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Abstract

The estimation of regression parameters and the contamination coefficient of a linear model are
studied when its response variables are contaminated and interval censored. Under some suitable
conditions it is proved that the estimators which are established in this paper are strongly consistent.
Some simulation results indicate that our method performs very well even though the data both
contaminated and interval censored.
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§1. Introduction

Consider the linear regression model
Y, = a+ Bx; + &, 1=1,2,--- ,n, (1.1)

where ¢;’s are i.i.d., Eg; = 0, Var(g;) = 0? and o} is known. {Y;} are contaminated by

another random variables sequence {t;}.

Y*:(l—y)Yi—‘,—yti’ 1:172’... M. (1.2)

()

Here t;’s are i.i.d., Et; = 0, Var(t;) = 03, o5 is known. {t;} and {Y;} are independent.

v (0 < v <1)is called contamination coefficient. (1.2) can be changed to the following;:
Y= (1—v)(a+ Bx; + i) + v,
or

¥ = (1—v)a+ (1 - v)Ba; + s, (13)
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where n; = (1 — v)e; + vt;.
EY = (1 —v)a+ (1 —v)Bay, Var (V) = (1 — v)%0? + V%03 = o2 (1.4)

Suppose that 0% /o3 > v/(1 — v). Tt is easily got that {Y*} are independent. Let Fj(-)
be the distribution function of Y;*, suppose EY;*" < oo, r > 1. Zheng, Ding and Yang!!l
introduced the estimators of a, 3 and contamination parameter v in the model (1.3).

In this paper, we assume the response variables Y;*’s are interval censored. The data
we observed are

(Uia‘/’iaéliaézhmi)a v = 1727”' y 1L,

where (U;,V;) (i = 1,2,--- ,n) are nonnegative i.i.d. r.v’s. Their densities g(u,v) are
positive, the distribution functions are G(u,v). 61; = Iy <u;, 02i = ly,<yr<v;- {Y;"} and
{(U;, Vi) } are independent.

The problem of interval censored data is an important topic of the statistics. There are
lots of backgrounds of the application in the epidemiology studies!® 3, AIDS studies!* 2!,
demography studies® 7, etc.

Let F,)(-) be the distribution function of ;. We can get @, B, v, which are the estima-
tors of a, 3, v respectively, by using the method of maximum likelihood. The Log-likelihood
function is

L (O‘, B,v; F, n)
‘"1{51@- log Fy(U; — (1 - v)a — (1 — v) ;)
i

+62; log[Fy (Vi = (1 —v)a — (1 — v)B;) — Fy(Ui — (1 —v)a — (1 — v)Ba;)]
+ (1 = 615 — 62;) log[1 — log F,(V; — (1 — v)ar — (1 — v)Bay)]}.
Although the process above is seemed as a concise form, the computation is too com-

plex (Here F;, is unknown). So, in this paper, we use the method of “unbiased transform”

proposed by Zheng[S} to solve the problem of parameters estimation. Let

Y = (UL Vi) o1 + 08 (Ui, Vi)bas + 05 (U, Vi) (1 — 811 — 82),
where gogr),cpgr) and gpgr) are continuous functions which are independent of Fj(-). But
maybe they have relation with G(,-).

Lemma 1.1 Assume that the continuous partial derivatives &py) /Ou, 8@? /Ov
(j = 1,2,3) exist and that {7, o, o7 satisty

+oo v )
/ / ‘PY (u,v)g(u,v)dudv = 0;
v= u=0

o . (1.5
/ 69 (2, 0)— o7, )] g(z, v)dv-+ /0 68 () — o (0, 2)]g (o, ) du=ra”
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then
E}Z*T:E}/;*T, r=1,2---.

Proof See [9] (Theorem 2.1). O

§2. The Model and the Estimation of «, 3, v

By Lemma 1.1, replacing Y;* with 572-* in (1.3), we can establish a new model as

following:
V¥ =(1-v)a+ (1 —v)Be + i (2.1)
It is reasonable from the view of large sample.

Note ( = (1 — v)a, £ = (1 — v)B. Using the method of linear regression model, the

estimators of ¢ and & have the following construction.

nya¥y - (L) (L)
E: (1 _ ﬁ)a _ =1 =1 _ 2;1 :
ny ay— ( > 371)
. =1 . =1 . . N (22)
(Z)(57%) - (5=) (Z=7)
C _ (1 _ I//\)a _ =1 z:ln z:l 5 =1
nya?— (Y w)
\ i=1 i=1
We have Eé\: &, EZ: ¢.
To get the estimator ¥, we estimate o2 first. Let
Y72 = o0 (Ui, Vi)oui + 057 (Ui, Vi)oai + 57 (Ui, Vi) (1 — 813 — b24),
where {2, o{?) and ) satisfy the assumption of L 1.1 for r =2
01, @y and g5 satisfy the assumption of Lemma 1.1 for r = 2.
Considering of EXN’Z»*Q =EY? i=1,2,---,n, we use
13~ o~ —
Gn =~ 2V (C +20Er + ) (23)

=1

to estimate o2, where
_ 1 z": — 1 z": 9
=— ) w; x?=—> x5
=T nizp "
To get the strong consistency of the estimators of «, 3, v, we need the following lemma.

