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Abstract
In this paper, we propose a local linear estimator for conditional third central moment. The

asymptotic bias and variance are derived. General cross validation (GCV) is recommended for

bandwidth selection. A simple simulation study is carried out to illustrate the usefulness of the

proposed method.
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§1. Introduction

Kernel smoothing is a commonly used method in nonparametric regression. Nadaraya-

Watson (Nadaraya (1964) and Watson (1964)) estimator and the local polynomial kernel

(Fan and Gijbels (1996)) estimator are the most popular methods. Beside estimating

conditional mean, other fields, such as, the estimation of variance function and covari-

ance matrix (Smith and Kohn (2002), Ledoit and Wolf (2004)), attracted more and more

attention in the past decade. Many statisticians carefully studied the covariance and cor-

relation function for longitudinal data (Yao, Müller and Wang (2005a, b); Fan, Huang and

Li (2007)). Among others, Yin, Geng, Li and Wang (2010) developed a nonparametric

model for conditional covariance matrix, extending existing models for conditional vari-

ance. Nevertheless, little literature investigated the higher order conditional moments.

People put much attention on the covariance, correlation function and conditional covari-

ance (matrix), but ignored higher order conditional moments, which are also important

to uncover properties of conditional distribution. By taking the conditional third central

moment into consideration, we in this paper try to fill this gap. A local linear kernel
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estimator is developed. The asymptotic bias and variance of the proposed estimator are

investigated. Consequently, mean squared error (MSE) and mean of integrated squared

error are described with the corresponding optimal bandwidth. A general cross-validation

(GCV) score is provided to select the bandwidth. We illustrate the estimation procedure

with a simulation study.

The rest of the paper is organized as follows. Section 2 describes the conditional

third central moment model and the estimator. In Section 3, we study the asymptotic

properties of the local linear estimator. We describe the bandwidth selection in Section 4.

A simulation study is put in Section 5. All the proofs are relegated in the Appendix.

§2. Model and Estimator

Let X be a random variable and U be an associated index random variable. Assume

that, conditional on U = u, X follows a distribution with mean m(u), variance σ2(u),

and the third central moment γ3(u). Assume that {Xi, Ui, i = 1, · · · , n} are randomly

sampled from the distribution of (X, U). Our goal is to estimate γ3(u). For simplicity,

we only consider the scalar case of X in this paper. The extension to multivariate X is

straightforward.

Firstly, we need to estimate m(u). Assume that m(u) has up to (p + 1) continuous

derivatives within some interval of interest. Then for each Ui, m(Ui) can be approximated

by a p-th degree polynomial,

m(Ui) ≈ m(u) + m′(u)(Ui − u) + · · ·+ m(p)(u)
p!

(Ui − u)p. (2.1)

Then m(u) can be estimated by minimizing

n∑
j=1

(
Xi −

p∑
l=0

m(l)(u)
l!

(Ui − u)l
)2

Kh(Ui − u), (2.2)

where K(·) is a symmetric kernel function and h is the bandwidth. Kh(·) = K(·/h)/h.

We define the notations

Sn,j =
n∑

i=1
Kh(Ui − u)(Ui − u)j , Vn,j =

n∑
i=1

Kh(Ui − u)(Ui − u)jXi.

Denote by Sn a (p + 1)× (p + 1) matrix with the (k, l)-th entry Sn,k+l−2 (k, l = 1, · · · , p +

1), and Vn a (p + 1) dimensional vector with the k-th entry Vn,k−1 (k = 1, · · · , p + 1).

Consequently, the estimator m̂(u) can be explicitly expressed as

m̂(u) = ξτ
p+1S

−1
n Vn, (2.3)
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where ξp+1 is (p + 1)× 1 vector with the first element 1 and the others 0.

Secondly, assume that γ3(u) has up to (p+1) continuous derivatives. Similar to (2.2),

we construct the following function for estimating γ3(u).

n∑
j=1

{
[Xi − m̂(u)]3 −

p∑
l=0

γ
(l)
3 (u)
l!

(Ui − u)l
}2

Kh(Ui − u). (2.4)

Introduce the notation Γn,j as

Γn,j =
n∑

i=1
Kh(Ui − u)(Ui − u)j [Xi − m̂(Ui)]3. (2.5)

Thus the estimator γ̂3(u) can be expressed as

γ̂3(u) = ξτ
p+1S

−1
n Γn, (2.6)

where Γn is a p + 1 dimensional vector with the k-th element Γn,k−1 (k = 1, · · · , p + 1).

