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Abstract

An optimal control problem motivated by a portfolio and consumption choice problem in the
financial market where the expected utility of the investor is assumed to be the Constant Relative
Risk Aversion (CRRA) case is discussed. A local stochastic maximum principle is obtained in the
jump-diffusion setting using classical variational method. The result is applied to make optimal
portfolio and consumption choice strategy for the problem and the explicit optimal solution in the
state feedback form is given.
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§1. Introduction

Maximum principle for optimal control of stochastic systems has been studied for a
long period, see [1]-[4]. But one of their former assumptions is that the functions in the
cost functional satisfy the usual linear or quadratic growth conditions. Unfortunately,
this requirement excludes at least one important case which arises from the portfolio and
consumption choice problem in the financial market — the constant relative risk aversion
(CRRA for short) case (see [5] for example).

Stochastic processes with random jumps have become increasing popular for modelling
fluctuations in financial market, both for risk management and option pricing purposes

(see [6]). The stochastic control problem with jump diffusions is encountered naturally in
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the financial market. For example, the analysis of price evolution does reveal sudden and
rare breaks logically accounted for exogenous events on information. Such a behavior from
probabilistic point of view is naturally modeled by jump-diffusion processes, that is, the
processes governed by both Brownian motion and Poisson random measure. Stochastic
maximum principles for optimal control of jump diffusions and their applications to finance
are seen in [7], [8].

In this paper we discuss an optimal control problem motivated by a portfolio and
consumption choice problem in the financial market with CRRA utility functional. A
local stochastic maximum principle is obtained in the jump-diffusion setting using classical
variational method. The result is applied to obtain the optimal portfolio and consumption

choice strategy in the state feedback form explicitly.

§2. Stochastic Control Problem and Maximum Principle

Let (92, F, {F:}+>0, P) be a complete stochastic basis with the filtration {3 }+>¢ which
is generated by the following two mutually independent processes:

(i) A one-dimensional standard Brownian motion {B(t)}+>o;

(ii) A Poisson random measure N on Ex [0, 00), where E C R/{0} is a nonempty open
set equipped with its Borel field B(E), with compensator N (dedt) = m(de)dt, such that
N(Ax[0,t]) = (N=N)(Ax]o, t])+>0 is a martingale for all A € B(E) satisfying 7(A4) < oco.
7 is assumed to be a o-finite measure on (E, B(E)) and is called the characteristic measure.

Let H be a finite-dimensional vector space and T > 0 a fixed real number which is
called time horizon. We denote by L2(Q, Fr; H) the space of H-valued square-integrable
Fr-measurable random variables, by L%_-([O, T1; H) the space of H-valued square-integrable
Fi-adapted processes, by L2f7p([O,T |; H) the space of H-valued square-integrable F;-pre-
dictable processes, and by FIQ)([O,T];H) the space of H-valued Fi-predictable processes

T
f(,-,-) defined on © x [0,7] x E such that E/ / (-, t, e)*m(de)dt < oo.
Suppose we have a financial market consisting of two investment possibilities:

(i) A risk-free security (e.g. a bond), whose price Sy(t) at time ¢ is given by
dSo(t) = ,OtSO(t)dt, S()(O) >0, (2.1)

where p; is a bounded deterministic function;

(ii) A risky security (e.g. a stock), whose price Si(t) at time ¢ is given by

48 () = Sl(t—)[,utdtJratdB(t) + /E nt(e)ﬁ(dedt)}, S10)>0, (22



E il LR RER: B i DU A WA L O AR PR A e o A 129

where p, 00 # 0,m:(e) are bounded deterministic functions and p; > py. To ensure that

Si(t) > 0 for all ¢ we assume that n(e) > —1, Ve € E and in addition we assume that
n*(e)m(de) is a bounded function.

Let v(t) = 61(¢)S1(t) denote the amount invested in the risky security at time ¢ which

we called portfolio. We shall also allow the investor to withdraw consumption from his

or her wealth with a consumption rate process c(t) at time ¢. Given the initial wealth

z(0) = xo > 0, combining (2.1) and (2.2) we can get the wealth dynamics

dz(t) = [pex(t) + (ue — pe)v(t) — c(t)]dt + opv(t)dB(t)
+ /E me(e)v(t—)N(dedt), (2.3)
z(0) = xo.

