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Abstract

Nonparametric estimation of the density function of unobservable regression errors is a funda-
mental issue in regression analysis, because there are many practical applications of error density
estimation. This problem for regression models with complete observed data has been studied
by several authors. But in many application fields, the corresponding variables are not complete
observable because of censoring. In this case, the density function of the unobservable regression
errors can be estimated by the kernel type estimator based on the censored regression residuals.
In this paper, the asymptotic property of the kernel type estimator is considered and the uniform
consistency of the estimator is established.

Keywords: Nonparametric estimation, censored data, regression residuals, uniform consis-
tency.
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81. Introduction

Let (X1,Y7),---,(Xy,Y,) are n independent and identically distributed (i.i.d.) real-
izations of the random vector (X,Y’), with X taking values in [0,1]. Suppose X and Y

are related via the regression function m(x) := E(Y|X = x) which satisfy
Y = m(X;) + e, i=1,---,n, (1.1)

where ej, -+ , e, are unobservable random errors which are independent and identically

distributed with zero mean.
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Estimation of the density function of the unobservable regression errors e; is a fun-
damental issue in regression problem (1.1), because there are many practical applications
of error density estimation, such as hypothesis testing, prediction, and so on. Estimation
of the error density function in regression models with complete observed data has been
studied by Cheng> 2, and Efromovich!®) among others.

But in many fields, such as life time data analysis, econometrics, environmental sci-
ence and other applications, the response variables Y; may not be completely observ-
able because of censoring. In such case, one observes not {(X;,Y;) : i = 1,--- ,n}, but
{(X;, min(Y;,C;),6;) : i = 1,--- ,n} only, where C,---,C,, are i.i.d. censoring variables
independent of X1, -, X, §; = I(Y; < C;) and I(A) is the indicate function of set A.

The regression problem (1.1) with censored data has been studied by Buckley and
James!¥| Tsiatisl®!, Lai and Yingl®, Fan and Gijbels[”!, Stute!® 9 and others. Let My (2)
be a regression estimator, then €; = Y; — m,(X;) are called regression residuals. Note that
because of the censoring, to estimate the density function of e;, only {(2;,d;) i =1,--- ,n}
can be used, where z; = min(Y;, C;) — m,(X;) are the censored regression residuals, and
d; are the same as defined above.

Suppose e, -, e, have the same distribution function F' and density function f.

The K-M type estimator of F' based on the censored residuals is

n N. (3 I(Z:<t,6;=1)
. T (om0 < maxzi,e - 50
Fn(t) =1- =1 Nn(zl) + 1

0, elsewhere,

n

where Ny, (t) = 3 I(Z; > t). The kernel type estimator of f based on F}, is

=1
Fult) = h(z)/RK(’;(_n;)dﬁn(s), (1.2)

where h(n) is a sequence of positive numbers such that h(n) — 0 as n — oo, and K is a

density function.

ﬁl(t) is proposed by Van Keilegom and Veraverbeke1.

The main purpose of this
paper is to investigate the uniform consistency of the estimator (1.2). In next section,
we will state the assumptions and some notations needed in this paper. In Section 3, the
uniform consistency of the estimator is established, and the proofs are given in detail. The

simulation results are shown in Section 4.

§2. Assumptions and Some Notations

Denote
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To obtain the uniform consistency of estimator (1.2), a basic assumption about d,(z) is
given first:
(C1) There is a sequence of positive numbers 3, which satisfy 3, — 0 and n3? — oo

as n — 0o such that

sup |dp(x)] = Op(6n) as n — oo. (2.1)
z€[0,1]

(2.1) indicate that for any € > 0, there is a constant M, < oo, such that
P(Ane) >1—¢ (2.2)
holds for all n large enough, where

Ape= {ﬂ;l sup |dn(z)| < ME}.
z€[0,1]

There are many examples of the case that assumption (C1) is satisfied.

Censored linear regression model, i.e. the censored regression model with m(z) = 68«
has been studied by many authors. For example, TsiatisP®), Lai and Yingl® and Stutel®!
proposed different estimators @\n of 6y and, respectively, proved that under some conditions,
\/’Tl(é\n—gg) converge to normal distribution with zero mean and finite variance. Let m,,(x)
@1; x. In such cases, we have

~ 1
sup |mp(x) —m(z)| = sup |§£w —0F x| <16, — 60| = Op(—).
z€[0,1] z€[0,1] \/ﬁ
Therefore, (2.1) holds for any sequence of 3, satisfying n3? — +oo.
Stutel® proposed an estimator §n for the parameter in nonlinear censored regression
model, i.e. the censored regression model with m(z) = f(z,6y). From Theorem 1.2 in [9]

we know that under some conditions
(B, — o) = O,(1).

