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Abstract
In this paper, an insurer with perturbed classical risk process and random premium income has

the possibility of investment into a risky market. The price process of the risky market is assumed to

follow a geometric Brownian motion. The aim of this paper is to obtain the asymptotical behavior

of the ruin probability under the optimal strategy in the small claims. The constant (denoted by

A∗) maximizing the Lundburg exponent is derived. It turns out that the optimal investment level

convergence to A∗ when the initial surplus tends to infinity. That is to say, the constant we found

is the asymptotically optimal strategy.
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§1. Introduction

In recent years there has bee an increasing attention in the utilization of stochastic

control theory to the problems related to insurance affairs. See for example, Browne[2],

Hipp and Plum[10][11], Schmidli[18], Yang and Zhang[19] and references therein. This due

to the facts that insurance companies can invest in the stock market, can pay dividend to

maximize a certain objective function and can purchase reinsurance et al.. The surplus

process is assumed to be a compound Poisson process or a perturbed compound Poisson

process or a Brownian motion with drift, where the variables, such as, reinsurance, new

business, investment and dividend are adjusted dynamically.

The estimation of ruin probabilities has been a central topic in risk theory. It is known

that if the claim sizes have exponential moments (i.e. so-called small claim case), the ruin

probability decrease exponentially with the initial surplus, see, for instance, Asmussen[1].

However, when there is a stochastic return on investment, the situation may be differ-

ent. Kalashnikov and Norberg[13] have investigated the problem under the additional
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assumption that all the surplus is invested in the risky market, likewise did by Paulsen

and Gjessing[14], Frovola et al.[15]. In all of these cases it was shown that, even if the

claim sizes are small claim size, the ruin probability decreases only with some negative

power of the initial surplus. Thus, for large capital, investing more than the surplus into

the risky market can not be optimal. Then, one interesting problem is: if an insurer has

the opportunity to invest in a risky market, what is the minimal ruin probability she can

obtain? In particularly, can she do better than keeping the funds in the bond? And if yes,

how much can she do better?

Browne[2] considered this problem under the assumptions that the aggregate claims

are modeled by a Brownian motion with drift, and the risky asset is modeled by a geometric

Brownian motion and the corresponding ruin probability there is given by an exponential

function. The compound Poisson process is one of the most popular models in risk theory,

Hipp and Taksar[12] used the compound Poisson process to model the insurance business

and considered the problem of optimal choice of new business to minimize the ultimate

ruin probability. In the case of exponential distributed claim-size, explicit solutions can be

obtained. However, in most cases, it is not so easy to obtain the explicit solution of optimal

strategy. Consequently, there are some papers fall back on finding an asymptotically

optimal strategy, see Gaier et al.[6] and Hipp and Schmidli[9].

In classical risk model and its some generalizations, the total premium income up to

time t, denote by Πt, is usually a linear function of time t. It is not so realistic in fact,

thus, a natural generalization on this aspect is to assume that the premium income process

Π = {Πt, t ≥ 0} has more complex structure than the one in classical risk models. In this

paper, we suppose that the premium income process can be stochastic and the logarithm

of the asset price process of stock market be a drifted Brownian motion. It is assumed

that the premiums and the claims have exponential moments. We investigate whether

there are constants R and constant C such that the minimum ruin probability Ψ(x) (i.e.

the so-called value function in control theory), obtained by starting form an initial surplus

x, satisfies

Ψ(x) ≤ Ce−Rx. (1.1)

Of course, there always is the possibility not to invest at all, resulting in an exponential

bound for the ruin probability Ψ(x), which is the so-called Lundburg upper bound for

classical risk model with stochastic premium income, under the assumption of a safety

loading, see Melnikov[16]. In this paper, we want to find the optimal (i.e. the largest)

coefficient R such that (1.1) holds, where Ψ(x) is the minimum ruin probability under
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optimal strategy. It turn out that R is determined by an equation similar to the one

that determines the Lundburg adjustment coefficient in classical risk model. The trading

strategy that correspond to this optimal R is to invest constant amount of surplus in the

risky market, independent of the current level of the surplus. We will later show that this

constant strategy is asymptotically optimal, respectively asymptotically unique, in the

sense that every “asymptotically different” Markovian strategy yields an “exponentially

worse” decay of the ruin probability.

This paper is organized as follows. In Section 2, an introduction to our problem are

presented and in Section 3, the expression for the asymptotically optimal strategy and the

bounds for the value function,say by Ψ(x), are obtained. In Section 4, we prove that that

the optimal strategy convergence to the constant strategy as the initial surplus tends to

infinity.