The investor wants to maximize his/her expected utility

T
Tw.e)) = E[ [ glett). Ot + h(a().7) (2.4

with
d hz,T) = Ki1 2
1 R, ( ’ ) 1 R’ ( .5)

by choosing an appropriate portfolio-consumption pair (v*(-),c*(+)) over some admissible

glet) = Le™™

portfolio-consumption pairs set Ugg. In the above L, K, > 0 and R € (0,1) which is
called the Arrow-Pratt measure of risk aversion (see [9]).
In this paper we study the following optimal control problem which is a generalization

of the above problem
dz(t) = b(t, (t),v(t), c(t))dt + o (t, z(t), v(t), c(t))dB(t)
+ / y(t, x(t=), v(t), c(t), )N (dedt), (2.6)
E
z(0) = o,

where b : [0, T]xRxRxR — R, 0: [0,T]xRxRxR — R, 7: [0,T|xRxRxRxXE — R.

We notice that the functions g and h in the expected utility (2.4) do not satisfy
the linear or quadratic growth conditions. We treat such a case using classical variational
method and obtain a local maximum principle. We apply the maximum principle obtained
to problem (2.3)-(2.4) to get the explicit optimal portfolio and consumption choice strategy
in the state feedback form.

For convenience we rewrite the CRRA type cost functional as

_pe®) " (1)

J(w(-),c() = E[/T LY g4 K

2.
0 1-R 1-R 27)
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We assume that

b, 0,7y are continuously differentiable with respcet to (z,v,c) (H2.1)

and their derivatives are bounded.

Let U = U; x Uy be a nonempty convex subset of R?. We define the admissible

control (portfolio and consumption choice strategy) set
Uy = {(v(),c()) € L_QRP([O,T};Ul) X L%p([O,T];Ug); (v(t),c(t)) € U,a.e.,a.s.}.

An admissible control (v*(-),c*(:)) is called optimal if it attains the maximum of
J(v(+),c(+)) in (2.7). Under assumption (H2.1), we know equation (2.6) admits a unique
solution z(+) € L%([0,T}; R) for the given (zo, (v(-),c(-))) € R x Ugq (see [10]). We call
such z(+) the corresponding trajectory.

In order to derive the variational inequality, we need
T
c(t) > 0,a.e,as.; z(T) > 0,as,; E[/ c(t)*QRdt} < o0; E[z(T)?F] < co. (H22)
0

Let (v*(+),c*(-)) be an optimal control for (2.6)-(2.7), and z*(-) the corresponding
optimal trajectory. Let (v(-),c(+)) € L%p([(), T];Uq) x L%_-p([(), T]; Usa) be given such that
(v*()4v(-), () +c(-)) € Ugg. We take vP(-) = v*(-)+pv(-), ¢’ (-) = ¢*()+pc(-), 0 < p < 1.
Since U,q is convex, then (v°(-),c”(-)) € Ugq. We denote by x”(-) the trajectory of the

control system (2.6) corresponding to (vP(+),c”(-)).

We introduce the following variational equation

dabP(t) = [be(t, 2*(t), v* (1), c* ()1 P (t) + by(t, 2% (t), v* (), c* (t))v(t)
t t))c(t)]dt
+ oz (t, 2* (), v*(t), c* () x P (t) + oy (t, 2* (1), v* (L), c*(t))v(t)
+oc(t, x*(t), v*(t), c*(t))e(t)]dB(t) (2.8)
+/E[%(75>90*(75)aU*(t)&*(t)’@)fﬂl’p(t—) + (L, (1), v* (1),
c* (1), e)v(t) + ve(t, 2 (£), v*(£), ¢* (£), €)e(t)| N (dedt),
12(0) = 0.

)
(

+ be(t, x*(t),v*(t), c*

Let 2°(t) = p~Y(z”(t) — 2*(t)) — 2"(t). Under (H2.1) we can derive the following
estimate

lim sup E|Z”(t)]* =0, (2.9)
p—0o<t<T

whose proof is similar to [11] and omitted here. Consequently we have
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Lemma 2.1 We assume (H2.1), (H2.2) hold. Then we have the following varia-

tional inequality
T
e[ / Le e (1) Re(t)d + Ko™ (1) (T)| < 0.
0

Proof Because J(vP(-),c”(+)) — J(v*(+),c*()) < 0, we have

(2.10)

1-R

We first manipulate the first term of (2.11). Denoting A; = {(t,w) : ¢(t) > 0} and 14

the characteristic function of set A we have

T
L
E / B (t)F — (1) Fdt = I + I,
1R

with

T
L
L=E / g, e P er () — (1) "Rt

T
L
_ —Bt 1-R _ sx/n\1-R
I, = E/o Lyg TR [cP(t) —c*(t) " ]dt.
For I, by the Taylor formula, we have

