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Abstract

Let {X,,n > 1} be a p-mixing random variable sequence. By using the truncation method
of random variables and three series theorem of p-mixing sequence, the convergence properties of
p-mixing sequence are discussed, and a class of strong limit theorems for p-mixing sequence are
obtained, which generalize the corresponding results of independent sequence. At last, the strong
stability for weighted sums of p-mixing sequence is studied.
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§1. Introduction

Let {X,,,n > 1} be a random variable sequence defined on a fixed probability space
(Q, F,P). Write Fg = 0(X;,i € S C N). Given o-algebras B, R in F, let

IEXY — EXEY]
p(B,R) = sup i
(B, %) XeLa(B),YeLa(r) (Var XVarY)1/2

(1.1)

Define the p-mixing coeflicients by
p(k) = sup{p(Fs, Fr) : finite subsets S,T C N, such that dist(S,7T) > k}, k> 0.

Obviously, 0 < p(k+ 1) < p(k) <1, and p(0) = 1.
Definition 1.1 A random variable sequence {X,,,n > 1} is said to be a p-mixing
random variable sequence if there exists k € N such that p(k) < 1.
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p-mixing random variables were introduced by Bradley (1992) and many applications
have been found. p-mixing is similar to p-mixing, but both are quite different. Many
authors have studied this concept providing interesting results and applications. See for
example, Bryc and Smolenski (1993), Yang (1998), Peligrad and Gut (1999), Wu (2001,
2002, 2008), Utev and Peligrad (2003), Gan (2004), Cai (2008), An and Yuan (2008).
When these are compared with the corresponding results of independent random variable
sequences, there still remains much to be desired.

The main purpose of this paper is to give some new results of p-mixing sequence. We
obtain the convergence properties for p-mixing sequence, a class of strong limit theorems
for the partial sums of p-mixing sequence which generalize the corresponding results of
independent sequence.

Throughout the paper, let I(A) be the indicator function of the set A and X(®) =
XI(]X| < a) for some a > 0. C denotes a positive constant which may be different in
various places.

The main results of this paper are depending on the following lemmas:

Lemma 1.1 (cf. Wu, 2008, Theorem 2) Let {X,,n > 1} be a p-mixing random

variable sequence. Assume that

> P(|Xn| > ¢) < o0, (1.2)
n=1
S E(X) converges, (1.3)
n=1
S Var (X(9)) < o0, (1.4)
n=1

then > X, converges almost surely.

n=1

Lemma 1.2 Let {s,,n > 1} and {t,,n > 1} be nonnegative numbers satisfying

$p, < ty, for each n > 1, {uy,n > 1} be real numbers. Then

o [o@)
D7 un|™ < 400 = > \un\t" < +o0.

n=1 n=1

[e.e]
Proof If > |u,|®® < 400, then there exists a positive integer Nj such that
n=1

|un | < 1 for all n > Nj. Therefore, |u,|'™™ < |u,|*" for all n > Ny, and

0o . N, . 0o
2o unl™ < 30 funl™ 4 D0 fua|™ < oo
n=1 n=1 n=N1

The proof is completed. O
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§2. Strong Law of Large Numbers for p-Mixing Sequence

Theorem 2.1 Let {X,,n > 1} be a p-mixing sequence and {a,,n > 1} be a
positive number sequence. Let {g,(z),n > 1} be a sequence of even functions defined on
R, positive and non-decreasing on the half-line x > 0. One or the other of the following
conditions is satisfied for every n > 1:

(i) In the interval (0, 1], there exists a > 0 such that g,(x) > dox;

(ii) In the interval (0, 1], there exist 3 € (1,2] and § > 0 such that g,(z) > dz” and
in the interval (1, +00), there exists a 0 > 0 such that g,(z) > dz. EX,, =0 for all n > 1.

For some M > 0, we assume that

Xn
Ma,,

21 Egn( ) < oo, (2.1)

o0
then Y X, /ay, converges almost surely. Furthermore, if 0 < a,, T 0o, then
n=1

1 n
lim — > X; =0, a.s.. (2.2)

Proof Let XM = X, I(|X,| < Ma,), then

<1)=(57)"

By the definition of p-mixing sequence, we can see that {X,,/Ma,,n > 1} is also a p-mixing

Ma,  Ma, Ma,,

sequence. Therefore, we only need to test (1.2), (1.3) and (1.4), where ¢ = 1.
Firstly, if the function g, (z) satisfies condition (i), when |X,,| > Ma, > 0, we have

e

May,
Therefore
1 X,
— < Z _
P(1Xn| > May) = E((|Xn| > May)) < 6Egn<Man)
By (2.1)
S P(Xa| > May) < 5 3 Egu( ) < (2.3)
n=1 " tn) = 5 n=1 In Man o '

