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Abstract
We extend the comparison method and present a new method to derive sharp closed-form

semiparametric bounds on small value probability P(X ≤ t), where X ∈ [0, M ] is a random vari-

able with EX = m1 and EX2 = m2 fixed. The proofs of our results are elementary.
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§1. Introduction

Bounds of small value probability arise naturally in many areas of probability, statis-
tics, economics, and operations research. There is a long history of studying them, back

to works of Chebyshev. Although Markoff[1] (see also [2], [3]) obtained sup
∫ x

−1
f(t)dψ(t)

and inf
∫ x

−1
f(t)dψ(t) given moments

∫ 1

−1
tndψ(t) and stated that the bounds are sharp

at discrete distributions, his results have no expressions and are hard to use. Since then,
various applicable approaches have been addressed. Among these attempt, Karlin and
Studden[4] and Isii[5] independently propose duality theory to deal with moment prob-
lems. The later then generalizes the duality results to the multivariate case. Bertsimas
and Popescu[6] present a semidefinite optimization program to transform a moment prob-
lems into semidefinite metrics and obtained sup P(0 ≤ X ≤ t) for X ≥ 0. In 2007,
Vandenberge[7] obtained inf P(X ∈ C) for C ⊆ Rn. Other results related moment prob-
lems, see [8], [9], [10] and the references therein.
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In this paper, we are interested in bounding the small value probability P(X ≤ t),
where X ∈ [0,M ] is a random variable with EX = m1 and EX2 = m2 fixed . In this
attempt, we first extend comparison method, define a new random variable X0 related to
X , find the relationship between EXk and EXk

0 , and then give elementary proofs of the
closed-form semiparametric bounds on P(X ≤ t). Our results strengthen the following
two known results (see e.g. [6], [11], [12]): P(X = 0) ≤ 1 − m2

1/m2 and P(X ≤ t) ≤
(m2 −m2

1)/(m2 − 2m1t + t2).
The remaining of this paper is organized as follows. As a warm up, we present the

known comparison method and illustrate an example in Section 2. The statements of our
main results, Theorem 3.1, Theorem 3.2, and Theorem 3.3 are given in Section 3 together
with their proofs.

§2. Preliminaries

We begin with the known comparison method and then illustrate an example as
application.

Lemma 2.1 (see [10], [11]) Let P(X = 0) = q0 < 1 for any random variable
X ∈ [0,M ] with EXk = mk fixed and define a nonnegative random variable X0 with
P(X0 ≤ x) = (1− q0)−1P(0 < X ≤ x) for x > 0. Then the following holds.

(i) X
D= X0 · 1U>q0 in distribution, where X0 and U are independent, U is uniformly

distributed over (0, 1).
(ii) EXk = EXk

0 (1− q0).

Proof (i) if x > 0, then

P(X0 · 1U>q0 > x) = P(X0 > x, 1U>q0 = 1) = P(X0 > x)P(1U>q0 = 1) = P(X > x).

(ii) EXk
0 =

∫ ∞

0
kxk−1P(X0 > x)dx = EXk/(1− q0). ¤

Example 1 If X is a non-negative integer valued random variable with EXk = mk

(k = 1, 2) given and (n− 1)m1 ≤ m2 ≤ n ·m1 ≤ n(n− 1) for positive integer n, then

P(X = 0) ≤ 1− (2n− 1)m1 −m2

n(n− 1)
≤ 1− m2

1

m2
.

Proof Let P(X = 0) = q0 < 1 and denote X0 as in Lemma 2.1, then P(X0 = 0) = 0.
Define a three points distribution V as follows

V =





0 W.P. 1− P1 − P2,

n− 1 W.P. P1,

n W.P. P2,
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where P1 = (nm1 − m2)/(n − 1), P2 = (m1 + m2 − nm1)/n, P1 + P2 = ((2n − 1)m1 −
m2)/n(n− 1).

Then it is easy to check that EXk = EV k, k = 1, 2. We next define

V0 =





0 W.P. 1− (1− q0)−1(P1 + P2),

n− 1 W.P. (1− q0)−1P1,

n W.P. (1− q0)−1P2,

or equivalently in distribution,

V
d= V0 · 1(U>q0), where V0 and U are independent, U ∼ U(0, 1).