T
I, = pE / Iy, Le Ptex () Be(t)dt
0

r —Bti( * —R * —R
—i—pE/O ITa,Le P [(c*(t) + Opc(t)) ™ — ¢*(t) e(t)dt

with some 6 € (0,1). Since

lim Ly, L% *7[(c" (£) + pe(t)) " = e*(6) "? =0,
p—

[La, L2 (e (t) + Ope(t)) ™ — e (6) | < 4L?¢ ()72,

it follows from the Lebesgue controlled convergence theorem that

T
lim E/ Ia, Le (" () + 0pc()) ™1 — ¢ (t) Fe(t)dt =
0 Jo

Thus from (2.13), we have that

T
I = E / Lo, Le~Pte (8) Re(t)dt + ol p).
0

(2.12)

(2.13)

(2.14)
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For I», we can derive that

T L c(t) \1-R
_ . —pBt x 1-R o
I, = E/0 IAfl—Re c*(t) {(1—{—,06*(75)) l]dt

T
= ,oE/0 IAgLe_ﬁtc*(t)_Rc(t)dt+p2[(p), (2.15)

with

I(p) = E T[Ag L 6—&6*@)173 a(a '— 1) 7 c(t) \2 N ala — 1)'(a —-2)

and « =1 — R > 0. Since

T T 1-R)/2
E/ Ic*(#)|1Rdt < C[E/ |c*(t)|2dt}( " oo,
0 0

T T (1-R)/2
E / (1) Fat < C[E / (0Pt < 400,
0 0

and noticing that

a(a—1)~-(a—n+1)<c(t)

I 4c
t n!

we have that for small p,

T
0<—I(p)<—I(1) = E / IneLe Pler () e(t)dt
0

T
L _
+ E/ Lag e e ()R — cl(t)1 R]dt < 400.
. MTCR
Thus, it follows from (2.15) that
T
I = pE / Lue L% (1) Re(t)dt + o(p). (2.16)
0
Integrating (2.12), (2.14) with (2.16), it follows that

T L T
E / e M) R (1) R = pE / Le=Ple (1) Re(t)dt + o(p).  (2.17)
o - 0
Thanks to (2.9), similarly we can manipulate the second term of (2.10) and have
K - . - % (=
B (T)! T — 2 (1)) = gL (T) " (T)] + o(p). (2.18)

Therefore, (2.11), (2.17) and (2.18) yield

pE [ / ' LePter () Be(t)dt + Kx*(T)*Rx(T)] +olp) <0. (2.19)
0
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Taking p — 0 in (2.19), then (2.10) holds. O

We introduce the following adjoint equation

—dp*(8) = [ba(t 2 (), 0 (1), ()" (1) + oalt. 2" (6, 0" (1), ()" (1)
¥ / ot (1), 0° (1), € (1), )R (1, ) (de) |
E

—q*(t)d / k*(t, )N (dedt),
p*(T) = Ka*(T)~"

(2.20)

Under (H2.1), (H2.2) we know that there exists a unique triple (p*(-),q¢*("),k*(-,-)) €
L%([0,T];R) x L% ([0, T]; R) x L% ([0, T]; R) which satisfies (2.20) (see [7]).
Applying Ito’s formula to (p*(t), 21 (t)), it can be checked from Lemma 2.1 that

T
E/o [Ho(t, 2" (1), v"(t), ¢ (£), p" (1), q" (¢), K™ (¢, -))v(t)
S HL(t, 2 (1), 07 (1), ¢ (1), p (1), ¢ (£), K* (¢, -))e(t)]dt < 0,

where the Hamiltonian function H : [0,7] x Rx R x R x R x R x R — R is defined as

H(tvxavacvpvcbk(')) = <p,b(t,$,v7c)>—i—<q,a(t,x,v,c)>
1-R

+/E<k(e),’y(t,x,v,c, e))w(de)%—Le*Btﬂ. (2.21)

So for any (v(-),¢(+)) € U, we have
(2.22)

We have proved the following result.

Theorem 2.1  Supposed that (H2.1), (H2.2) hold. Let (v*(¢),c*(t)) be an optimal
control for the optimal control problem (2.6)-(2.7), 2*(-) the corresponding optimal tra-
jectory and (p*(-),q*(+),k*(-,-)) be the solution of adjoint equation (2.20). Then for any
(v(-),¢(-)) € U, the maximum condition (2.22) holds.

§3. Application to Portfolio/Consumption Choice Problem

In this section, we discuss the optimal portfolio and consumption choice problem
(2.3)-(2.4) using the local maximum principle obtained in Section 2. Our target is to

obtain the explicit solution for the optimal portfolio and consumption choice strategy in
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the state feedback form. Finally we can verify that the optimal solution satisfies condition
(H2.2) indeed.