If the function g,(x) satisfies condition (ii), we also have (2.3).
Secondly, if the function g, (x) satisfies condition (i), we have

| Xl
Ma,,

EXM)| < E(IXal (Xl < May)) = ManE( 5 [(| X < May,))

1 X 1 X
< 5ManEgn<Z‘w;lI(|Xn| < Man)) < gManEgn<M;n).
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If the function g, (z) satisfies condition (ii), we can get

XM = [E(Xn(1Xn] < May))| = [E(Xal(|Xa| > May))|

1 X
< E(X,|I(|X,| > Ma, <—MnEn( ”)
< E(XalT(Xal > Maw)) < § ManEo (572

Therefore, whether g, (x) satisfies condition (i) or condition (ii), we can obtain

1 X
EXM 1 (Kay o
=1 May _52 May, <

n=1

Finally, if the function g, (z) satisfies condition (i), we have
Map,
& E(X - VL EGGI(X < May)

n=1 an n=1 a%
(i <)
( | (X, ]<Man))

(X ) <
Ma, 0.

If the function g, (z) satisfies condition (ii), we can get

<

2
Moo
STZ

n=1

EEN - Sel(n

)QI(any < Man)>

n=1 n

IN

1%, < Man)>

e

IN

fZEg

I(|Xn| < Man)>

)

Therefore, whether g, (x) satisfies condition (i) or condition (ii), we can obtain

IN

72 9n

o0 Var(XﬁMa")) (X(M“"))Q 1 @ X,
n; (May,)? ; (May,)? 5 z:: (Man) < o0

(2.5)

o0
Thus, > X,/a, converges almost surely following from Lemma 1.1, (2.3), (2.4) and (2.5).

n=1

We can easily get (2.2) by Kronecker’s Lemma. The proof of the theorem is completed.

g

Remark 1 In Theorem 2.1, if the even function g,(z) is positive and non-de-
[e.e]

creasing on the half-line x > 0 satisfying (i) and (2.1), then ) X,,/a, converges almost

n=1
surely for arbitrary random variable sequence {X,,n > 1}.
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Indeed, by (2.1) and Monotone Convergence Theorem, we have

(£ (i) = ZEon(s) <o

hence
00 Xn
< .S..
n§19n<Man> > o
Denote
X [ Xn(w)
A={ (Fra ) <ooh
v nglgn M(In

then P(A) = 1. Vw € A,

hence

Xn
hm gn( MSU)> =0, w e A. (2.7)

Since {gn(z),n > 1} is even and non-decreasing on the half-line x > 0 and g,(x) >
|, there exists a positive integer Ny(w) such that | X, (w)/(Ma,)| < 1

dx for x € (0,1
when n > Np(w) (otherwise, there exist n;, ¢ > 1 such that |X,, (w)/(May,,)| > 1, thus,
Gn; (X, (w)/(Map,)) > gn,(1) > > 0, which is contrary to (2.7)). Using gn(x) > dx for

z € (0,1] again, we have

1 /X,(w)
< — . .
e | <50 () wed n>Now) (2:8)
By (2.6) and (2.8), it follows that
— A.
O

o0 o0
Hence, > X,(w)/a, converges, w € A, which implies that Y X, /a, converges a.s..
n=1

n=1

Corollary 2.1 Let {X,,,n > 1} be a p-mixing random variable sequence and
{an,n > 1} be a positive number sequence satisfying 0 < a,, T co. For some M > 0, one
or the other of the following conditions is satisfied:

() > EIXIP/(Manl? + [ X,]%)] < o0, 35 € (0,1

n=1
(i) Y E[|Xnl?/(Man| XnlP~t+|May|?)] < o0, 33€(1,2] and EX,, =0 for all n>1.
n=1
Then
1 n
lim — > X; =0, a.s.. (2.9)
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Proof In Theorem 2.1, we take

x|’

gn(z) = 1+ |z|? (0<p<, on()

I
14 |z|ft

(1<p<2)

in the conditions (i) and (ii) respectively. It is easy to see that g,(x) and ¢, (z) are both

even functions, positive and non-decreasing on the half-line > 0. And

1 1
(@) > a7 > gw, 0<z<1,0<B<;
1 1
gon(x)zixﬁ, 0<x<1,1<pB<L2 and @n($)25m7 1<z < +o0.
Therefore, by Theorem 2.1, we can easily get (2.9). O

Furthermore, by Corollary 2.1, we can obtain the following important Chung-type

strong law of large numbers.