Since local linear estimator has several nice properties and was recommended by Fan

and Gijbels (1996) in practice, we choose the local linear estimator (p = 1) to estimate

m(u) and γ3(u) in this paper. The asymptotical properties of local linear estimator γ̂3(u)

are studied in next section. We want to point out that the local linear estimator can not

only estimate the first and third central moments, but also can be extended to estimate

higher-order conditional moments. For higher order conditional central moments, we can

give the estimators by minimizing a similar function to (2.4). We only need to change the

power of the [Xi − m̂(u)] in (2.4) from 3 to a corresponding value.

§3. Asymptotic Properties

The local linear estimator m̂(u) has been extensively studied in the literature. In this

section, we concentrate on the asymptotic properties of γ̂3(u) (p = 1). Let h1 denote the

bandwidth for m̂(u) and h2 for γ̂3(u). The moments of K and K2 are denoted respectively

by µj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt. We list some regular conditions which are

necessary in the proofs.

(C1) The index random variable U has a compact support and a probability density

f(U), which is bounded away from 0 and has bounded and continuous second derivative.

(C2) There exists a constant δ ∈ [0, 1) such that sup
u

E[X3]2+δ < ∞.

(C3) The conditional mean m(u) and the conditional third central moment γ3(u) has

continuous third derivative.
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(C4) E[Xk|U = u] has continuous second derivative in u for 0 ≤ k ≤ 6.

(C5) n →∞, nh
5/3
1 →∞, nh5

1 → 0 and h2 = Op(n−1/5).

(C6) K(u) is a bounded probability density function symmetric about 0 so that

µ2 < ∞ and ν0 < ∞.

Let [Xi−m(Ui)]3 = γ3(Ui)+ei, where ei satisfies E(ei|Ui) = 0 and Var (ei|Ui) = ω(Ui).

We demonstrate the asymptotic bias and variance of γ̂3(u) in Theorem 3.1.

Theorem 3.1 Under the conditions (C1) to (C6), we have

E(γ̂3(u)− γ3(u)|U) =
h2

2µ2

2
γ

(2)
3 (u) + op(h2

2),

Var (γ̂3(u)− γ3(u)|U) =
ω(u)ν0

nh2f(u)
+ op[(nh2)−1], (3.1)

where U = {U1, · · · , Un} represents the observation of the index variable U .

Remark 1 From (A.6) and (A.8) in the Appendix, we can find that two terms

of Op[(nh1)−1] and Op(h2
1) exists in the bias of γ̂3(u). To eliminate the influence of m̂(u)

on the bias of γ̂3(u) compared to Op(h2
2), we assume that nh

5/3
1 → ∞ and nh5

1 → 0 in

(C5). Obviously, we need undersmoothing in estimating m(u), but the curve m̂(u) can

not be very rugged due to the restriction nh
5/3
1 → ∞. Yin et al. (2010) did not assume

the undersmoothing for m̂(u) because it estimated the conditional covariance matrix. The

estimated moments themselves decided the different bandwidths between our paper and

Yin et al. (2010). More explanation will be given in the Appendix.

By Theorem 3.1, it is easy to derive MSE of γ̂3(u).

MSE(γ̂3(u)) =
h4

2µ
2
2

4
[γ(2)

3 (u)]2 +
ω(u)ν0

nh2f(u)
+ op[h4

2 + (nh2)−1]. (3.2)

Consequently, the MISE of γ̂3(u) (with weight function w(u) ≡ 1) is

MISE(γ̂3(u)) =
∫

h4
2µ

2
2

4
[γ(2)

3 (u)]2du +
1

nh2

∫
ω(u)ν0

f(u)
du + op[h4

2 + (nh2)−1]. (3.3)

So the optimal bandwidth h2 to minimize MISE is

h2,opt = n−1/5

[ν0

∫
ω(u)/f(u)du

µ2
2

∫
[γ(2)

3 (u)]2du

]2

.

The optimal bandwidth of h2 is the order of n−1/5. But unfortunately, we cannot

directly use such an asymptotic bandwidth because of some unknowns. However, it shows
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that for such conditional third central moment problem, the order of the optimal band-

width is exactly the same as that in common regression model. A general cross validation

to selection bandwidth is given in next section.

§4. Bandwidth Selection

For γ̂3(u), there are several popular methods for selecting the bandwidth, including

the plug-in method (Ruppert, Sheather and Wand (1995)), the pre-asymptotic substitution

method (Fan and Gijbels (1996)), the empirical bias bandwidth selection method (Ruppert

(1997)), the cross-validation method, and the GCV method. Here we use the plug-in

method to select an optimal bandwidth b for m̂(u) firstly. Since undersmooth for m̂(u) is

needed, we then use h1 = b×n−1/5 for implementation. On the other hand, the estimator

γ̂3(u) in (2.6) is a local linear kernel estimator with [Xi− m̂(Ui)]3 as the response variable

and Ui as the predictor. So we define a GCV score as follows,

GCV(h2) =

n∑
i=1
{[Xi − m̂(Ui)]3 − γ̂3(Ui)}2

[1− tr(An/n)]2
, (4.1)

where An is the hat matrix

An = S−1
n




n∑
i=1

Kh(Ui − u)
n∑

i=1
(Ui − u)Kh(Ui − u)


 .

