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Abstract
We provide marginal coordinate tests based on two competing Principal Hessian Directions

(PHD) methods. Predictor contributions to central mean subspace can be effectively identified by

our proposed testing procedures. PHD-based tests avoid choosing the number of slices, which is a

well-known shortcoming of similar tests based on Sliced Inverse Regression (SIR) or Sliced Average

Variance Estimation (SAVE). The asymptotic distributions of our test statistics under the null

hypothesis are provided and the effectiveness of the new tests is illustrated by simulations.
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§1. Introduction

Dimension reduction methods have gained increasing popularity in recent years due to
an abundance of high-dimensional data. The theory of sufficient dimension reduction (Li,
1991; Cook, 1998) has been developed to reduce the predictor dimension prior to the model
formulation, while preserving full regression information and imposing few probabilistic
assumptions. Consider a univariate response Y and a p-dimensional predictor X. Sufficient
dimension reduction aims to find a a subspace spanned by the column space of a p × d

matrix η with d ≤ p such that

Y⊥⊥X|ηT X, (1.1)

where ⊥⊥ indicates independence. The column space of η is called a dimension reduction
space. Under very mild conditions, such as those given in Cook (1998), Chiaromonte and
Cook (2002), and recently further relaxed by Yin, Li and Cook (2007), the intersection of
all such spaces is itself a dimension reduction space. We call this intersection the Central
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Space (CS), and denote it by SY |X (Cook, 1998). If the mean response E(Y |X) is of
primary interest, the objective is then tailored to find a p× d matrix η such that

Y⊥⊥E(Y |X)|ηT X. (1.2)

The smallest subspace satisfying (2) is called the central mean subspace (CMS), which
is denoted by SE(Y |X) (Cook and Li, 2002). The central mean subspace contains all
information in X about E(Y |X), and is always a subspace of the related CS. The dimension
of the CS or CMS is usually referred to as the structure dimension, and denoted by d.
Classic sufficient dimension reduction methods that seek to identify the CS include Sliced
Inverse Regression (SIR; Li, 1991) and Sliced Average Variance Estimation (SAVE; Cook
and Weisberg, 1991), while Principal Hessian Directions (PHD; Li, 1992, Cook, 1998a),
as pointed out by Cook and Li (2002), is designed to target the CMS.

Testing the significance of subsets of predictors is frequently studied in the model-
based regression. Cook (2004) first proposed such a test based on SIR in the context of
sufficient dimension reduction, and named it marginal coordinate hypothesis test. Shao,
Cook and Weisberg (2007) further extended the marginal coordinate test to SAVE. Tests
with SIR and SAVE both target subset selection in SY |X .

Inspired by previous work, we propose marginal coordinate tests based on PHD in
this paper. Since SE(Y |X) ⊆ SY |X , when our objective is selecting active predictors in the
CMS rather than the CS, PHD-based marginal coordinate tests would be more accurate
than the tests based on SIR or SAVE. Moreover, SIR and SAVE both require slicing
and might be sensitive to the number of slices. Choosing optimal slices is still an open
problem in SIR and SAVE. Oftentimes different choices may effect the test performances
severely. Our proposed tests with PHD do not have such restrictions. Under fairly general
conditions, the test statistic converges in distribution to a weighted χ2 distribution. If the
predictors are normally distributed, the asymptotic null distribution of the modified test
statistic further reduces to a central χ2.

The rest of this paper is organized as follows. In Section 2 we briefly review PHD
method and discuss under what kind of conditions PHD is an exhaustive estimator. In
Section 3 we develop the marginal coordinate tests with PHD and asymptotic null dis-
tributions of the test statistics. Simulation results are reported in Section 4. Technical
proofs are relegated to the Appendix.

