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Abstract
In this paper, we propose an approach for achieving simultaneously variable selection and

estimation for the linear and nonparametric components in high-dimensional partially linear mod-

els. We use Dantzig selector, applied to the linear part and various derivatives of nonparametric

component, to achieve sparsity in the linear part and produce nonparametric estimators. Non-

asymptotic theoretical bounds on the estimator error are obtained. The finite sample properties of

the proposed approach are investigated through a simulation study.
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§1. Introduction

Consider the problem of simultaneous variable selection and estimation in the partially

linear model

Y = XT β + g(T ) + ε,

where Y is a scalar response variate, X is a p-vector covariate, T is a scalar covariate and

takes values in a compact interval, for simplicity, we assume this interval to be [0, 1], β is

a p×1 column vector of unknown regression parameter, the function g(·) is unknown, and

the model error ε is independent of (X, T ) with mean 0. Traditionally, it has generally

been assumed that β is finite dimension, several standard approaches, such as the Kernel

method, the spline method, the local linear estimation and so on [1–3], have been proposed.
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But, the situation where p is large in the sense that p →∞ as the sample size n →∞, has

become increasingly common. Therefore, this encourages us to consider a high-dimensional

partially linear model. We are interested in the sparse modeling problem where the true

model has a sparse representation.

It seems that there is not too many studies of high-dimensional partially linear models.

Xie and Huang[4] applied the SCAD penalty to achieve sparsity in the linear part and

used polynomial splines to estimate the nonparametric component. We also consider the

problem of simultaneous variable selection and estimation in high-dimensional partially

linear models. James et al.[5] considered functional linear regression and introduced a new

approach, “Functional Linear Regression That’s Interpretable”, to estimate a coefficient

function. Our approach applies the idea of James et al.[5] to high-dimensional partially

linear models. This article has two primary goals. The first goal is to select significant

variables for the parametric portion when it is sparse, in the sense that many of its elements

are zero. The second goal is to produce estimator of g(t) that is both interpretable, flexible

and accurate. The key to our procedure is to apply Dantzig selector to the linear part

and various derivatives of g(t). Hence, we assume that one or more derivatives of g(t) are

sparse, this assumption is reasonable (see [5]). The basic idea of our method is to penalize

simultaneously parametric parts and various derivatives of nonparametric component. Our

approach is different from that of Xie and Huang[4]. The proposed approach has some

advantages over Xie and Huang[4]. First, Our method has strong empirical results on

models with large values of p. Second, by choosing appropriate derivatives, we can produce

a large range of highly interpretable g(t) curve.

This paper is organized as follows. In Section 2, we penalize simultaneously parametric

parts and various derivatives of nonparametric component and non-asymptotic theoretical

bounds on the estimation error are given. In Section 3, we show how to control multiple

derivatives simultaneously. Section 4 discusses the turning parameters choice and reports

the simulation results. The proofs are relegated to Section 5.

§2. Estimation of the Parametric and Nonparametric

Components

Assume that {(Xi, Ti, Yi), 1 ≤ i ≤ n} are independent and identically distributed and

Yi = XT
i β + g(Ti) + εi, i = 1, · · · , n, (2.1)
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where εi is independent of (Xi, Ti) with mean 0 and variance σ2;

Xi = (Xi1, · · · , Xip)T ∈ Rp.

Throughout the article, we always assume that Ti are strictly ordered, 0 ≤ T1 < T2 <

· · · < Tn ≤ 1. Let B(t) = {b1(t), b2(t), · · · , bq(t)}T is a q-dimensional basis, then g(t) can

be approximated by

g(t) = B(t)T η + eq(t), (2.2)

where eq(t) represents the deviations of the true g(t). We should choose q is large so |eq(t)|
can be small. We require q ≤ n and q → ∞ as the sample size n → ∞. In this paper,

we use a simple grid basis where bk(t) = 1 if t ∈ {t : Tk−1 ≤ t < Tk} and 0 otherwise.

Combining (2.1) and (2.2), we have

Yi = Ziα + ε∗,

where

Zi = [XT
i |B(Ti)T ], α = (βT , ηT )T , ε∗ = εi + e(Ti).

Note that α is p + q dimension, it is difficult to estimate α. One could use a variable

selection procedure to estimate α, which implies η will be sparse. There is no reason to

suppose that estimate η is sparse. Instead we assume that one or more derivatives of g(t)

are sparse. Let

An×q = [DdB(T1), · · · , DdB(Tn)]T ,

where Dd is the dth finite difference operator i.e.

