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Abstract

We first establish a criterion for the minimal Q-function to be a Feller transition function when
Q@ is a quasi-monotone g-matrix. We then apply this result to generalized branching g-matrices
and obtain the corresponding Feller criteria for generalized branching processes. In particular, it
is shown that there always exists a separating point 6y with 1 < 6y < 2 or 6y < +o00 such that
whether the generalized branching processes (with resurrection) are Feller processes or not accord-
ing to 8 < g or 6 > Oy, where 0 is the nonlinear number given in the branching g-matrix.
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§1. Introduction

A generalized branching processes Zy is a continuous-time Markov chain (CTMC) on
the state space ZT whose transition function P(t) is the minimal Q-function (that is,

P'(0) = Q componentwise), where the q-matrix Q = {¢;;;7,7 € Z"}, is given by

hj, if 1= 0;

Gij = %, 41, ifi>1and j>i—1; (1.1)
0 otherwise,

with

(o]

—ho= )Y hj <+oo and h; >0 for j>1;
j=1

—b1 = Y bj < 400 and b; >0 for j#1; (1.2)
J#1

6 > 0.
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In order to avoid discussing some trivial cases, we assume that

bo>0  and ibj > 0. (1.3)

j=

A g-matrix @ satisfying (1.1)—(1.3) is called a generalized branching g-matrix, @ is said
to be super-linear if > 1, and sub-linear if 0 < § < 1. @ is called absorbing (or without
resurrection) if hg = 0 (and thus h; = 0 for all j > 0), and is called with resurrection
otherwise. All these notions will be applied to the corresponding processes, transition
functions as well as resolvent functions.

Regularity, recurrence, ergodicity and extinction properties have been investigated
by many works, e.g. R.Chen (1997), A. Chen (2002a, b), Zhang et al (2001), Chen et al
(2005, 2006), Li (2008).

In present paper, we are concerned with the Feller property of generalized branching
processes. Recall that a transition function P(t) = (P;;(t)), t > 0 is called to be a Feller

transition function if
P;i(t) —0 as i — oo forall j €Z% and t > 0. (1.4)

This concept is introduced by Reuter and Riley (1972), with some developments and
related discussions given by Zhang et al (1999, 2001), Chen (2001), Li (2003, 2006, 2007,
2009). Since Feller properties describe the asymptotic behavior at the remote states (i.e.
i — 00), it is also called to have asymptotic remoteness in some literatures, e.g. van Doore
and Zeifman (2005).

All ordinary branching processes (# = 1 and hy = 0) are Feller processes, this fact
has been proved by Pakes (1993). The Feller property in the sub-linear case has been
discussed by Zhang et al (2001) (but their proves needs some supplements). However, the
general case (in particular, the super-linear case) may be more complex. To view this, we
first consider a special example: the non-linear birth-death processes (i.e. hj =0 for j > 2
and by = 0 for k£ > 3).

Proposition 1.1  For a non-linear birth-death g-matrix @, the minimal Q-function
is Feller if and only if one of the following three conditions holds true.

(i) by > bg, (for all § > 0);

(il) b2 < by, 0 <6 < 1;

(iii) bg = bp, 0 < 0 < 2.

It is interesting to notice that there is a separating point 6y with 6y = 400 in (i),
0o = 1 in (ii) and 6y = 2 in (iii). A similar phenomenon will occur in the general case as

proved in the Section 3.
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The above proposition can be proved by using a Feller criterion for monotone g-
matrices obtained by Li (2006). However, in the general case, a difficulty appears since
@ is not necessarily monotone, while a Feller criterion in the non-monotone cases remains
open until now.

To overcome this difficulty, we notice that @) has a decomposition: @) = @ + A such
that é is monotone and A satisfying other conditions (such as row-sum bounded). Such
a g-matrix @ will be called to be a quasi-monotone g-matrix (a formal definition will be
given in the next section).

In Section 2, we’ll establish a Feller criterion in the quasi-monotone case by using
functional analysis methods (see Theorem 2.1). The Feller criterion is stated as: @ is
either Feller and strong zero-entrance, or nonzero-exit.