Corollary 2.2 Let {X,,n > 1} be a p-mixing random variable sequence and
{an,n > 1} be a positive number sequence satisfying 0 < a,, T co. There exists some
B € (0,2] such that

Z | ﬁn‘ < 00
n=1 Qn,

If 8 € (1,2], we further assume that EX,, = 0. Then

1 n
lim — > X; =0,  as. (2.10)

Theorem 2.2 Let {X,,,n > 1} be a p-mixing sequence and {a,,n > 1} be a
positive number sequence. Let {g,(z),n > 1} be a sequence of even functions defined on
R, positive and non-decreasing on the half-line x > 0. There exists a 3 € [2,00) such that
gn(z) > 628, 2 > 0 for all n > 1. For some M > 0, if

21 <E9”<J\)4(Zn)>l/ﬁ < 0, (2.11)

(o]
then Y X, /a, converges almost surely. Furthermore, if 0 < a,, T 0o, then
n=1

1 n
lim — > X; =0, a.s.. (2.12)

Proof Since § > 2, by Lemma 1.2 and (2.11), we have

S <w Sm()ee  ew
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By (2.13), similar to the proof of (2.3), we can get

> P(X.| > May) = 55 E(I(IX,| > May) < 5 3 Egu(f7) <00 (214)

By Holder’s inequality and the assumption of the function g,(x),

x [EXSM)| % X
L

E
n=1 May, o n§::1 May,

< 5 E(EY rix < )

(%)1/5 > (Eg”<1\)4(2n))w < o0, (2.15)

n=1

1(|Xn| < Man)>

Since (E(|X|"))Y/" is increasing for r > 0, by 3 > 2 and (2.13),

ST S () 0l < o)
< 5% (E(Gge) 100 < )™
< (55 (i) <
Therefore
pHRCICE RIS st il P 10

Thus, ioj Xp/a, converges almost surely by (2.14), (2.15), (2.16) and Lemma 1.1. By
Kronecrfei’s Lemma, we get (2.12) immediately. The proof is completed. O

If taking g,,(z) = |z|?, B > 2, we can get the following corollary:

Corollary 2.3 Let {X,,n > 1} be a p-mixing sequence, {a,,n > 1} be a positive

number sequence satisfying 0 < a,, T co. If there exists some 3 € [2,+00) such that

< (E|X,|5)1/P
S EXDT (2.17)
n=1 Qn
then
1 n
lim — ) X, =0, a.s.. (2.18)

n—=00 U j=1

§3. Strong Stability for Weighted Sums of p-Mixing

Sequence

Firstly, we will give some definitions as follows:
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Definition 3.1 A random variable sequence {X,,n > 1} is said to be stochasti-

cally dominated by a random variable X if there exists a constant C such that
P(|X,| > z) < CP(|X]| > z) (3.1)

for all x > 0 and n > 1.

Definition 3.2 A random variable sequence {Y,,,n > 1} is said to be strongly
stable if there exist two constant sequences {b,,n > 1} and {d,,n > 1} with 0 < b,, T o0
such that

b, 'Y, —d, -0  as. (3.2)

The following lemma is useful.

Lemma 3.1 Let {X,,,n > 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X. For any a > 0 and b > 0, the following

statement holds:
E[Xo[*I(|Xn| <b) < C{E[X|*I(|X] < b) + b*P(|X] > D)},

where C' is a positive constant.

Proof It is easy to see that
b
a/ sYIP(|X,| > s)ds = bOP(| X,| > b) + E| X, |*T(| X | < D).
0
It follows that

b
E[X,CT( X <) < a / @1p(|X, | > 5)ds
0

IN

b
C’a/ s*7IP(|X| > s)ds
0
< C{E|X|*I(|X]| <b) +b*P(|X]| >D)}. O

Theorem 3.1 Let {a,,n > 1} and {b,,n > 1} be two sequences of positive
numbers with ¢, = by/a, and b, T oo. Let {X,,n > 1} be a sequence of p-mixing
random variables which is stochastigglly dominated by a random variable X. Define
N(z) = Card{n : ¢, <z}, R(z) = / N(y)y3dy, > 0. If the following conditions are
satisfied: ‘