DB(Tj) =
B(Tj)−B(Tj−1)

Tj − Tj−1
, D2B(Tj) =

DB(Tj)−DB(Tj−1)
Tj − Tj−1

etc.. Let

γ = Aη, (2.3)

then, γj provides an approximation to g(d)(Tj). Assuming that g(d)(Tj) is zero at most time

points means that γ is sparse. Now we consider A is constructed using a single derivative,

we will discuss the situation with multiple derivatives in Section 3. If we assume that the

matrix AT A is invertible, by (2.3), we have

η = (AT A)−1AT γ,
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This together with (2.1) and (2.2) yields

Y = V ζ + ε∗, (2.4)

where

V = [XT |BT (T )(AT A)−1AT ], ζ = (βT , γT )T .

Since ζ is assumed to be sparse, a class of variable selection produces for parametric

models can be used to fit (2.4). We choose the Dantzig selector. The Dantzig selector[6]

was designed for linear regression models with large p but a sparse set of coefficients.

Many advantages of the Dantzig selector have been shown in [6]. First, the method

has demonstrated strong empirical results on models with high-dimensional parameters.

Second, it provides a computationally convenient by using the DASSO algorithm (see [7]).

Note that the method assumes a standardized design matrix with columns of norm

one, hence, we first standardized V , the model (2.4) can be reexpressed as

Y = Ṽ ζ̃ + ε∗, (2.5)

where ζ̃ = Dvζ and Dv is a diagonal matrix consisting of the column norms of V . Consider

the model (2.5), the Dantzig selector estimate, ̂̃
ζDS , is defined by

̂̃
ζDS = arg min

ζ̃
‖ζ̃‖1 subject to |Ṽ T

j (Y − Ṽ ζ̃)| ≤ λ, j = 1, · · · , (p + n), (2.6)

where Ṽj is the jth column of Ṽ and λ ≥ 0 is a tuning parameter.

Using the Danzig selector (2.6), we can obtain estimator of ζ̃, Let ̂̃
ζ be the corre-

sponding solution from the Dantzig selector. After the coefficients, ̂̃
ζ, have been obtained,

we produce the estimators of β and γ, respectively

β̂ = (Ip×p, 0p×n)D−1
v

̂̃
ζ, (2.7)

γ̂ = (0n×p, In×n)D−1
v

̂̃
ζ, (2.8)

where Ip×p is p × p identify matrix, 0p×n is p × n 0 matrix. We combine (2.2), (2.3) and

(2.8) to produce the estimate for g(t) using

ĝ(t) = B(t)T (AT A)−1AT γ̂.

Theorem 2.1 provides a non-asymptotic bound of β̂ on the L2 error. In Theorem 2.1,

the values δ, θ, Nn,p are all known constants which will be defined in Section 5.
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Theorem 2.1 Suppose that ζ̃ is an S-sparse vector with δV
2S + θV

S,2S < 1 and

max ‖Ṽ T ε∗‖ ≤ λ, (2.9)

then

‖β̂ − β‖ ≤ 1√
n

Nn,pλ
√

S. (2.10)

In Theorem 2.2 we provide a non-asymptotic bound of ĝ(t) on the L2 error.

Theorem 2.2 For a given q-dimensional basis Bq(t), let ωq = sup
t
|eq(t)|. Suppose

that ζ̃ is an S-sparse vector with δV
2S + θV

S,2S < 1. If (2.9) holds, then, for every 0 ≤ t ≤ 1,

|ĝ(t)− g(t)| ≤ 1√
n

Mn,q(t)λ
√

S + ωq, (2.11)

where Mn,q(t) is defined in Section 5.

Note that both Theorem 2.1 and 2.2 need the constraint (2.9), how to choose λ such

that (2.9) holds with high probability? Theorem 2.3 will solve this problem.

Theorem 2.3 Suppose that εi ∼ N(0, σ2), then for any a ≥ 0, if

λ = σ
√

2(1 + a) log(p + n) + ωq

√
n,

then (2.9) holds with probability ar least 1−{(p+n)a
√

4π(1 + a) log(p + n)}−1, and hence

‖β̂ − β‖ ≤ 1√
n

Nn,pσ
√

2S(1 + a) log(p + n) + Nn,pωq

√
S, (2.12)

|ĝ(t)− g(t)| ≤ 1√
n

Mn,q(t)σ
√

2S(1 + a) log(p + n) + ωq{1 + Mn,q(t)
√

S}. (2.13)

Remark 1 Under suitable conditions, we have Nn,p and Mn,q(t) can converge to

the constant as n, p and q grow, respectively, and ωq declines with q. For example, when

we using the piecewise constant basis, ωq converges to 0 at a rate of 1/q if g′(t) is bounded;

when we using the piecewise polynomial basis, ωq converges to 0 at a rate of 1/qd+1 if

gd+1(t) is bounded.