Applying the above Feller criterion to generalized branching g-matrices, we obtain
some Feller criteria for the generalized branching processes. In particular, there is always
a separating point 6y with 6y € [1,2] U {oo} whether the process is Feller process or not

according to 6 < 0y or 6 > 6y respectively (see Theorem 3.1).

§2. Feller Criteria in the Quasi-Monotone Cases
In this section, @ = (g;5;4,j € ZT) will denote a (stable) g-matrix, that is,
Qij >0 (2 #+ j) and Z Qij < —qy = g < +00, for all i e Z*. (2.1)
J#i
It is well-known that there always exists a minimal Q-function P(t) with P'(0) = @
componentwise. For the details, we refer to Anderson (1991).
We also introduce a notion of a quasi-monotone g-matrix.

Definition 2.1 A g-matrix @) = (g¢;;) is called to be quasi-monotone if () has a
decomposition: Q = @ + A such that @ = (gi;) is a monotone g-matrix, that is,

o0 [e.@]
Yo Gik < > ikl ks for all 4,7 € Z" such that j # i+ 1, (2.2)
k=j k=j

and A = (a;;) is a infinite matrix (not necessarily a g-matrix) satisfying
(i) A is Feller, i.e. a;; — 0 as i — oo for all j € ZT; and
(ii) A is row-sum bounded, that is
o0
|A|l = sup > |aj| < 4o0. (2.3)
i€z j=0
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We also recall that a gq-matrix Q = (gi;) is zero-exzit if I[Z,(A) = 0 (or equivalently if
loo(X) = 0, by Anderson, 1991, Theorem 2.2.7), Q is zero-entrance if I (\) = 0, and strong
zero-entrance if [1(\) = 0, where

loo(N) = {2 € lo|(AM] — Q)z = 0}, I ={z €loc(\)|z > 0};
h(\) = {y € hly(\ - Q) = 0}, ) ={yelbMly =0}

Q is regular if @ is conservative and zero-exit. Equivalence problem (raised by Reute and

(2.4)

Riley, 1972) of strong zero-entrance and zero-entrance remains open.

Our main interest is to give an Feller criterion for quasi-monotone g-matrices.

Theorem 2.1 For a given quasi-monotone g-matrix ¢, the minimal -function is
a Feller transition function if and only if either

(i) @ is Feller and strong zero-entrance; or

(ii) @ is nonzero-exit.

To prove this theorem, we need three lemmas whose proves require a well-known

result in functional analysis (see Yosida, 1978).

Banach’s Theorem  Let T be a bounded linear operator on a Banach space X

such that ||T|| < 1. Then I — T has a bounded inverse operator (I —7)~! with

(I—T)" =3 7" (2.5)
n=0

Lemma 2.1 Suppose a g-matrix @ has a decomposition: @ = @ + A such that Q

is also a g-matrix and A is row-sum bounded. Then @ is zero-exit if and only if @ is.

Proof we first notice that @) and @ induce two (unbounded) operators denoted by
Qs and @OO respectively on the Banach space [, and defined by

Qoo = Qx, x € Dom(Qu) = {7 € l|Qz € I };
Qoo = Qu, 2 € Dom(Qoo) = {2 € loo|Qx € oo}

By the row-sum bounded assumption of A, A induces a bounded operator on [y
(denoted by A yet) with ||A|| given by (2.3) (see Anderson, 1991, Lemma 1.4.4). Then
@oo = Qo + A with Dom(@oo) = Dom(Q,). We also note that the minimal Q-resolvent
#(\) and Q-resolvent ¢()) induce bounded operators on lo with

loll <5 and O] < 5 (27)

(2.6)

Suppose now (Q is zero-exit, we claim that

(A = Qo) ™! = 6(N). (2.8)
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Indeed, Anderson (1991, Lemma 4.1.3) has proved that if  is a column vector such that
¢(N)z is well-defined, then (A — @Q)p(N)x is well-defined with

(M — Q)p(N)z = z. (2.9)