Suppose that there is a positive constant C' > 0 such that |f(x,01) — f(z,62)] < C|6; — 62
holds for all z € [0,1] and any 6y, 65. Let my,(z) = f(,6y). Since
~ ~ 1

sup [my () = m(x)| = sup |f(z,00) = (2,600 < Clon — o] = Op( =),

x€[0,1] z€[0,1] v
(2.1) holds for any sequence of 3, satisfying n% — +oo.

Ould-Said and Cail'!l proposed an estimator &, (y|x) for &(y|z), which is the condi-

tional probability density function of Y given X = x under censoring, and proved that

when the support Dy of Y is bounded,

logn o
sup sup |[&n(ylT) — z)| = O( max ,an,
$€[OI,)1]y€Dpy |£ (y‘ ) §(y| )| < <na ))
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holds with probability 1 as n — oo under some conditions, where a, is a sequence of

positive numbers satisfy a,, — 0 and naZ /(loglogn) — co. Let m,(x) = y&n (ylx)dy.
Dy

Then we can get that

sup (o)~ m(a) = sup | [ ylealyln) - o)y
2€[0,1] zef01] ' J Dy
< s / W11 (y]z) — E(yl)|dy
16[0,1] Dy
< swp sup en(yle) — El)] / lyldy
2€[0,1] y€Dy Dy

= ofms(422.02)

holds with probability 1. Let a, = v/logn/+/n and (3, = logn/+/n, then condition (C1)
holds obviously.

Other assumptions needed in this paper are imposed as following:

(A1) ey, -, e, are i.i.d. random variables with same distribution function F' and
bounded and continuous density function f. {C; —m(X;) :i=1,--- ,n} are i.i.d. random
variables which are also independent of {e; : i = 1,--- ,n}. The distribution function G of
C; — m(X;) has a bounded and continuous density function g. Moreover, 7p < 7¢ < 400,
where 7p = inf{t : F(t) = 1}, 7¢ = inf{t : G(¢) = 1}.

(A2) h(n) — 0, nh(n)? — oo, nh(n)/logn — oo, B,/h(n) — 0.

(A3) K is a continuous and bounded density function with support [—1, 1], and there

is a positive constant L > 0 such that
|K(21) — K(22)| < Llzy — 22

holds for any z; € [—1,1] and x5 € [—1,1].
Note that the regression error e; is censored at C; — m(X;). Define z; = min(Y; —
m(X;),C; —m(X;)) and denote its distribution function by H. To simplify the proofs in

Section 3, some notations are defined beforehand:

n N’I’L /\’L ]_ I(’Z\igtﬁi:l) . R N
R II (&) , if t <max(z1, - ,2n);
Fr(t)=1—{i=1 \Na(Z) +2
0, elsewhere.
1 1 n
Hy(zit)=—> Iz <t, 6 =1),  Hy(zt)=—> I(zi <t,6=1),
ni=1 n =1
1 1 n
Hy(zi5t) = — > I(z < ), Hy(zist) = — > I(% < 1),
n =1 =1
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HU(t) = Pe; < 1,8, = 1) = /t (1 - G(s))dF(s),

—00

t
1
= ——  dH"(G:s),
n(t) /Ool—Hn(Ei;s) n (% 8)

() = /m 1_1H(S)dH“(s) — “log(1— F(1)).

For any distribution function S let S = 1 — .S denote the corresponding survival function.

83. Uniform Consistency of the Estimator

In order to establish the uniform consistency of fn, firstly, we give the following two

lemmas.