§2. Model and Assumptions

Let (Ω,F ,P) be a complete probability space containing all the variables defined in

this paper and a risk process with stochastic premium income is given by

St = u + pt + Πt −Xt, (2.1)

where St is the surplus of an insurer at time t, p is the fixed premium income rate and p is

a positive constant, Πt is the extra stochastic premium income up to time t, so pt + Πt is

the total premium income up to time t. Xt is the total claims up to time t. In this paper,

it is assumed that

Πt =
N1

S(t)∑
i=1

Pi, Xt =
N2

S(t)∑
i=1

Ci,

where N1
S(t), N2

S(t) are two Poisson processes with parameters λ1, λ2. {Pi, i ≥ 1}, {Ci, i ≥
1} are two sequences of i.i.d. positive random variables. Let FP (x) and FC(x) denote

the common distribution functions of {Pi, i ≥ 1} and {Ci, i ≥ 1}, and similarly, denote

the moment generating function of them by MP (r) := EerP and MC(r) := EerC . For

simplicity, {Πt, t ≥ 0} and {Xt, t ≥ 0} are assumed to be independent. One maybe think

that the independent assumption of N1
S and N2

S is quite bold. In fact, there are also some

papers considering the dependent structure of N1
S and N2

S by term of “common shock”,

see Cossette and Marceau[3] for instance. By some modification, our model can also be

used for coping with such correlated risk model, for exposition ease, we just assume that

the independent structure hold here.
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If we take into account the competition of insurance market and assume that the

number of insurance company is large enough and each company has only limit influence

on the insurance market, then it is natural to use Gaussian diffusion for modeling the

capital of insurance company, so the surplus of insurance company can be revived as

St = u + pt + Πt −Xt + σWt, (2.2)

where {Wt, t ≥ 0} is a standard Brownian Motion and is independent with {Πt, t ≥
0} and {Xt, t ≥ 0}, σ is a positive constant. The diffusion term σWt represents an

additional uncertainty of aggregate claims. An alternative interpretation is that it adds

an uncertainty to the premium income, see Dufresne and Gerber[4]. In this paper, we

choose the latter interpretation. Hereafter, if we refer to St, it is the one has the form of

(2.2). In this paper, we do not assume the safety loading hold, i.e. we do not assume that

E[pt + Πt −Xt] > 0, i.e. p + λ1EP1 − λ2EC1 > 0 and reason we do not need to make such

assumption can be found later.

We assume that the standard assumptions of continuous-time financial models hold,

that is

1. continuous trading is permitted;

2. no transaction cost or tax is involved in trading;

3. all assets are infinitely divisible.

The price of the risky asset is assumed to follow the stochastic differential equation

dP (t)
P (t)

= dZt = αdt + βdBt, α > 0, β > 0, t ≥ 0. (2.3)

Here {Bt, t ≥ 0} is a standard Brownian Motion, Process S = {St, t ≥ 0} and

Process Z = {Zt, t ≥ 0} are assumed to be independent. Denote by F = {Ft}t≥0 the

smallest filtration satisfying the usual condition such that the process S = {St, t ≥ 0} and

Z = {Zt, t ≥ 0} are measurable.

The interpretation of (2.3) is that αt is the non-risky part of investments so that

Zt = αt implies that one unit invested at time zero will be worth eαt at time t. In

mathematical finance it is very common to use (2.3) with Zt = αt+βBt. This is in the case

of the famous Black-Scholes option pricing formula, where the price of a stock is assumed to

follow the stochastic differential equation Pt = v+
∫ t

0
PsdZs with P = P0 being the value of

the stock at time zero. It is well known that this implies that P = {Pt, t ≥ 0} is a geometric

Brownian motion so that the value of the stock at time t is Pt = exp{(α− β2/2)t + βBt}.
Let {At} denote the amount invested into risky market at time t, we allow that the

company invests more than its current surplus into risk market. In this case, money has to

《
应
用
概
率
统
计
》
版
权
所
用



第二期 徐林: 带扰动的随机保费模型的渐近最优投资 155

be borrowed for such strategies. However, we should note that for large capital, investing

more than the surplus into the stock market can not be optimal, see Kalashinikov and

Norberg[13]. The strategies {At, t ≥ 0} have to be predictable w.r.t. Ft. This means in

particular that the value of an admissible strategy at time t may depend on the history of

the process St and Zt up to time t, but it may not depend on the size of a claim occurring

at time t. That is to say, the admissible set is

A =
{

A = (At)t≥0 : A is predictable and P
[ ∫ t

0
A2(s)ds < ∞

]
for all t ∈ [0,∞)

}
.

In this paper, we focus on the Markov control, i.e.