In particular, if z € I, then z = ¢(N\)x € I, and thus (2.9) implies that z € Dom(A\ —
Qo) = Dom(Q) with (M — Qoo)z = , which proved the operator A\l — Q) is surjective,
but since Q is zero-exit, A\ — Qoo is also injective. Thus (M — Q) ! exists with (A —
Qoo) 'z = 2 = ¢(\)x, which proved (2.8).
Using (2.7), we can choose a large A\g > 0 (say A9 > [|4]|) such that [|¢(Xo)A| < 1,
then by Banach’s Theorem I — ¢(\g)A has a bounded inverse operator with
(I = 6(0)A) " = 3 (6()A)", (2.10)

n=0

Using (2.9) and (2.10) we have, for all € Dom(Qs) = Dom(Quo)

(I = d(X0)A) " ¢(M) (Mol — Qoo — A)z
= (I—¢(M)A) "z — (I —¢(M)A) " (¢(Xo)A)z
= Y (6(M0)A) s = 3 (p(M)A)" Tz ==

Therefore, if (Aol — @oo)x = 0, then the above formulation implies that = 0, which
shows that @ is zero-exit.
Conversely, considering the decomposition ) = Q + (—A), where —A is also row-

bounded, we obtain the converse conclusion by the same method as above. O

Remark 1 In a very special case when A has nonzero elements in the first row
only (and other conditions), Lemma 2.1 has been proved in Chen (2002b, Lemma 2.4) by
using Resolvent decomposition Theorem. Thus it may be not easy to prove Lemma 2.1

by using ordinary methods.

Lemma 2.2 Suppose @, @, A are defined as in Lemma 2.1, then @ is strong

zero-entrance if and only if C~2 is.

Proof We use the similar method as in Lemma 2.1. Let ()1 be the induced operator

on Iy by y — y@Q, where y is a row vector. If () is strong zero-entrance, we claim that

(A = Qi)' = ¢(N), (2.11)

where the minimal Q-resolvent ¢()\) induces a bounded operator on /; with the same norm

as in (2.7). Indeed, let Q2 be the generator of the continuous contractive semigroup P(t)
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induced by the minimal @Q-function, then, by Anderson (1991, Prop. 1.4.6), Q C @,

that is, € is a restriction of Q1. Thus, A\ — Q C Al — @;. By the strong zero-entrance

assumption, AI — @ is injective, which implies that Al —Q = A\ — Q. Thus (2.11) holds.
We now choose \g > 0 such that [|A¢(Ao)|| < 1, then by Banach’s Theorem,

(I = A9() ™" = 3 (AD(h))",
which, together with (2.11), implies that, for y € Dom(Q1),

y(hol — (Q1 + A))(6(No)(I — Ap(Xo)) ™) = y.

Thus Aol — @1 is injective, that is, @ is strong zero-entrance. ]

Lemma 2.3 Let two g-matrix ) and @ satisfy @ = @+ A, where A is a Feller and
row-sum bounded matrix (not necessary g-matrix). Then the minimal Q-function P(t) is

Feller transition function if and only if the minimal Q-function ﬁ(t) is.

Proof Suppose P(t) is Feller, then, by a result in Reuter and Riley (1972), the
minimal @Q-resolvent ¢(A) is also Feller. Thus ¢()) induces a bounded operator on cy.
Choose \g such that [[A¢(Ao)|| < 1. Then by Banach’s Theorem, I — A¢()g) has a
bounded inverse operator on co with (I — A¢(Xg)) ™! = § (Ap(No))™, which implies that,

n=0

for all z € co, (Mol — (Q 4+ A))(d(Mo)(I — Ad(Xg)) " H)x = . Thus Aol — Q is surjective on
cp. But Li (2003, Theorem 6.1) has proved that, for a general g-matrix @), the minimal
Q-function is Feller provided AI — @ is surjective on ¢g. Using this result, we know that
the minimal @—function ]S(t) is Feller. The converse is similarly proved by considering the
decomposition Q = Q + (—A). O

Proof of Theorem 2.1 Let Q be a quasi-monotone g-matrix, then Q = CNQ +A
such that @ is a monotone g-matrix, and A is Feller and row-sum bounded. By the Feller
criteria for monotone g-matrices (Li, 2006, Theorem 4.3), the minimal @—function is Feller
if and only if @ is either Feller and strong zero-entrance or nonzero-exit. Thus the desired

conclusion follows from Lemma 2.1-2.3. O

§3. The Feller Property for Generalized Branching

Processes

We turn to the generalized branching g-matrix @ defined by (1.1)—(1.3). Apply The-

orem 2.1 to this g-matrix, we have
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Proposition 3.1 A generalized branching process is a Feller process (which means
that its transition function is Feller) if and only if either @ is zero-entrance or ) is not

regular.