§2. Principal Hessian Directions

Define the standardized predictor Z = Σ−1/2(X − µ), where Σ = Var (X) and µ =
E(X). Due to an affine invariance law (Cook, 1998), we assume throughout this paper
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that the predictor X is standardized satisfying E(X) = 0, Var (X) = Ip and E(Y ) = 0,
where Ip is the p× p identity matrix. Classic sufficient dimension reduction can often be
formulated as an eigen-decomposition problem:

Mβi = λiβi, for i = 1, · · · , p,

where M is a method-specific symmetric kernel matrix with eigenvalues λ1 ≥ · · · ≥ λd >

λd+1 = · · · = λp = 0. SIR and SAVE are based on matrix MSIR = Var [E(Z|Y )] and
MSAVE = E[Ip−Var (Z|Y )]2. There are two variations for PHD, the response based PHD,
denoted by y-PHD, and the residual based PHD, denoted by r-PHD. Their corresponding
kernel matrices are My−PHD = ΣyzzΣyzz and Mr−PHD = ΣrzzΣrzz, where Σyzz = E[(Y −
E(Y ))ZZT ], Σrzz = E(rZZT ) with r = Y − E(Y )− E(Y ZT )Z. Under certain conditions,
it can be shown that (η1, · · · , ηd) = (Σ−1/2β1, · · · ,Σ−1/2βd), or the Σ−1/2-transformed
eigenvectors corresponding to the nonzero eigenvalues {λ1 ≥ · · · ≥ λd > 0}, form a basis
for the CS or CMS under investigation. In order to produce consistent estimator of the
CMS, PHD requires,

1. Linear Conditional Mean (LCM): E(X|ηT X) is a linear function of X.

2. Constant Conditional Variance (CCV): Var (X|ηT X) is nonrandom.

These conditions are rather common in sufficient dimension literature. SIR requires LCM
for consistent estimation, and LCM and CCV conditions are both required for SAVE
to work. In addition, we impose a coverage condition for PHD to estimate the CMS
exhaustively.

3. Coverage condition: For any nonzero p × 1 vector ν ∈ SE(Y |Z), νT My−PHDν > 0
and νT Mr−PHDν > 0.

The above three conditions guarantee that span(My−PHD) = SE(Y |Z) and span(Mr−PHD) =
SE(Y |Z), where span(A) is defined as the subspace spanned by the columns of A. Such
a coverage condition is similar to that of SIR (Cook, 2004) and SAVE (Shao, Cook and
Weisberg, 2007), where they want to exhaustively estimate the CS.

The sampling estimation of PHD is straightforward. Let {(xi, yi), i = 1, · · · , n} be
an i.i.d. sample of (X, Y ). Note that {(xi, yi), i = 1, · · · , n} is an also i.i.d. sample of
(Z, Y ) since E(X) = 0 and Var (X) = Ip by our assumptions. Thus we can define zi = xi,
i = 1, · · · , n. Denote x = En(x) and Σ̂ = En[(x− x)(x− x)T ] to be the sample mean and

sample covariance of X, where Enf(x) stands for n−1
n∑

i=1
f(xi). Let ẑi = Σ̂−1/2(xi − x),

i = 1, · · · , n and y = En(y). Then we can estimate My−PHD by M̂y−PHD = Σ̂yzzΣ̂yzz,

where Σ̂yzz = (1/n)
n∑

i=1
(yi − y)ẑiẑ

T
i . To estimate the population regression error ri =

yi − E(Y Z)T zi, we use its sample version r̂i = yi − y − γ̂T ẑi, i = 1, · · · , n, where γ̂ =
En(ẑ(y− y)). The kernel matrix for the r-PHD is then estimated by M̂r−PHD = Σ̂rzzΣ̂rzz,
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where Σ̂rzz = (1/n)
n∑

i=1
r̂iẑiẑ

T
i . Then we estimate SE(Y |X) consistently by the span of

(η̂1, · · · , η̂d) = (Σ̂−1/2β̂1, · · · , Σ̂−1/2β̂d), where (β̂1, · · · , β̂d) are eigenvectors associated with
the d-largest eigenvalues of M̂y−PHD or M̂r−PHD.

§3. Marginal Coordinate Hypotheses

Marginal coordinate hypotheses are statements of the form SE(Y |X) ⊆ V, where V is
a user-selected subspace of the predictor space that specifies the hypothesis. For example,
suppose Y⊥⊥E(Y |X)|X1 for a given partition XT = (XT

1 , XT
2 ), which means the p − m

selected predictors X2 do not contribute to the regression mean function E(Y |X). In this
case, V can be selected as the subspace of Rp corresponding to the coordinates of X1, that
is, V = span((Im, 0)T ). We formulate the following marginal coordinate hypothesis:

H0 : SE(Y |X) ⊆ V versus H1 : SE(Y |X) * V, (3.1)

where dim(V) = m < p.
We need the following notations to construct the test statistics. Let αx be a p ×m

matrix of column rank m and span(αx) = V. At the Z scale, without loss of generality
we take the columns of α = Σ1/2αx(αT

x Σαx)−1/2 to be an orthonormal basis. Denote
its sample estimator by α̂ = Σ̂1/2αx(αT

x Σ̂αx)−1/2. Finally, let columns of p × (p − m)
matrices H and Ĥ be orthonormal bases for the orthogonal complements of span(α) and
span(α̂) respectively. In fact, H is chosen to select p−m appropriate rows of η such that
HT Σ1/2η = 0. The test statistics based on y-PHD and r-PHD are proposed as following:

T1(Ĥ) = ntr(ĤT Σ̂yzzĤ)2/2V̂ar (Y ), (3.2)

T2(Ĥ) = ntr(ĤT Σ̂rzzĤ)2/2V̂ar (r), (3.3)

where tr stands for the trace operator, V̂ar (Y ) and V̂ar (r) are consistent sample estimates
of Var (Y ) and Var (r) respectively. Let V = HT Z, then for the test statistics T1 and T2

given by (3.2) and (3.3), we have the following theorem.

Theorem 3.1 Assume that LCM, CCV and coverage condition hold. Then, under
the marginal coordinate hypothesis SE(Y |X) ⊆ V,

2T1 −→
∑
j

δjχ
2
j (1) and 2T2 −→

∑
j

τjχ
2
j (1),

where the convergence is in distribution as n →∞. For j = 1, · · · , (p−m)(p−m + 1)/2,
χ2

j (1) denotes independent chi-squared random variable with one degree of freedom, δj

and τj are the jth largest eigenvalues of the (p−m)× (p−m) matrices Var (vec(Y (V V T −
Ip−m)))/Var (Y ) and Var (vec(r(V V T−Ip−m)))/Var (r) respectively, in which vec(·) denotes
the operator that stacking the columns of a matrix.
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The variance matrices Var (vec(Y (V V T − Ip−m))) and Var (vec(r(V V T − Ip−m))) can
be consistently estimated by the sample covariance matrices of yi(Ĥẑiẑ

T
i Ĥ − Ip−m) and

ri(Ĥẑiẑ
T
i Ĥ− Ip−m), i = 1, · · · , n. Their largest (p−m)(p−m+1)/2 eigenvalues can thus

be consistently estimated correspondingly.
When X is normally distributed, LCM and CCV condition naturally hold and we

have HT Z ∼ N(0, Ip−m). With the additional coverage condition, the asymptotic null
distributions of test statistics T1 and T2 degenerates to central χ2.

Theorem 3.2 Assume that X is normally distributed and the coverage condition
is enhanced to SE(Y |X) = SY |X . Then, under the coordinate hypothesis SE(Y |X) ⊆ V,

T1 −→ χ2{(p−m)(p−m + 1)/2},

where the convergence is in distribution as n → ∞. If in addition we assume E(r|Z) =
E(r|βT Z) and Var (r|Z) = Var (r|βT Z), where β is a p× d matrix composed of the eigen-
vectors corresponding the nonzero eigenvalues of Mr−PHD, then

T2 −→ χ2{(p−m)(p−m + 1)/2},

where the convergence is in distribution as n →∞.

E(r|Z) = E(r|βT Z) and Var (r|Z) = Var (r|βT Z) are commonly used conditions in
marginal dimension test for r-PHD (Cook, 1998a). The marginal coordinate tests with
PHD enable us to perform model-free variable selection by examining the possibility of
excluding a subset of predictors, as we are going to see in the next section.

§4. Simulation Studies

To check the performance of the PHD-based marginal coordinate tests, we focus on
the following two models:

Model I : Y = cos(X1) + 0.2ε, (4.1)

Model II: Y = cos(2X1)− cos(X2) + 0.2ε, (4.2)

where the error ε is standard normal and independent of X. Set p to be 5 and 10. We
also try different sample sizes with n = 50, 100, 150, 200. Let e1 = (1, 0, · · · , 0)T and
e2 = (0, 1, 0, · · · , 0)T . V can be chosen as span(e1) for Model I or as span(e1, e2) for Model
II. For illustration purpose, we set X ∼ N(0, Ip). As a result, the test statistics for y-
PHD and r-PHD are central χ2 distribution as stated in Theorem 3.2. We genarate 1000
replications at each sample configuration. The estimated significance levels are reported
by counting the number of p-values that are less than or equal to a nominal level 5%. We
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also include the marginal coordinate test with SAVE (Shao, Cook and Weisberg, 2007)
for comparison. To the best of our knowledge, there is no data-driven method in selecting
the optimal number of slices for SAVE. A wide range of number of slices are included and
we set ns = 2, 5, 10 and 25 for SAVE.