At = A(Y A,b
t− ), (2.4)

where A(·) is called the defining function of the Markov strategy At. The dynamic of

wealth of the insurer with such investment strategy is given by

dY x,A
t = pdt + dΠt + σdWt + At−dZt − dXt

= [αAt + p]dt + σdWt + dΠt + AtβdBt − dXt,

Y x,A
t = x. (2.5)

Denote the time of ruin with initial surplus x and strategy A by

τ(x,A) = inf{t ≥ 0 : Y x,A
t < 0} (2.6)

and corresponding ruin probability by Ψ(x,A) = P(τ(x,A) < ∞). The value function is

Ψ(x) = inf
A∈A

Ψ(x,A). (2.7)

Under aforementioned assumptions and Theorem (32) of Protter (2004, P294), Y x,A
t

is a strong Markov process and its infinitesimal operator (with control process At) is

AAg(x) = [αA + p]gx +
1
2
(σ2 + β2A2)gxx

+λ1E[g(x + P1)− g(x)] + λ2E[g(x− C1)− g(x)], (2.8)

where gx, gxx denote, respectively, the first order and the second order partial derivatives

w.r.t. x. From Hipp and Plum[10][11], we know that Ψ(x) is twice continuously differen-

tiable on [0,∞), and Ψ(x) solves the Hamilton-Jacob-Bellman equation

inf
A∈A

{
[α + p]Ψx +

1
2
(σ2 + β2A2)Ψxx

+λ1E[Ψ(x + P1)−Ψ(x)] + λ2E[Ψ(x− C1)−Ψ(x)]
}

= 0, (2.9)
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where Ψ(x) = 1 for all x < 0. The optimal strategy Ã(u) is the value of A in the

Hamilton-Jacob-Bellman equation for which the minimum is taken:

Ã(x) = − α

β2

Ψx(x)
Ψxx(x)

. (2.10)

§3. Lundburg Bounds

In order to find the Lundburg bounds, we assume that the tail distributions of the

premium income sizes and the claim sizes are decreasing exponentially fast, i.e. that

MC(r) and MP (r) exist for r ∈ (−∞, r∞), r∞ = min{r∞C , r∞P }, where r∞C and r∞P are the

corresponding positive constants such that

lim
r↑r∞C

MC(r) = ∞, lim
r↑r∞P

MP (r) = ∞.

When λ1 = 0, these conditions are exactly the conditions implying Ψ(x) ∼ Ce−Rx in the

classical risk model.

To obtain the upper bound for the ruin probability (value function) under optimal

strategy, we start by defining the Lundburg exponent R. Let R(A) be the solution to

equation

1
2
(σ2 + A2β2)r2 + λ1[MP (−r)− 1] + λ2[MC(r)− 1]− (p + αA)r = 0. (3.1)

This is the Lundburg exponent of process (2.2) with constant investment strategy A.

The Lundburg exponent for our problem is R = sup R(A). This means we maximize the

Lundburg exponent in order to obtain an asymptotically optimal constant strategy. Note

that the function on the left hand side of (3.1) (denoted by f(A, r)) is nonnegative at R,

therefore, R is the solution to

inf
A≥0

{1
2
(σ2 + A2β2)r2 + λ1[MP (−r)− 1] + λ2[MC(r)− 1]− (p + αA)r

}
= 0. (3.2)

Remark 1 Note that for any given A ≥ 0, f(A, r) is a convex function w.r.t. r.

Since R ≥ R(A), it follows that f(A,R) ≥ f(A,R(A)) = 0. Thus the constant optimal

strategy A∗, which corresponds to the largest Lundburg coefficient R, should be the one

satisfying

f(A∗, R) = 0 ≤ f(A,R), (3.3)

i.e. R is the solution of equation inf
A
{f(A, r)} = 0. The idea of finding such R can also be

seen in Hipp and Schmidli[9].
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The following step is to find R and A∗. Suppose that R has already been determined,

then

f(A,R) =
1
2
(σ2 + A2β2)R2 + λ1[MP (−R)− 1] + λ2[MC(R)− 1]− (p + αA)R. (3.4)

Note that only A∗ = α/(β2R) minimizing f(A,R), that is to say our Lundburg exponent

R is the solution to

1
2
σ2r2 + λ1MP (−r) + λ2MC(r) = λ1 + λ2 + cr +

1
2

α2

β2
. (3.5)

This equation has a solution R, which is greater than the Lundburg exponent correspond-

ing to 0 investment policy, say R0 = R(0). Even in the case that the Lundburg exponent

for classical risk model does not exist (e.g. positive safety loading does not hold), we can

still assure Equation (3.5) has a positive solution. That is why do not need to assume the

positive safety loading hold in this paper.