Lemma 3.1 Under assumptions (C1) and (A1) we have that for any closed interval
D =[T1,T3] C (—o0,TF),

gt sup [Hn(Z55t) — H(t)| = Op(1), (3.1)
Byt sup |Hy (Z558) — H'(t)] = Op(1) (3.2)
teD

hold true as n — +o0.
Proof To prove (3.1), note that

sup | Hp (2i;) — H(t)| < sup [Hy(Zi5t) — Hy(2i5t)] + sup [Hy(2i5t) — H()].
teD teD teD

The second term on the right-hand side of the above inequality is O(y/loglogn/n) with
probability 1 in view of the LIL for the Kolmogorov-Smirnov distance (see, e.g., [12]). So,
by (2.2) it is suffices to show that for any € > 0,

sup | Hy (25 1) — Hn(zi;1)] = Op(6n) (3.3)
teD

holds on A,, .. Check that on A, ,

~ 12
sup [Hy (2i;1) — Hu(zit)] = sup | = S [(z <t — dn(X2)) — I(2 < t)]
teD teD T =1
1 n
< sup— Y I(t — M B < zi < t+ M)
teD T =1

holds for all n large enough. For any € > 0, by Corollary 1 of Massart!!3 and the fact
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that ng, — oo we have

P(su
tGB Mﬁn

— H(t+ M.S) +H(t — MBr)| >

i ( _Meﬁn<zi§t+Meﬁn)

‘)

~

€
< P(igBMe N (Zz<t+Mﬂn>_ (t+Meﬂn) >§)
6/
+P(§SBM@1 ZZ I(zzgt_Mﬁn)_ ( _Meﬁn) >§)
< dexp ( _ <2eﬂn>)
— 0
Noting that

sup | [H (1 4+ M) — H(t — Mcfo)] — 2£(15(0) + g())F(2)] =5 0
teD eﬁn

holds in view of the uniform continuity of f(¢t)G(t) + g(t)F(t) on D, we have

sup M Z I(t — MBn < 2z <t + McB,) — 2[f(t)G(t) + Q(t)F(t)]’ = op(1).
teD | nMcBy (=

So (3.3) holds directly. Whence equation (3.1) comes.
By the similar way used above and the fact that

a.s

sup |5l (E+ M) = HY(t = M.5)] = 2 (G (0)] *5 0
we can prove (3.2) holds. O

Though the uniform consistency of E, (t) under some conditions has been embedded
n [10], for the purpose of this paper, we will prove this property of ﬁn(t) in Lemma 3.2
under different conditions. The assumptions imposed in Lemma 3.2 is looser in some
sense than that imposed in [10]. For example, H (t) is not required to be twice continuous
differentiable here.

Lemma 3.2  Under assumptions (C1) and (A1) we have that for any closed interval
D= [Tl,TQ] C (—OO,TF),

B, sup |Fu(t) = F(1)] = Op(1)
teD

holds true as n — +oo.
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Proof Since H(T3) < 1 and H"(T3) < F(Tz) < 1, by Lemma 3.1 we know that for
any € > 0,

14+ H(T:
P(Hn(/z};Tg) < L HT) 1) >1—e (3.4)
1+ HY(T
P(H;L‘(Ei;Tg) < 1+ HY(Ty) < 1) >1—c¢ (3.5)
2
hold when n large enough.
Note that
sup | Fy(t) — F(t)| < sup |Fa(t) — FX(t)| + sup |FX(t) — F(t)). (3.6)
teD teD teD

For the first term on the right-hand side of (3.6), by the fact that the inequality
n n n
‘ [Tai— 11 bi‘ < > la; — bi| holds for any 0 < a; <1, 0 < b; <1, we have that
=1 i=1 =1

. - n 0 Na(E) NIGESES=) N (E) 4 1\ IE<t=D)
sup |Fu(t) = By ()] < sup Y |(—m ) - () |
sup lEnt) = Ea Ol < s 2 (X G+ 1) No(Gi +2)

su -
- tegizl Np(Z; +1)2

1 t 1
< — Su —/\dHu /Z\,S
< o | G
1 1
n [l — Hy(z;T2)]?

Then by (3.4) and (3.5) we get

< HY (35 Th).

sup | () = B ()] < Oy ).
teD n

For the second term on the right-hand side of (3.6), noting that |e® — e™°| < |a + b
holds for any a < 0, b > 0, we can obtain

sup |[F5(t) — F(t)] < sup Helogﬁ"(t) - e_m(t)‘ + e~ — e‘l*(t)ﬂ

teD teD

sup | log 7, (1) + L:(0)] + 15(6) — I"(8)]).