Noting in this case U; = R, Uy = [0,00). The Hamiltonian function (2.21) gets the

form

H(tv z,v,¢p,dq, k()) = <p7 ptx + (Mt - Pt)v - C> + <q7 Jtv>
cl*R
—I—/E<k(e),77t(e)v>7r(de) —I—Le_’gtm, (3.1)

and the adjoint equation (2.20) becomes

—dp*(t) = pp (1)t — ¢ (1)AB(1) - /E K (t, )N (ded),

p*(T) = Ko*(T) "%

(3.2)

Let (v*(-),c*(+)) be an optimal control, 2*(+) the corresponding optimal trajectory and
(p*(+),q*(-),k*(-,-)) the solution of adjoint equation (3.2). Since the expression involving

v and ¢ are both linear, the maximum conditions (2.22) suggest that

(ke = pe)p™ (1) + 00q™ () + /Ent(e)k‘*(t e)m(de) =0, (3.3)

and
~1/R

)= (7" m) (3.4)
In order to get the optimal portfolio and consumption choice strategy (v*(-), c*(-)) ex-
plicitly, the usual method is to give an interpretation to p*(¢) via the nonlinear Feynman-
Kac formula then solve the corresponding partial differential equation using the maximum
condition and the relationship between the maximum principle and the dynamic program-
ming principle (see [12]). However, it is difficult to obtain the explicit solution of such
PDE. It is reasonable to believe that it is more difficult to obtain the desired result in our
jump-diffusion setting.
In fact, it is convenient to guess that it is optimal to consume at a rate proportional

to the current wealth z*(¢). By (3.4) this suggests that
p(t) = f(t)a* ()" (3.5)

for some deterministic differentiable function f to be determined. Applying It6’s formula
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to (3.5) we get

ap'(t) = {fOa* ()" = REOFOz"0) " It (1) + (= p)o*(t) = (1)

+ SRR+ 1) F(0a (1) 200 (1)

+ [ FOU O+ 0) =" 0+ R (07 (e (0]m(e) e
—Rf(t)z* ()" latv (t)dB(t)
/ FOU (=) + mle)o* (t=))F — 2*(t—) BN (dedt). (3.6)

Comparing (3.2) with (3.6), using (3.3) we get

¢*(t) = —Rf(t)ow* ()" (t) 1, (3.7)
k*(te) = f(t)z* () (1 +v* ()m(e)a™(t) ") R — 1], (3.8)
and
{f(t) + auf(t) + R(Le PR f(1)1=1/R — g, o)
f(T) =K,
where

ar = (1—R)ps+ R(pe — pe)v*(H)x* (1)~ + %R(R + 1)ov*(t)2z* (t) 2
+ /E[(l + ne(e)v* () z* (1)) ™R — 1+ Rne(e)v* ()™ (#) " H]r(de).  (3.10)
Substituting (3.5), (3.7), 3.8 into (3.3), we get F(v*(t)z*(t)~!) = 0, where
FO0 = == Rotx+ [ (@l +m(ep) ™ = 1e(de),
which is easily seen to have a zero x*(¢) > 0, i.e.:
F(x*(t)) = 0. (3.11)
With the choice of v*(t)z*(t)~! = x*(t) and oy given by (3.10), we can obtain that

T
f(t):Le—ﬁteftT(ﬁ—as)dS( / _%eﬂseff (ar—ﬁ)/RdeS+(Le—BT)—l/RKl/R>R' (3.12)
t

Using (3.4) and (3.5) we get that

¢ (t) = (Le PHVEp (1)~ px (1), (3.13)
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The corresponding wealth equation (2.3) for z*(¢) becomes

dz*(t) = »’v*(t—){(pt + (e — po)X* (1) — (Le PV Ef (1) 71/ F)de
+orc (OB + [ n(enc (OF (@ean}, (3.14)
z*(0) = z§ > 0.

The solution of this equation is
t
* * * —f(s — 1 *
w0 = e { [ [t (= () = (L)) = St (7] ds

+/0tasx*(s)dB(5)+/0t [/Eln(l+X*(5—)773(6))N(deds)
- ln(X*(S)ns(G))ﬂ'(de)ds} } (3.15)

Finally, we can check that V¢ € [0,7], 2*(t) > 0 and E[z*(T) 2] < 0. So Vt € [0, 7],
T
c*(t) > 0and E| / c* (t)72Rdt] < 0. Therefore, assumption (H2.2) holds indeed. There-

0
fore we have the following theorem.

Theorem 3.1 The optimal solution (v*(+), ¢*(-)) to the portfolio and consumption

choice problem (2.3)-(2.4) is given in state feedback form by

vt (t, ) = X" (t),

c*(t,x) = (Le POVEf(1) =1/ Ey, (3.16)

where x*(t) given by (3.11) and f(¢) given by (3.12).
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