Lemma 3.1 Let x ≥ 0 and α 6= 0, β 6= 0. There exists a unique 0 < R < r∞
satisfying the equation

1
2
σ2r2 + λ1MP (−r) + λ2MC(r) = λ1 + λ2 + cr +

1
2

α2

β2
. (3.6)

Proof Denote by h1(r) and h2(r) the left hand side and the right hand side of

(3.6). Noting that

h1(0) = λ1 + λ2 < h2(0) = λ1 + λ2 +
1
2

α2

β2
.

Obviously, h′1(r) > 0, r ∈ (0, r∞) and lim
r→r∞

h1(r) = ∞, so it is easy to find that there exist

a R such that h1(R) = h2(R). The proof is completed. ¤

Lemma 3.2 Conditioning on the above mentioned R and A∗, Mt :=exp{−RY x,A∗
t }

is a martingale.

Proof Obviously, Mt is measurable w.r.t. Ft. On the one side, ∀ 0 < s ≤ t < ∞

E[Mt|Fs] = E[exp{−RY x,A∗
t }|Fs]

= E[exp{−R[Y x,A∗
t − Y x,A∗

s } exp{Y x,A∗
s }|Fs]

= Ms exp{f(A∗, R)(t− s)}
= Ms. ¤ (3.7)

Remark 2 The above argument also show that for each r ∈ (0, R), there exists

two constants process A1,2 ∈ A such that the process exp{−RY
x,A1,2

t } are martingales.
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The value A1,2 are given in the following way:

A1,2(r) =
α

β2r
±

√
∆(r), (3.8)

where

∆(r) :=
2

β2r2

(1
2
σ2r2 + λ1MP (−r) + λ2MC(r)− λ1 − λ2 − cr − 1

2
α2

β2

)

≥ 0, for r ≤ R. (3.9)

Note that for r = R we obtain ∆(R) = 0, and therefore A1(R) = A2(R) = A∗.

Theorem 3.1 Let α 6= 0, β 6= 0, for the constant investment strategy A∗ =

α/(β2R), the ruin probability has the following upper bound,

Ψ(x,A∗) ≤ e−Rx. (3.10)

Proof Since {Mt}t≥0 is a nonnegative martingale, thus the stopped process

M τ(x,A∗) := Mt∧τ(x,A∗) is also a martingale. By using this we have

e−Rx = EM τ(x,A∗)

= E[M τ(x,A∗)1{τ(x,A∗)≤t}] + E[M τ(x,A∗)1{τ(x,A∗)>t}], (3.11)

where 1C is the indicate function of set C. By monotone convergence theorem, it follows

that

lim
t→∞E[M τ(x,A∗)1{τ(x,A∗)≤t}] = E[M τ(x,A∗)1{τ(x,A∗)<∞}]. (3.12)

Hence,

e−Rx ≥ E[M τ(x,A∗)|τ(x,A∗) < ∞]P(τ(x,A∗) < ∞). (3.13)

Thus, we have

Ψ(x,A∗) = P(τ(x,A∗) < ∞)

≤ e−Rx

E[M τ(x,A∗)|τ(x,A∗) < ∞]
. (3.14)

By the definition of M τ(x,A∗) we know that the denominator of the right hand side of

(3.14) is greater than 1. This completes the proof. ¤
The following corollary is a trivial result of Theorem 3.1 and the definition of Ψ(x),

but it would be very important in the proof for the asymptotic optimality of the constant

strategy A∗.

Corollary 3.1

Ψ(x) = inf
A∈A

Ψ(x,A) ≤ Ψ(x,A∗) ≤ e−Rx. (3.15)
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§4. Asymptotic Optimality and Asymptotic Uniqueness

of the Constant Investment Strategy

In this section we want to show an asymptotic optimality, respectively, asymptotic

uniqueness result for the constant investment strategy A∗ and the exponent R. We will

need the following assumption on the exponential tail distribution of the claim sizes:

Definition 4.1 Let 0 < r < r∞ be given. We say that C has a uniform exponential

moment in the tail distribution for r, if the following condition holds:

sup
y≥0

E[e−r(y−C)|C > y] < ∞. (4.1)

Remark 3 From now on we shall assume that the random variable C which models

the claims size, has a uniform exponential moment in the tail distribution for R. One

condition to assure Definition 4.1 holds for R is to assume that C has a hazard rate

h(y) :=
gC(y)

1−GC(y)
> 0, (4.2)

satisfying

lim inf
y→∞ h(y) > R, (4.3)

here GC(y) and gC(y) are the distribution function and density function of C. Partly we

make such assumption for the ease of exposition, partly because we need the assumption to

go from a local martingale to a true submartingale in the proof of the following Lemmas.