The bandwidth h2 can be obtained by minimizing GCV(h2). We will use this method to

select bandwidth in next section of simulation study.

§5. Simulation Study

To illustrate our estimation method, we carried out a simple simulation study. The

index variable U was generated from uniform distribution U [0, 1]. The sample size of

observation was set as n = 200, 400 and 800. There were two cases for X,

(1) X was simulated from an exponential distribution Exp(1/ sin(U));

(2) X was simulated from a normal distribution N(sin(U), 0.1 ∗ cos(U)).

The bandwidths h1 and h2 were selected as described in Section 4. Epanechnikov

kernel K(z) = (3/4)(1 − z2)I(|z| ≤ 1) was employed through the simulation study. We
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chose the integrated bias, variance and MSE (IBS, IVAR, IMSE) to evaluate the per-

formance of the estimators. 100 Ũi’s equally spaced from 0 to 1 were used to approxi-

mate integrated mean squared error of γ̂3(u). The IMSE was approximated by IMSE ≈
M−1

M∑
i=1

100∑
j=1

[γ3(Ũj) − γ̂3(Ũj)]2∆j , where ∆j was the grid space between Ũj and Ũj+1. In

our cases, all the ∆j was 0.01. M represented the total number of the simulation runs. We

used M = 500. The integrated bias and variance were approximated by similar approach.

We report the results in Table 1.

Table 1 The integrated bias square, variance and MSE (IBS, IVAR, IMSE) of γ̂3(u)

Case I Case II

n IBS IVAR IMSE IBS IVAR IMSE

200 0.0295 0.2037 0.2328 1.01e-11 1.90e-08 1.90e-08

400 0.0189 0.0593 0.0781 6.02e-12 8.90e-09 8.90e-09

800 0.0089 0.0442 0.0530 9.83e-12 4.37e-09 4.37e-09

From Table 1, we can see that all the values are very small. Our estimator performs

very well. The true value γ3(Ui) in case II keeps 0 so that all the values in case II are

much smaller than those in case I. In both two cases, integrated bias, variance and MSE

decrease as sample size n arises, which verifies the consistency of the estimator γ̂3(u).

Appendix

Proof of Theorem 3.1 Note that for any random variable R with first two

moments, we have R = E(R) + Op[Var 1/2(R)]. Thus for r = 0, 1 and 2, we have

n∑
i=1

Kh(Ui − u)(Ui − u)r = nhrf(u){1 + Op[(nh)−1/2]}.

Therefore, it is obvious that

m̂(u)−m(u)

=
1

nh1f(u)

n∑
i=1

K
(Ui − u

h1

)
[Xi −m(u)−m′(u)(Ui − u)][1 + Op((nh1)−1/2)]

=
{ 1

nh1f(u)

n∑
i=1

K
(Ui − u

h1

)
[Xi −m(Ui)] +

h2
1

2
m(2)(u)µ2

}
{1 + Op[(nh1)−1/2]}. (A.1)

Let [Xi −m(Ui)]3 = γ3(Ui) + ei, where ei satisfies E(ei|Ui) = 0 and Var (ei|Ui) = ω(Ui).
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We represent γ̂3(u)− γ3(u) as

γ̂3(u)− γ3(u)

=
1

nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
{[Xi−m̂(Ui)]3−γ3(u)−γ′3(u)(Ui−u)}{1+Op[(nh2)−1/2]}

=
1

nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
{[Xi −m(Ui)]3 − γ3(u)− (Ui − u)γ′3(u)}

+
1

nh2f(u)

n∑
i=1

K
(Ui−u

h2

)
ei−3

1
nh2f(u)

n∑
i=1

K
(Ui−u

h2

)
[Xi−m(Ui)]2[m̂(Ui)−m(Ui)]

+ 3
1

nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
[Xi −m(Ui)][m̂(Ui)−m(Ui)]2

− 1
nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
[m̂(Ui)−m(Ui)]3 + Rn,1

=: I1 + I2 − 3I3 + 3I4 − I5 + Rn,1, (A.2)

where Rn,1 = Op[(nh2)−1/2][I1 + I2 − 3I3 + 3I4 − I5]. Let U = {U1, · · · , Un} represent the

observation of the index variable U . It is easy to derive that

E(I1|U) =
h2

2

2
µ2γ

(2)
3 (u) + op(h2

2). (A.3)