Tables 1 Estimated levels, as percentages of nominal 5% tests, based on Model I

PHD SAVE

p n y-PHD r-PHD ns = 2 ns = 5 ns = 10 ns = 25

n = 50 5.10 3.70 2.20 2.50 0.20 0.10

p = 5 n = 100 5.60 5.80 3.50 3.60 2.40 0

n = 200 5.00 4.90 4.00 3.20 2.60 0.70

n = 50 6.60 4.50 1.30 0.80 0.10 0

p = 10 n = 100 6.40 4.90 3.40 2.40 0.50 0

n = 200 5.40 5.30 3.70 3.10 2.00 0.50

Tables 2 Estimated levels, as percentages of nominal 5% tests, based on Model II

PHD SAVE

p n y-PHD r-PHD ns = 2 ns = 5 ns = 10 ns = 25

n = 50 5.30 4.60 3.30 1.70 1.10 0

p = 5 n = 100 4.80 4.50 4.10 2.80 1.30 0.40

n = 200 5.20 5.40 4.40 4.10 3.50 1.80

n = 50 4.40 3.60 1.30 1.00 0 0

p = 10 n = 100 4.60 4.80 3.10 2.30 0.40 0

n = 200 4.80 4.90 2.90 3.00 1.80 0

Tables 1 and 2 contain results from marginal coordinate tests for Model I and II
respectively. The results of our proposed marginal coordinate tests with PHD are very
satisfying. The estimated levels of the PHD tests give a uniformly closer approximation to
the true nominal level than the tests based on SAVE, regardless of the choice of number
of slices. We confirm the findings of Li and Zhu (2007) that marginal coordinate test with
SAVE depends heavily on the choice of number of slices. For fixed p, all methods improve
with increasing sample size n. It is a nice surprise that with moderate sample size n = 50,
when the SAVE-based tests are meaningless, tests based on PHD can still yield very good
results sometimes. The y-PHD test seems to be more sensitive to the change of p. It
deteriorates more when p increases from 5 to 10 with fixed n. The dimension of predictors
p has little effect on the results of r-PHD tests. Free from the issue of choosing optimal
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number of slices, marginal coordinate tests with PHD are effective and more efficient in
performing model free subset selection and hence are strongly recommended.

§5. Appendix

Before proceeding to the proof of Theorem 3.1, we first give two useful lemmas.

Lemma 5.1 Let ξ = zzT − I, γ = E(Y Z), then we have

Σ̂yzz = Σyzz + En(yξ − Σyzz)− En(ξ)Σyzz/2− ΣyzzEn(ξ)/2− zγT − γzT + Op(n−1),

Σ̂rzz = Σrzz + En(rξ − Σyzz)− En(ξ)Σrzz/2− ΣrzzEn(ξ)/2 + Op(n−1).

Proof It is easy to verify that

Σ̂yxx = En(yxxT )− yEn(xxT )− xEn(yxT )− En(yx)xT + Op(n−1)

= En(yxxT )− yIp − xE(Y X)T − E(Y X)xT + Op(n−1)

= Σyxx + En[y(xxT − I)− Σyxx]− xE(Y X)T − E(Y X)xT + Op(n−1).

According to Cook (1998), we have Σ̂−1/2 = Ip − En(xxT − Ip)/2 + Op(n−1). Then the
conclusion for Σ̂yzz can be easily derived since Σ̂yzz = Σ̂−1/2Σ̂yxxΣ̂−1/2. Similar techniques
can be applied to expand Σ̂rzz and hence we omit the details here. Just keep in mind that
E(rX) = 0 but E(Y X) may not be zero. ¤

Lemma 5.2 Suppose that Ĥ is a p× (p−m) matrix such that ĤT Ĥ = Ip−m and
Ĥ = H + Op(n−1/2). Then under null hypothesis, Ti(Ĥ) = Ti(H) + op(1), i = 1, 2.