Proof () has a decomposition Q) = @+A such that @ is the corresponding absorbing
g-matrix (i.e. go; = 0 and g;; = ¢;j for i > 1 and all j € Z1). It is easy to verify that @ is
monotone (i.e. satisfies (2.2)), and A is obviously Feller and row-sum bounded. Thus @

is quasi-monotone. Therefore the required conclusion follows from Theorem 2.1. O

Furthermore, We need to check two conditions in Proposition 3.1. Some results on
regularity and zero-entrance have been obtained by Chen (1997), Chen (2002a, b), Zhang
et al (2001), Chen et al (2005, 2006), in virtue of the following generating function of the
sequence {b;} in (1.2).

B(s) = Y bs, 0<s<l1. (3.1)
j=0

Here we gather their results as follows.

Lemma 3.1 Suppose @ is a generalized branching g-matrix given by (1.1)—(1.3).
We have

(i) If @ > 1, then @ is regular if and only if B'(1) < 0;
(ii) If 6 <1, then @ is regular provided B'(1) < 0;
(iii

iii) If @ < 1, then @ is always zero-entrance;
(iv) If # > 1 and B’(1) > 0, then the absorbing q-matrix (hy = 0) is zero-entrance.

We’ll make zero-entrance more clear. Let us consider another generating function

(instead of B(s))

C(s) = > cps"™, 0<s<1, (3.2)
n=1
where
1 n
n=—7—>bj, n > 1. (3.3)
bo j=o

By (1.2) and (1.3), we know that 0 < ¢, | 0 and ¢; > 0. Thus C(s) is a nonnegative
increasing function and has radius r of convergence with r > 1. It is easy to verify that

B(s)

B(s) = by(1 —s)(1 — C(s)) or equivelently C(s) =1 — bo(l—s)’

0<s<1 (3.4)

Thus the key condition B’(1) < 0,= 0,> 0,= +o0 are equivalent to C(1) < 1,=1,>1,=

+oo respectively (we see that the derivative disappears).
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Proposition 3.2 A generalized branching process is a Feller process if and only if
its q-matrix @ given by (1.1)—(1.3) is zero-entrance, which is also equivalent to
o0
R= > R,=4o0, (3.5)
n=1
where R, is defined by Ry =1 and

1 n—1

Ro= ity (1 + X (m+ 1)9cn_mRm>, n>1. (3.6)

Furthermore, we have

(i) if @ <1, then the process is a Feller process;

(ii) if @ > 1, then whether the process is a Feller process or not according to either
Cl)<lorC(l)>1

Proof We first show that @) is zero-entrance if and only if R = +o00. Indeed, let
@ be the corresponding absorbing g-matrix. Then it follows from Lemma 2.2 that @ is
zero-entrance if and only if Q is. By Chen et al (2005, Theorem 3), a downwards skip-free
g-matrix is zero-entrance if and only if R = f R, = 400, with Ry = R_; =1 and

n=1
n o
Ry = (1+ DS quRm,l), n>1. (3.7)
n+1,n m=0 k=n+1

Applying this result to Q (not @) and by (3.3), we can rewrite (3.7) as follows

1 1
n — n—m m— 2 1. .
R CESIL (bo mzlm Cn—m+1R 1) n (3.8)

Here by can be taken value 1, the reason is that Q and (1/bg) - Q have the same zero-
entrance property and have the same sequences {¢,}. Then R, has the formulation in

~ o0
(3.6). We have shown that @ and thus @ is zero-entrance if and only if > R, = 400
n=1

where R,, are given by (3.6).