Lemma 4.1 Assume that C has a uniform exponential moment in the tail dis-

tribution for R. Then for each A ∈ A, the process (exp{−RY x,A
t })t≥0 is a uniformly

integrable submartingale.

Lemma 4.2 If C has a uniform exponential moment in the tail distribution for

R, then for arbitrary A ∈ A and x ∈ (0,+∞), the wealth process Y x,A
t converges almost

surely on {τ(x,A) = ∞} to ∞ for t →∞.

The proofs for Lemma 4.1 and Lemma 4.2 are similar to the proofs for Theorem 4

and Lemma 5 in Gaier et al.[6] and are omitted here. By the Lemma 4.1 and Lemma 4.2

we have the following Theorem 4.1, which is a lower bound for the ruin probability under

the strategy A∗.

Theorem 4.1 Assume that C has a uniform exponential moment in the tail dis-

tribution for R. Then the ruin probability satisfies, for every admissible control process

A(t) ∈ A,

Ψ(x,A) ≥ Le−Rx, (4.4)
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where

L = inf
y≥0

∫ ∞

y
dGC(u)

∫ ∞

y
e−R(y−u)dGC(u)

=
1

sup
y≥0

E[e−r(y−C)|C > y]
> 0. (4.5)

Proof Note that N1
S and N2

S are independent, by using Doob’s optional sampling

theorem and the method adopted in the proof for Theorem 6.3, Chapter 3 of Asmussen[1],

one can completes the proof immediately. By integrating Lemma 4.1 and Lemma 4.2 and

Theorem 4.1, with a similar discussion to the proof for the Theorem 7 of Gaier et al.[6],

one can similarly obtained the following Lemma 4.3. Since the proof is analogue to the

one for Theorem 7 of Gaier et al.[6], it is omitted here. ¤

Lemma 4.3 Under the conditions of Theorem 4.1, if there exists ε > 0 and xε ≥ 0

such that

|A(x)−A∗| ≥ ε for all x ≥ xε, (4.6)

then there exist rε and Aε such that

Ψ(x,A) ≥ Aεe−rεx. (4.7)

Theorem 4.2 Under the conditions of Theorem 4.1, Let Ã(·) be the defining

function of the optimal investment strategy Ã. If this function has a limit for x → ∞,

then this limit is given by

lim
x→∞A(x) = A∗. (4.8)

Proof Assume that lim
x→Ã(x)

6= A∗. Then there exist ε, xε > 0 such that

|Ã(x)−A∗| > ε for x ≥ xε. (4.9)

Therefore, by Lemma 4.3, one obtains that

Ψ(x) ≥ Aεe−rεx (4.10)

for some rε < R, which together with the corollary 1 yields the apparent contradiction to

the optimality of Ã:

lim
x→∞

Ψ(x)
e−Rx

= ∞. ¤ (4.11)

Remark 4 The asymptotic investment for an insurer with classical surplus risk

process and geometric Brownian motion asset price process had been investigated in Gaier

et al.[6]. In this paper, we consider a more general surplus risk process: the classical risk

《
应
用
概
率
统
计
》
版
权
所
用



第二期 徐林: 带扰动的随机保费模型的渐近最优投资 161

process with stochastic premium income with diffusions and we obtain some results about

the asymptotically optimal investment strategy for the insurer. We can view our result as

an extension of Gaier et al.[6] in the perturbed model with random income.

Remark 5 What can we say from Theorem 4.2? One can find that when the

surplus x tends to ∞, the optimal strategy tends to the constant strategy A∗. Obviously,

when the surplus is very large, such strategy is very conservative. So from 4.2 we know that

minimizing the ruin probability is an extremely conservative approach for insurers. As it

was described in Gaier et al.[6], “a more proper way to deal with the probability of ruin

in the presence of control variables (such as investment) apparently consist in imposing

a certain threshold level on this probability while optimizing w.r.t. other criteria, for

example, the expected value of discounted dividends, et al.”.
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带扰动的随机保费模型的渐近最优投资

徐 林

(安徽师范大学数学计算机科学学院, 芜湖, 241000)

本文研究了一类具有随机投资回报的随机保费模型的最小破产概率的渐近性质. 在假定常值投资策略的

情形下, 通过最小化调节系数, 我们得到了与此调节系数相对应的最优的常值投资策略. 最后我们证明当初始

盈余趋向于无穷的时候, 最优的投资策略趋向于这个常值策略.

关键词: 林德伯格不等式, 最优投资, 破产概率, 林德伯格指数.
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