(i) N(

(i) RO) = [ Ny < o
(iii) EXQR(yXl\) < 00,

x) < oo for any x > 0,
[0.9]
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then there exist d,, € R, n =1,2,--- such that

bt > ai X —dy, — 0 a.s.. (3.3)
i=1
Proof Since N(x) is nondecreasing, then for any x > 0
o0 1
R(z) > N(:c)/ y 3dy = ix*QN(a:), (3.4)

which implies that EN(|X|) < 2EX?R(|X|) < co. Therefore

SPX; £ X ) = STP(X| > ¢) < C S P(X| > ¢) < CEN(IX]) < 00 (3.5)
=1 =1 =1

n
By Borel-Cantelli lemma for any sequence {d,,n > 1} C R, the sequences {bg LS ai X —
i=1

n
dn} and {bgl > aiXi(ci) - dn} converge on the same set and to the same limit. We
i=1

will show that b, > ai(Xi(ci) - EXZ»(Ci)) — 0 a.s., which gives the theorem with d,, =
i=1

n
bt Y aiEXZ-(Ci). It follows from Lemma 3.1 that
i=1

py V(bj‘()) < LGB = 3 G TEX(X < )
< 0% GHEP(X] > o) + EXL(|X| < c,)
< CEN(|X|)+C ilchEXQI(]Xlgcn). (3.6)
X GIEXU(X|Se) = GUEXU(X| et ¥ tEXU(X] <o)
n= n:Cn nicn>
= L+D (3.7)

Since N(1) = Card{n : ¢, <1} <2R(1) < oo from (3.4) and condition (ii), then I; < cc.

I

IN

IN

> e EXPI(X] < ep)

n:cp>1

[o¢]

XY GPEXPI(IX]| < )
k=2 k—1<c,<k

(o]

S (N (k) — N(k - 1))(k — 1)2EX2I(|X| < k)
k=2
S (N(k) — N(k— 1) (k — 1)2EX?I(|X| < 1)
k=2

+ S (N(R) = N(k — 1)k — )2EX?I(1 < [X| < k)
k=2

Isy + Izo.



646 N FHME 2 4801 oG

Ly £ CL(NH) - N(k-1) 5 57
. j=k—1
J+1
= CZJ’:;( (k) = N(k —1))

< CE(JH) SN(j+1)

< C/ y)dy < 0.

Since N (x) is nondecreasing and R(z) is nonincreasing, then

o0

Iy = S (N(k)=N(k—-1)(k—-1)"2EX?I(1 < |X| < k)
k=2

= fj (N(k) = N(k—1))(k—1)"2 i EX2I(m—1<|X|<m)
k=2 =2

= Y EX’I(m—1<|X|<m)
m=2 k

S EX2(m—1<|X|<m) > NE)((k—1)"% k2

m=2 k=m

(N (k) = N(k = 1))(k — 1)~

I
8 3M8 3

IN

00 k+1
C 3 EX%I(m —1<|X|<m)z N(z)z 3dx
m=2 k=mJk

C'S RmMEX2I(m—1< |X| < m)

m=2

C f EX?R(|X)I(m —1 < |X]| <m)

m=2

CEX?R(|X]) < oc.

IN

IN

IN

Therefore o)
< Var (a, Xp ™)
> — 2 < o0 (3.8)
n=1 n

following from the above statements. By Theorem 1 in Wu and Jiang (2008) and Kro-

necker’s Lemma, it follows that

b S ai( X —EX) 50 as. (3.9)
=1

Taking d,, = b;,! Z aZEX(CZ), n > 1, then b, Z aZX(CZ) d, — 0 a.s.. We complete the
=1 =1
proof of the theorem. [l

Corollary 3.1 Let the conditions of Theorem 3.1 be satisfied. If EX,, =0, n > 1

and/ EN(]X]|/s)ds < oo, then b, 1ZaZX — 0 as.
1 =1



FiN EAEE RS T B OGE: SRR LT SRR AR 647

Proof By Theorem 3.1, we only need to prove

b S aEX ) 50 as. (3.10)
i=1

In fact

o a;[EX() S
3 a’bll - Zci_1|EXiI(|Xi‘ < )
i=1 5 =1

IN

o0
S EIXG (X6 > )
=1

_ Zci_l(ciP(|Xi| >ci)+/ P(|X;] >t)dt>
i=1 c;

CY P(X|>ca)+C> P(|X]| > sc;)ds
i=1 i=1J1

IN

< C’EN(]X)JrC’/ EN(|X|/s)ds < oo,
1

which implies (3.10) by Kronecker’s Lemma. We complete the proof of the corollary. O

Remark 2 It is easily seen that p-mixing sequence contains independent sequence

as a special case. Thus the main results of this paper hold for independent sequence.
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