Thus by Lemma 2.1 (i),

P(X = 0) = q0 = P(1(U>q0) = 0) + P(1(U>q0) = 1)P(X0 = 0)

≤ P(1(U>q0) = 0) + P(1(U>q0) = 1)P(V0 = 0)

= P(V = 0) = 1− (P1 + P2) = 1− (2n− 1)m1 −m2

n(n− 1)
.

This finishes the proof. ¤

§3. Main Results

In this section, we extend comparison method, obtain the sharp closed-form semi-
parametric bounds on P(X ≤ t) and give elementary proofs of the results.

Theorem 3.1 Let P(X ≤ t) = q < 1 for any random variable X ∈ [0,M ] with
EXk = mk fixed and define a random variable t < X0 ≤ M with P(X0 ≤ x) = (1 −
q)−1P(t < X ≤ x) for x > t and P(X0 ≤ x) = 0 otherwise. Then the following holds.

(i) (X − t)+
D= (X0 − t) · 1U>q in distribution, where X0 and U are independent, U

is uniformly distributed over (0, 1). Notation x+ means max(0, x).

(ii) Denote hk = (1− q)−1

∫ t

0
kxk−1P(X ≤ x)dx, then

EXk = (EXk
0 − hk)(1− q) + qtk. (3.1)

Proof (i) It is easy to check that

P((X − t)+ ≤ x) =





0, if x < 0,

q, if x = 0,

q + P(t < X ≤ x + t), if x > 0.
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By independence of X0 and U , U ∼ U(0, 1), we obtain

P((X0 − t) · 1(U>q) ≤ x) =





0, if x < 0,

q, if x = 0,

q + P(t < X ≤ x + t), if x > 0.

Hence, (X − t)+
D= (X0 − t) · 1(U>q).

(ii) Notice that the definition of X0 implies

P(X0 > x) = 1− P(X0 ≤ x) =





(1− q)−1P(X > x), if x > t,

1, if 0 ≤ x ≤ t,

we then have

EXk
0 =

∫ ∞

0
kxk−1P(X0 > x)dx

=
∫ t

0
kxk−1dx +

∫ ∞

t
kxk−1(1− q)−1P(X > x)dx

= tk + (1− q)−1 ·
( ∫ ∞

0
kxk−1P(X > x)dx−

∫ t

0
kxk−1P(X > x)dx

)

= tk + (1− q)−1
(
EXk −

∫ t

0
kxk−1P(X > x)dx

)

= (1− q)−1(EXk − qtk) + (1− q)−1

∫ t

0
kxk−1 · P(X ≤ x)dx

= (1− q)−1(EXk − qtk) + hk.

This finishes the proof of the theorem. ¤

Theorem 3.2 Given any random variable X ∈ [0,M ] with EX = m1 and fixed
t > 0, then

(i) If 0 ≤ t ≤ m1, then P(X ≤ t) ≤ (M −m1)/(M − t), and the equality holds if and
only if X takes only two values t and M , with P(X = t) = (M −m1)/(M − t).

(ii) If m1 ≤ t ≤ M , then trivially P(X ≤ t) ≤ 1, and the equality holds if and only if
X takes only two values 0 and t, with P(X = t) = m1/t.

Proof Since part (ii) is trivial, we only show part (i). Denote P(X ≤ t) = q < 1,
then by (3.1)

(1− q)−1 m1 − t

M − t
=

(1− q)−1

M − t
· ((EX0 − h1)(1− q) + qt− t)

=
EX0 − t− h1

M − t
=

EX0 − t

M − t
− h1

M − t
≤ 1
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since EX0 ≤ M and h1 ≥ 0.
Hence, q = P(X ≤ t) ≤ 1 − (m1 − t)/(M − t) = (M −m1)/(M − t). This finishes

the proof of (i). ¤

Theorem 3.3 Given any random variable X ∈ [0,M ] with EX = m1, EX2 = m2

and t > 0 fixed, then
(i) If 0 ≤ t ≤ (Mm1−m2)/(M−m1), then P(X ≤ t) ≤ (m2−m2

1)/(m2−2m1t+ t2)
and the equality holds if and only if X takes only two values, t and (m2 −m1t)/(m1 − t),
with P(X = t) = (m2 −m2

1)/(m2 − 2m1t + t2).
(ii) If (Mm1 −m2)/(M −m1) ≤ t ≤ m2/m1, then

P(X ≤ t) ≤ 1− m2 −m1t

M(M − t)

and the equality holds if and only if X takes only three values, 0, t and M , with P(X =
0) = ((M −m1)t− (Mm1 −m2))/Mt, P(X = t) = (Mm1 −m2)/(M − t)t.