Lemma 2.1 For the linear model (2.1), assume that the following conditions hold:
(C1) sup [Var(Y}) — 02 = R < oo;

1<i<n
(C2) sup |zi| =M < oo;

1<i<n
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n

(C3) hm S2 = lim Y (z; —7)% =

oo, lim (7)?/82 = 0;
n—odo

n—00i=1
e [ +ooli‘32n (62 (U, V)it o2 (U, Vi)oos 62 (U, Vi) (L) > ) < oo,
then 52 2% 02._
Proof
52— o2 = % il(Y*2 EY;?) + % il EY;? — 02 — (C% + 20T + €222)
= :Lf;‘l(Y*Q EV2) 4+ é(c +&m)? = (C + 20T + £22)
= TR+ (- 3) 4 2 - ) + 2 - D).

.

By the result of Zheng[g], if im ) (xifj)Q = 0o, lim (5)2/57% — 0, we have Zﬁ) ¢,
n—oo

nTee =1

gﬂﬁasn—mxv. So

C-¢ 0, -,

We need the following conclusion. Let V; be i.i.

which satisfies

CE— (e 2% .

d. r.v’s. If W is a random variable

P(IW| >1t) > P(|Vi| > t), Vt>0
and E|W| < oo, then
1 n
— > (Vi —EV;) — 0, a.s
=1
From the condition (C4), we have
| s POT = 0
0 1<i<n
= / sup P (U, Vi)ors + o5 (Ui, Vi)bai + 0 (Ui, Vi) (1 — 615 — 82:)] > £)dt < oo
0 <i<n
So
lim > (Y2 — EY;*?) = 0, a.s O
o0 =1
From (1.4),
o2 = (1 -10)%0} + %02,
then
o? + /(0% +03)52 — U%O‘%

U=
01 —1—0'2
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Since 02 /03 > v/(1 —v),

o? — \/(cr% + 03)52 — ojos

U= 24
g 0% + 05 (24)
Under the assumption of Lemma 2.1, 52 % (1 — v)%07 + 1203, it follows that
-~ a.s.
v—>v
The expression (2.4) with (2.2), we get
v (L) (W)
3 _ _i=1 i=1 i=1
n , ( n )2 1— ~)
n Z x;— Z T
2 =1 (25)

If the conditions of Lemma 2.1 hold, we have
ai%a  f5p

Finally, we can get the strong consistency of @, B, U as state below.

Theorem 2.1 For the linear model (2.1), suppose that the conditions (C1)-(C4)

in Lemma 2.1 are satisfied, then
~ a.s. S oas. ~ a.s.
a—« 08— 3, 2

9

where @, 3, U are defined by (2.3), (2.4) and (2.5).

§3. Some Simulation Studies

In this section, we shall describe some simulation studies to examine the properties
of the estimators @, B, .

The following linear model is treated:
Y " =1 —-v)(a+ Bz +¢e;) + v,

u v 1 1
a=3, =2 v=01 G(uv) = / / E)\e*’\tdsdt, A= 5
v 0

The data set x;’s is generated from the uniform distribution U|0, 2], and the errors ;’s are
assigned N(0,1).
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The following two patterns are considered:

(o1(u,0) = u— o CTAR.
p1(u,v) = u 2\’ 01 (u,v) =u %
1 2 1
Pl pelu ) =u =gy tpé)(u,v)zu—ﬁ;
a2 Lew O o) —u L 2o
w3(u,v) = u TG oD (u,v) = u o+ e
p1(u,v) = 0; o\ (u,v) = 0
P2: 902(’“’ U) = @22) (’LL,U) =;
1
s, v) = ver 7 fu, @ (w,v) = v+ 5 (= 1).
\

For each of the two patterns, we chose the sample sizes n = 200, 500, 800, 1000, 2000.
The results based on 300 simulations are displayed in Table 1 (P1) and Table 2 (P2).

Table 1 (P1)

n a B v
200 3.6142 2.4386 0.2123
500 2.7953 2.1343 0.1561
800 3.1533 1.8738 0.1311
1000 3.1081 2.0531 0.1211
2000 3.0353 2.0509 0.09806

Table 2 (P2)

n a B v
200 3.9698 2.6595 0.2680
500 3.4484 2.2947 0.1834
800 3.2596 2.2210 0.1464
1000 2.8629 2.1432 0.8547
2000 3.1045 1.9762 0.1064

The following conclusions may be drawn from the results summarized in Table 1 and
Table 2.

(1) The results are good when the sample size n increase to 500 and become better
and better when the sample size n increases.

(2) There are no significant difference between the results even if (p1, 2, @3, @52),

<p(22), (péQ)) take different cases.
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