IN

Rewrite |log ?n(t) + I3 (t)] as

‘/w {niog [1- 2l 1Hn(3¢;s))} 1o Hi(z;s)}dﬂg(g“s)"

Note the fact that

log(l—é>:—J§Oi and log(l—%)+l+i>0

=1 it
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hold for any = > 2. Then using (3.4) and (3.5) again we can show

sup |log ?Z (1) + I;;(m

teD
T ‘/ i At TR )
=i/ !1_ <Zl,s>—2+n<1_”g sl

t +00

+/oo o —1Hn(3i;s))) Jamizis)
< w0 mEr ) [ e mEr )
<t [ G
< n[l _1 Hj(%};TQ)]QHﬁ(z;TQ)
= ;)

Since

suplf*( )= I"(®)|

dH“ zl, t dH“ zz, dH“ zl, ¢ dH“(s)
[ [ M [ )
teD n(Ziss ) —oo — H(s)

1—H(s)
[/t IH (Zi5) — H(s)| H“(z,, )]

= sl G A >><1—H<z,s>>dHu(Z“ *‘/ I—H

teD

by (3.4), (3.5) and Lemma 3.1 we have that

sup 1) = I*(t)] < Op(1) §gg[\Hn(2;t) — H(t)| + |Hy (i) — H*(1)]]

= Op(Bn).
Therefore we have completed the proof of Lemma 3.2. 0

Now, we are ready to state and prove the uniform consistency of fn for f.

Theorem 3.1  Under assumptions (C1) and (A1)-(A3), we have that for any closed
interval D = [T1, T3] C (—o0, Tr),

sup| fo(t) = f(1)| = 0,(1)

teD

holds true as n — oo.
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Proof From the argument of Mielniczuk!'¥ and Theorem A of Silverman'® we

know that under assumptions (A1)-(A3)

t—s
K dH" 75 - t)| = 1
sup | e [ (G JaH G8) = 70| = 001
holds with probability 1 as n — oco. So, it is enough to prove that
~ 1 t
n(t) —=——— /[ K dH} (z;8)| = op(1).
O = Zonm /R (h(n)) (21:5)| = 0p(1)

Let ay(Z;) denotes the jump size of E, at point z; and S(t,r) = {y : |y —t| < r}.
Then

sup
teD

~ 1 t—s wy
1 t—35\,~ 1 t—s

h
- s @an(a)K(thznZ;) Gtt) i%aiix(thz;;)(
= h(ln) Zé@'an@){f( <th?n)> K (th_nz)”*h(ln) il‘”( (chnZ)) an(Z) nGl(t)’
< I+ Ino+ Ing + Ina,
where

i = | £ 0@ [K (5 3) = K ()] 165 € St € (6 b))
Iy — h(ln) é 51-%@)1((;;;)1(21 € S(t, h(n)), z € S°(t, h(n)))

L5 — h(ln) il 51-%(%)1((’5}1?5@')1(% € S°(t, h(n)), = € S(t, h(n))],

” h(ln)z ok (5t a2 nGl(t)(,

and S¢ denotes the complement of set S.
For I,,1, by assumptions (C1), (A2) and (A3) we have that

supma {6 (52) — K (G718 € (6. € 5.1

teD 1 (n) h(n)
0, (X)) d ()
< supman{Z|ZE < L0 sup S
= op(1). (3.7)

On the other hand, by the similar way as that used in the proof of Lemma 3.1, we can

show

2 5:1(z € S(t, h(n))) — F(OCH)] 25 0. (3.8)

su
tEB 2”h< )
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Note that
F
sup max{na,(z;)d;1(z; € S(t,h(n)))} <sup  sup # = 0p(1) (3.9)
teD teD seS(t,2h(n (Zza )
holds in view of Lemma 3.1, assumption (A2) and the fact (see [16])
P,z -
nanca)@nggggffgggglfaﬁ (3.10)
(Zu &g )

Then by (3.7), (3.8) and (3.9) together we have
sup In1 = op(1)
z€D

holds true as n — oo.
For I,2 and any € > 0, using (3.9) and the similar way used in the proof of Lemma

3.1 again we have that on A, ,

suplpy < o , (zi)I(zi € S(t, h(n)), zi € S°(t, h(n)))
teD (n) tep izt
< Op(h(ln)) -sup {% ;nl[l(t + h(n) < z; <t + h(n) + McBy)
FI(t = h{n) = Mcfn < 2 < t = h(n))]}
= op(1).

Combining this with (2.2) we get

sup In2 = op(1)
teD

holds true as n — oo.