(iii) If m2/m1 ≤ t ≤ M , then P(X ≤ t) = 1 for two point distribution at 0 and
m2/m1, with P(X = m2/m1) = m2

1/m2.

Proof Since part (iii) is trivial, we only show part (i) and (ii). There are at least
two ways to prove part (i). One is based on the extended comparison method given below
in the proof of part (ii), so we omit it here. The other is based on the so called shift
Chebyshev’s inequality, a somewhat special technique. Namely, for any λ > t, we have by
Chebyshev’s inequality

P(X ≤ t) = P(λ−X ≥ λ− t) ≤ E(λ−X)2

(λ− t)2
=

λ2 − 2λm1 + m2

(λ− t)2
.

Hence

P(X ≤ t) ≤ inf
λ>t

λ2 − 2λm1 + m2

(λ− t)2
=

m2 −m2
1

m2 − 2m1t + t2
,

where the infimum is achieved at

λ = λ0 =
m2 −m1t

m1 − t
> t for t <

Mm1 −m2

M −m1

by simple calculus.
To prove (ii), denote P(X ≤ t) = q < 1, then by (3.1)

(1− q)−1 m2 −m1t

M(M − t)
=

(1−q)−1

M(M−t)
((1− q)(EX2

0−h2) + qt2 − (1− q)(EX0−h1)t− qt2)

=
EX2

0 − EX0t− h2 + h1t

M(M − t)

=
EX0(X0 − t)
M(M − t)

− h2 − h1t

M(M − t)
≤ 1− h2 − h1t

M(M − t)
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since t < X0 ≤ M .
Also

h2 − h1t = (1− q)−1
( ∫ t

0
2xP(X ≤ x)dx−

∫ t

0
tP(X ≤ x)dx

)

= (1− q)−1
(
−

∫ t

t/2
(2y − t)P(X ≤ t− y)dy +

∫ t

t/2
(2x− t)P(X ≤ x)dx

)

(by putting y = t− x)

= (1− q)−1

∫ t

t/2
(2x− t)(P(X ≤ x)− P(X ≤ t− x))dx.

Notice that as t/2 < x < t, x > t − x, one can obtain P(X ≤ x) ≥ P(X ≤ t − x), thus
h2 − h1t ≥ 0.

Hence
(1− q)−1 · m2 −m1t

M(M − t)
≤ 1,

that is
q = P(X ≤ t) ≤ 1− m2 −m1t

M(M − t)
.

This finishes the proof of the theorem. ¤
As applications, we give the following three remarks to illustrate applications of our

results in European call option and inventory management problems (the interested reader,
see, e.g. [6], [13]).

Remark 1 The lower bound of small value probability P(X ≤ t) can be easily
obtained by applying

inf P(X ≤ t) = inf P(M −X ≥ M − t) = 1− supP(M −X ≤ M − t),

so we omit the discussion about lower bound in the present paper.

Remark 2 The sharp upper and lower bounds on European call option max(0, X−
K) with K fixed, is immediately obtained by Theorem 3.3 and through the following

P(max(0, X −K) ≤ t) = P(X ≤ K + t), for t ≥ 0.

Remark 3 Let x be the inventory of a single product, c be the product’s unit cost,
and r the product’s unit price. The upper and lower bounds on profit over all demands
(represented by the random variable X) with given EX = m1 and EX2 = m2, can be
obtained by Theorem 3.3 and through the following

P(r min{x,X} − cx) ≤ t) = P(X ≤ (t + cx)/r), for t ≤ (r − c)x.
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我们推广了比较法, 提出一个新方法得到概率P(X ≤ t)的可达的半参数界, 这里X ∈ [0, M ]有给定的

EX = m1和EX2 = m2. 我们的证明是初等的.

关键词: 比较法, 矩问题, 半参数界, 概率估计.
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