t 2eP(X < z)dx — /t tP(X < x)dx)
0 0

= (1- q)71< _ /ﬁ:(?y —tP(X <t—y)dy + /ﬁ:(?az —t)P(X < a:)dm)

(by putting y =t — x)

= (1—¢) ! /tt 2z —t)(P(X <z) —P(X <t —2))d.

/2
Notice that as t/2 < x < t, > t — x, one can obtain P(X < z) > P(X <t — x), thus
hg — hit > 0.
Hence
(1—(1)‘1-]\% <1,
that is
mo — mit

q:P(XSt)Sl—iM(M_t).

This finishes the proof of the theorem. O

As applications, we give the following three remarks to illustrate applications of our
results in European call option and inventory management problems (the interested reader,
see, e.g. [6], [13]).

Remark 1 The lower bound of small value probability P(X < t) can be easily
obtained by applying

infP(X <t)=infP(IM-—X>M—-t)=1—supP(M — X <M —1t),

so we omit the discussion about lower bound in the present paper.

Remark 2 The sharp upper and lower bounds on European call option max(0, X —
K) with K fixed, is immediately obtained by Theorem 3.3 and through the following
P(max(0,X — K) <t)=P(X < K +1), for t > 0.

Remark 3 Let z be the inventory of a single product, ¢ be the product’s unit cost,
and r the product’s unit price. The upper and lower bounds on profit over all demands
(represented by the random variable X) with given EX = m; and EX? = mg, can be
obtained by Theorem 3.3 and through the following

P(rmin{z, X} —cx) <t) =P(X < (t+ cx)/r), for t < (r —c)x.
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