By the way similar as that used to I, we can show that

sup Inz = op(1)
teD

holds as n — oo.
For Ip,4, by (3.8) and assumption (A3) together we have that

t— 2z ~ 1
In K n\<~i) = =
félg ! h(n) tepi=t ( h(n) >‘ (%) ”G(t)‘
> 6l (z € S(t, h(n))) 1
< 2L- =1 ‘ di|nan (i) — =~
< e | Er—— | e, [~ g

= 0, x| [afon ) - 5]
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Using (3.10) again, we can obtain that

suplps < Op(l).sup{ sup ‘ F"/(\S) —&L(S) +  sup &(S)—E(S)
teD teD ‘ses(t2nmn) | Hn(Ziis)  H(s) | ses@onmy! H(s)  H(s)
F
n (s)

. [2- 22}
ses(t2hny) | H(s)  G(t)

Noting the fact h(n) — 0, it follows that when n lager enough

Fo () Pt
suplna < Op(1) { sup ’7 A() — 7( )‘
teD te[T—1,(Totrp)/2) | Hu(Zist)  H(t)
Fat) F(t) F(s) 1
+ sup — — ———| +sup sup = — = ¢-
te[T1—17(T+TF)/2]‘ H(t)  H()!  teD sesw,2nn)) ‘H (s) G(t) ’}

The first two terms in the braces in the proceeding inequality are Op(f3,) in view of Lemma
3.1 and Lemma 3.2. For the last term note that
sup ‘E(s) - 71 ) < 4h(n) G(t+2h(n)) — G(t — 2h(n))‘
seS(t2nn))  H(s)  G(t)

G(t + 2h(n)) 4h(n)
Since G(t + 2h(n)) — G(t — 2h(n))
+ n)) — — n
su —g(t ‘ — 0,
i 1h(n) o
by the fact that
_ /T
sup G(t + 2h(n)) > G( i TF) >0
teD 2
holds when n large enough, we have
F 1
sup  sup ‘7(8) - T) = 0p(1)
teD seS(t2h(n)) | H(s)  G(t)
Then we have
sup Ina = 0p(1)
teD
holds as n — oc.
Thus the proof of Theorem 3.1 is completed. O

84. Simulations

In this section we do simulations to assess the performance of the proposed method.

For the censored regression model, data are generated as follows:

t;, = min(Ho + O1x; + e, C’l), (4.1)
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where (6g,61)" = (1,1)T, e; ~ N(0,1) and =; are distributed as the uniform distribution
with support [0, 1]. The censoring variables are set as C; ~ E(C), where E(C') stands for
the exponential distribution with mean 1/C and C' is a positive constant which is varied
to achieve certain censoring percent.

With the data generated by above procedure, we estimate (6p, ;) by the method
proposed by Stutel® firstly and then the density function of e; are estimated by the method

= n 110 and K is chosen as the density function of the

proposed in Section 1 where h(n)
uniform distribution with support [—1,1]. Let I,, stands for the maximum of |ﬁb(t) —f(®)].
To investigate the performance of the proposed method, for each scenario, 500 random
samples are drawn. The simulation results including the various values of C', the average
shares (in percent) of censored observations depending on constant C, the different sample

size n and the mean and standard deviation of I,, are summarized in Table 1.

Table 1 Simulation results. All values in columns 4 and 5 are multiplied by 10°.

C Sample size Censoring percent Mean Standard deviation

0.25 50 29.956 8385 4200
100 29.838 6620 3258

200 30.126 5363 3578

500 29.987 3791 1891

1000 29.823 3054 1380

10000 30.014 1389 579

0.45 50 44.664 9898 5027
100 44.896 7826 4013

200 44.914 5782 2875

500 45.102 4352 2115

1000 45.081 3364 1590

10000 45.023 1463 617

From the simulation results in Table 1, we can get the conclusion that as the sample
size m converges to infinite, both mean and standard deviation of I,, converge to zero. As
an example, the true density function f(¢) of the error terms, and its estimator ﬁ(t) with
C = 0.25 and n = 50,200, 1000, 10000 respectively, are shown in Figure 1. From Figure 1
we can see that the maximum distance between fn(t) and f(t) is converges to zero as the
sample size n converges to infinite. Results both in Table 1 and in Figure 1 are consistent

with Theorem 3.3 in Section 3.
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Figure 1 Plot of the true density function f(¢) (thinner lines) of the error terms and

~

its estimator f(t) (thicker lines) proposed in Section 1. What shown in (a),

~

(b), (c), (d) are f(t) versus f(t) with C = 0.25 and n = 50,200, 1000, 10000

respectively.
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