Note that E(I2|U) = 0 and by standard arguments, it follows that

Var (I2|U) =
1

nh2
2f

2(u)
E
[
K2

(Ui − u

h2

)
e2
i

]

=
ω(u)ν0

nh2f(u)
+ op[(nh2)−1]. (A.4)

Rewrite Xi = m(Ui) + σ(Ui)εi, where σ(Ui) > 0, E(εi|Ui) = 0 and Var (εi|Ui) = 1. The

term I3 can be decomposed as I3 = I31 + I32 + I33. Firstly, under condition (C5), we have

I31 =
1

nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
σ2(Ui)ε2i

1
nh1f(Ui)

n∑
j=1

K
(Ui − Uj

h1

)
σ(Uj)εj

=
1

n2h1h2f(u)
∑
i6=j

ψij +
1

n2h1h2f(u)

n∑
i=1

ψii, (A.5)

with

ψij = K
(Ui − u

h2

)
K

(Uj − Ui

h1

)
σ2(Ui)σ(Uj)f−1(Ui)ε2i εj .

It is obvious that Eψij = 0. Assume that E(ε4i |Ui) = γ4
ε . We can derive that E(ψ2

ij) =

h1h2ν
2
0σ6(u)γ4

ε + op(h1h2). In consequence, E
( ∑

i6=j

ψij

)2 ≤ O(n(n − 1)h1h2). Then for an

arbitrary α > 0, by Markov’s Inequality, we have

P
{( 1

n2h1h2

∣∣∣ ∑
i6=j

ψij

∣∣∣
)/

h2
2 > α

}
<

1
n4h2

1h
6
2α

2
E
( ∑

i6=j

ψij

)2

≤ O[(n2h1h
5
2)
−1].
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Then by condition (C5),

P
{( 1

n2h1h2

∣∣∣ ∑
i6=j

ψij

∣∣∣
)/

h2
2 > α

}
→ 0.

It yields that

[n2h1h2f(u)]−1 ∑
i6=j

ψij = op(h2
2).

In addition, we can obtain

[n2h1h2f(u)]−1
n∑

i=1
ψii = Op[(nh1)−1]. (A.6)

Then by condition (C5), I31 = op(h2
2). On the other hand,

I32 =
µ2h

2
1

2nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
σ2(Ui)ε2i m

(2)(Ui). (A.7)

By E(ε2i |U) = 1, we can easily obtain that

E(I32|U) =
µ2h

2
1

2
σ2(u)m(2)(u) + op(h2

1). (A.8)

Then we can see the right side of (A.8) existed in the bias of γ̂3(u). Thus the estimation of

m(u) affects γ̂3(u). However, under (C5), E(I32|U) = op(h2
2). Then the influence of m̂(u)

on γ̂3(u) can be removed compared to Op(h2
2) in (A.3). While if the conditional covariance

matrix is estimated just as in Yin et al. (2010), then the term I32 should contain εi but

not ε2i . As E(εi|U) = 0, the term I32 is naturally op(h2
2). So Yin et al. (2010) needed no

undersmoothing for m̂(u), but our paper needs. The undersmoothing for m̂(u) required

in our paper is determined by the estimated function γ3(u) itself.

Besides, I33 = Op[(nh1)−1/2](I31 + I32). Obviously, I33 = op(h2
2). Now we consider I4.

I4 =
1

nh2f(u)

n∑
i=1

K
(Ui − u

h2

)
σ(Ui)εi

{ 1
nh1f(u)

n∑
j=1

K
(Uj − Ui

h1

)
σ(Uj)εj

+
µ2h

2
1

2
m(2)(Ui) + op[h2

1 + (nh1)−1/2]
}2

= Op[(nh2)−1/2]{Op[(nh1)−1/2] + Op(h2
1)}. (A.9)

Under condition (C5), I4 = op(h2
2). Similarly, I5 = op(h2

2). Consequently, Rn,1 = op(h2
2).

In summary,

E(γ̂3(u)− γ3(u)|U) =
h2

2µ2

2
γ

(2)
3 (u) + op(h2

2),

Var (γ̂3(u)− γ3(u)|U) =
ω(u)ν0

nh2f(u)
+ op[(nh2)−1]. (A.10)

Then the proof for Theorem 3.1 has been completed. ¤
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条件三阶中心矩的局部线性估计

房 云 於 州

(华东师范大学金融与统计学院, 上海, 200241)

本文给出了条件三阶中心矩的局部线性估计, 并研究了估计的条件偏差和方差. 本文利用广义交叉核实

法(GCV)进行窗宽选择. 我们通过模拟说明了该估计的实用性.

关键词: 渐近性质, 窗宽选择, 条件三阶中心矩, 局部线性估计.

学科分类号: O212.《
应
用
概
率
统
计
》
版
权
所
用