Proof We only deal with T1(Ĥ) since derivation for T2(Ĥ) is almost the same.
Note that HT Σyzz = 0 under null hypothesis, then

ĤT Σ̂yzzĤ = HT Σ̂yzzH + (Ĥ −H)T Σ̂yzzH + HT Σ̂yzz(Ĥ −H) + Op(n−1)

= HT Σ̂yzzH + (Ĥ −H)T ΣyzzH + HT Σyzz(Ĥ −H) + Op(n−1)

= HT Σ̂yzzH + Op(n−1).

The conclusion is then straightforward by invoking slutsky theorem. ¤
Proof of Theorem 3.1 Under null hypothesis, HT Σyzz = 0 and HT Σrzz = 0.

Moreover, from Cook and Li (2002), the OLS estimator γ = E(Y Z) ⊆ SE(Y |Z), then
HT γ = 0. By invoking Lemma 5.1, we can derive that

HT Σ̂yzzH =
1
n

n∑
i=1

yi(HT ziz
T
i H − Ip−m) + Op(n−1),

HT Σ̂yzzH =
1
n

n∑
i=1

yi(HT rir
T
i H − Ip−m) + Op(n−1).
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By central limit theorem, we can conclude that n1/2vec(HT Σ̂yzzH) and n1/2vec(HT Σ̂yzzH)
converge in distribution to N

(
0,Var (vec(Y (V V T − Ip−m)))

)
and N

(
0,Var (vec(r(V V T −

Ip−m)))
)

respectively. The conclusion can then be easily derived by invoking Lemma 5.2
and slutsky theorem. ¤

Proof of Theorem 3.2 Define U = V V T − Ip−m. By the EV-VE formula, we
have Var (V ) = E[(VarV |αT Z)]+Var [E(V |αT Z)]. Since Z is normally distributed, we have
Var (Z|αT Z) and Var (vec(U)|αT Z) are nonrandom, and E(V |αT Z) = HT E(Z|αT Z) =
HT PαZ = 0, where Pα denotes the projection operator for span(α) with respect to the
identity inner product. Then Var (V |αT Z) = Var (V ) = Ip−m. Similarly, E(U |αT Z) =
Var (V |αTZ)+E(V |αTZ)E(V T |αT Z)−Ip−m =0 and hence Var (vec(U)|αT Z)=Var (vec(U)).
Moreover, from Proposition 1 in Cook (2004), we know that Y⊥⊥V |αT Z, which yields to
Var [E(Y vec(U)|αT Z)] = Var [E(Y |αT Z)E(vec(U)|αT Z)] = 0. We then can further derive
that

Var (Y vec(U)) = E[Var (Y vec(U)|αT Z)] = E(Var (Y |αT Z)Var (vec(U)|αT Z)]

= E[E(Y Y T |αT Z)Var (vec(U))] = Var (Y )Var (vec(V V T )).

Since V ∼ N(0, Ip−m), Var (vec(V V T ))/2 is a projection matrix with rank (p − m)(p −
m + 1)/2 (Schott, 1997) and hence all its nonzero eigenvalues are all equal to 1. Then the
asymptotic distribution of T1 can be easily derived by invoking slutsky theorem. Similar
procedures can be taken to derive that Var (rvec(U)) = Var (r)Var (vec(U)) and then the
asymptotic distribution of T2 under null hypotheis. We omit the details here. ¤
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基于主Hessian方向的中央均值子空间边际坐标检验

於 州1 董玥潇2 房 云1

(1华东师范大学金融与统计学院, 上海, 200241; 2天普大学统计系, 美国宾州费城, 19122)

本文给出了基于两种相近的主Hessian方向方法的边际坐标检验. 这种检验方法能够非常有效的识别自

变量对于回归均值中央子空间的贡献. 此外, 与利用切片逆回归和切片平均方差估计的检验方法不同的是, 本

文中主Hessian方向的检验方法可以避免对切片数目的选择. 我们证明了检验统计量在原假设下的渐近分布,

并且通过模拟, 证实了检验的有效性.

关键词: 边际坐标检验, 主Hessian方向.

学科分类号: O212.
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