If now 0 < 1, by Lemma 3.1 (iii), @ is zero-entrance. This is also from (3.5)—(3.6).

If > 1 and C(1) > 1, then by Lemma 3.1 (iv), the absorbing g-matrix Q is zero-
entrance, and thus @) is zero-entrance by the above proof.

If # > 1 and C(1) < 1, we claim that @ is nonzero-entrance. Indeed, let

R(s) = flens" and A(s):nflmll)esn. (3.9)

Then by (3.6) it is easy to show that R(s) < A(s)+C(s)(R(s)+1), thatis, (1—-C(s))R(s) <
A(s) + C(s). Noting that 1 — C(s) > 0for 0 < s <1 (as C(1) < 1) and A(1) < 400 (as
6 > 1), we see that R = R(1) < (A(1)+ C(1))/(1 — C(1)) < 4o0.



56 MRS ot

Finally, we notice that if C(1) > 1 then @ is always zero-entrance. Thus, by Lemma
3.1 (i) (ii), it is impossible that @ is neither regular nor zero-entrance. This, together with

Proposition 3.1, implies that the process is Feller if and only if @) is zero-entrance. ]

Remark 2 By the above proof, we see that () is either regular or zero-entrance.
Thus the minimal Q-function is in fact the unique Q-function satisfying the forward equa-
tions: P’(t) = P(t)Q. This fact has been proved by Chen (2002a) only in the absorbing

cases.

There is also a remainder case with C(1) = 1, § > 1 in Proposition 3.2. To make it

clearly, we establish a criterion in terms of integrals.

Proposition 3.3 Suppose C(1) < 1, then the process has the Feller property if
and only if

1 (] _ )02
1(0) = /0 (;—C?(s)ds = 400. (3.10)

Proof By Proposition 3.2, we have only to prove that the series (3.5) and the
integral I() have the same convergence. Let T), = (n + 1)°R,,, n > 0. Then (3.6) can be
read as

n—1
To=1+ 3 comTm, n>L (3.11)
m=0
o0
Let T'(s) = 3 Tps™, 0 < s <1, Then by (3.11) we have T'(s) =1/(1 —s) =1+ C(s)(1 +
n=1
T'(s)). Noting that 1 —C(s) >0 for 0 <s <1 (as C(1) < 1), we have

S 1
n+1)°R,s" =T(s) = -1, 0<s<l. 3.12
Zr VR =T = 50— o) 12
Multiplying (1 — 5)?~! to the both sides of (3.12) and integrating it from s = 0 to s = 1,

we find

& 9 ! _ yilgngs — P(1—s) . ! VR
2;m+4)334<1 JP-1gnd _[;1_ngd A(1 P-lds.  (3.13)

Noting that
rOI(n+1)

TO+ntl) (3.14)

1
/ (1—-5)0"ts"ds = B(@,n+1) =
0

where B(-,-) and I'(-) denote the Beta and Gamma functions respectively, we can rewrite

(3.13) as follows

(n+1)°T(n+1) 1 /1 (1—s)02 1
0

n; T@+n+1) " T() 1—C(s) ds — TO+1) (3.15)
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We need to prove that

T
nh_)ngo Im =1, for every fixed 6 > 0. (3.16)
Indeed, first, (3.16) holds obviously for § = m (any integer). We then prove (3.16) when

0 > 2. To this end, we let

1—‘ 1 o0 oo
f(0) = M = 9/ 2t lemody = n”/ yotn—lemuqy, (3.17)
n n 0 0

Differentiating it twice at 8 with 8 > 0, we have
oo
£ = [ og gy > 0,
0

Thus f’() is increasing. But obviously f(1) < f(2), then by the mean value theorem,
there is a 6y € (1,2) such that f'(fg) > 0 and thus f’(6) > 0 for § > 2 at least. Therefore
f(0) is increasing in [2,+00). Given now a # > 2, we can choose an integer m such that
m > 6. Then

n™T(n) < nfT(n) - n?T'(n)
I'n+m) ~T@+n) ~ T(2+n)
which proved that (3.16) holds for all § > 2 If 0 < § < 2, then
n9T(n) ) ndt20(n)  (@4+14n)(0 +n)

lim Y _ - —1.
oo I'0+n) oo r'e+2+n) n?

Thus we have proved (3.16). Using (3.16) we see from (3.15) that the series > R, and

the integral 1(#) in (3.10) have the same convergence as required. O

As a corollary, we can obtain the strong ergodicity criterion. The criterion (iv) in the

following result has been obtained in Chen (2002b) by using the probabilistic method.

Corollary 3.1 Let @ be a generalized branching g-matrix with resurrection (hg #
0) and assume C(1) < 1. Then the following statements are equivalent to each other.

(i) The process is strongly ergodic;

(ii) The process is not a Feller process;

(iii) R= f R, < 400, where R, is defined by (3.6);

(iv) 1(0) Z:—lkoo, where I(0) is the integral given by (3.10).

Proof Considering a decomposition Q) = @+A such that @ is also a g-matrix whose
first row is (hg, —ho, 0,0, --) and whose other rows preserve the same elements as @, then
A=Q- @ is obviously Feller and row-sum bounded matrix (not necessarily g-matrix). It

is easy to verify that @ is monotone (i.e. satisfies (2.2)) and regular (by the assumption
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C(1) < 1). Thus the minimal Q-function P(t) is monotone. By Chen (2002b), P(t) is
also (ordinary) ergodic (since Q is of finite range). By Zhang et al (2001, Theorem 2.2),
the monotone and ergodic P(t) is strongly ergodic if and only if P(¢) is not Feller, which
is, by Lemma 2.3, equivalent to that the minimal @-function P(t) is not Feller. But the
strong ergodicity does not depend on the sequence {h;} as pointed out in Chen (2002b),
that is, P(t) is strongly ergodic if and only if P(¢) is. Thus we have proved (i) < (ii). The
other conclusions follows from Proposition 3.2 and 3.3. U

Using the above two propositions, we get our final result stated as follows.

Theorem 3.1 Let @ be a generalized branching g-matrix defined by (1.1)—(1.3).
We have

(i) if C(1) > 1, then the process is Feller;

(ii) if C'(1) < 1, then the process is Feller if and only if 0 < 6 < 1;

(iii) if C(1) =1 and C'(1) < 400, then the process is Feller if and only if 0 < § < 2;

(iv) if C(1) =1 and C'(1) = 400, then there is also a separating point 6y € [1,2]
whether the process has the Feller property or not according to 6 > 6y or 6 < 6.

Proof (i) and (ii) follows from Proposition 3.2, (iii) follows easily from Proposition
3.3. We now prove (iv). It is easy to see that the integral I(#) given by (3.10) is a
decreasing function if # > 0. Thus a separating point 6y indeed exist. But I(0) = 400 if
6 < 1, while I(#) < +o0 if # > 2. Therefore the separating point 0y € [1,2] as required.
U

Finally we give two examples to illustrate that the separating point 6y can be taken
any values in [1,2].
Example 1 For0<a <1, let
(1!
n!
Then C(s) =1 — (1 — )% and thus 0 < ¢, | 0, C(1) =1, and C’(1) < 4+00. The integral
1(0) is

ala—1)---(a—n+1), n> 1.

Cp =

1
1(0) = / (1—s)?7279ds.
0
Then I(0) = +o0 if § < 1+ a, while I(f) < 400 if § > 1+ a. Therefore the separating
point §p =1+a € (1,2).

Example 2 Even in the case (iv), let 6y take the value 2. The example is given
by
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Then C(1) =1 and C’(1) = 4+o0. It is easy to verify that

> 1 x© 1 (s —1)log(1 — s)
1— =1-3 —s"+ % = 1.
C(s) n:1n3 +n:1n+18 . , 0<s<

which implies that the integrals at 8 = 2

1(2)/1ds>1/1 ds —1/1/2 L
o 1=C(s) T2 Jipp(s—1)log(l—s) 2y slogs '

Remark 3  Although the generated branching processes is not necessary a Feller

process, the process is always column continuous in the sense of Li (2007), that is, P;;(t) —

d;; uniformly in 7, as ¢ | 0.
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