§3. Controlling Multiple Derivatives

In Section 2, we have discussed the situation with controlling a single derivative of

g(t). Now, we concentrate on controlling multiple derivatives. For example, we may
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believe that both g(0)(t) = 0 and g(2)(t) = 0 over many regions of t. In this situation, we

would let

A = [D0B(T1), · · · , D0B(Tn), D2B(T1), · · · , D2B(Tn)]T .

Let A(1) be the first n rows of A and A(2) the remainder. We assume that A is arranged

so that AT
(1)A(1) is invertible. Since γ∗ = Aη, we have

η = (AT
(1)A(1))

−1AT
(1)γ

∗
(1), γ∗(2) = A(2)(A

T
(1)A(1))

−1AT
(1)γ

∗
(1), (3.1)

where γ∗(1) is the first n elements of γ∗ and γ∗(2) the remaining elements. Model (2.1) is

equivalent to

Yi = XT
i β + B(Ti)T (AT

(1)A(1))
−1AT

(1)γ
∗
(1) + ε∗, i = 1, · · · , n. (3.2)

We then use this model to estimate γ∗ subject to the constraint given by (3.1). Finally,

we may not wish to place equal weight on each derivative when constraining multiple

derivatives, we can explore the method in (3.2).

§4. Simulation Study

We generated data from the partially linear model,

Y = XT β + g(T ) + ε,

where β was p-dim vector, β = (0.25, 1, 1.5, 3,0p−4), 0m denoted an m-vector of 0s. ε ∼
N(0, 0.32) and X followed a p-dim multivariate normal distribution with zero mean and

covariance Σ whose (j, k) entry was Σj,k = ρ|j−k|, 1 ≤ k, j ≤ p with ρ = 0.75, T

is simulated from a permutation of the uniform distribution U(0, 1), g(t) was piecewise

quadratic with a “flat” region,

g(t) =





20× (t− 0.5)2 − 0.5, if 0 ≤ t < 0.342,

0, if 0.342 ≤ t ≤ 0.65,

−20× (t− 0.5)2 + 0.5, if 0.658 < t ≤ 1.

The estimators depend on the choice of λ and d. We choose λ and d by minimizing

the cross-validation residual sum of squares

CV(λ, d) =
1
n

n∑
i=1

(Yi −XT
i β̂[−i] − ĝ[−i](Ti))2,
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where β̂[−i] and ĝ[−i](·) are estimators of β and g(·) which are computed with all of the

measurements but the ith subject deleted. In particular, d is chosen from the values

d = 1, 2, 3, 4. We compute the cross-validation residual sum of squares for d = 1, 2, 3, 4

and a grid of values for λ.

We considered p = 10, 50, 100 for n = 200. For comparison, we considered our

proposed method (the Dantzig selector (DS)) and the SCAD penalized regression method

proposed by Xie and Huang[4]. We repeated the simulation 1000 times. The performance

of estimator β̂ is assessed by using the generalized mean square error (GMSE), defined as

GMSE = (β̂ − β)T E(XXT )(β̂ − β).

The variable selection performance is gauged by (C, I), where “C” gives the average num-

ber of zero coefficients correctly set to zero, and “I” gives the average number of nozero

coefficients incorrectly set to zero. The results are summarized in Table 1 and Figure 1.

Several observations can be made:

(1) For parameter part, from Table 1, we see that when p is small, the SCAD can

perform much better than Dantzig selector. However, when p is large (p = 100), the

Dantzig selector outperforms the SCAD.

(2) For nonparametric part, Figure 1 shows that the sparsity in the zeroth derivative

generates the zero section while the sparsity in the third derivative ensures a smooth fit.

From Figure 1 (b), we can see that the polynomial spline estimator (proposed by Xie and

Huang[4]) provides a worse approximation than our method for the region where g(t) = 0.

Table 1 variable selection and fitting results based on 1000 replications lines

p method C I GMSE

10 Truth 6 0

DS 5.480 0.098 0.066

SCAD 5.920 0.015 0.011

50 Truth 46 0

DS 44.718 0.115 0.071

SCAD 45.86 0.040 0.015

100 Truth 96 0

DS 93.958 0.209 0.076

SCAD 87.720 0.320 0.264
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Figure 1 (a) Plots of true curve (grey) and corresponding estimators. The solid

line in black is the estimator of g(t) from constraining the zeroth and

third derivative, the dashed line is the polynomial spline fit for n =

200, p = 10. (b) Same plot for the region 0.3 ≤ t ≤ 0.7.

§5. Proofs of Theorems

To establish these results we define quantities δ and θ, first introduced in Candes and

Tao[8], which provide measures of how far any S columns of X are from an orthogonal

matrix.

Definition 5.1 Let X be an n×p matrix and let XT , T ⊂ {1, · · · , p} be the n×|T |
submatrix obtained by standardizing the columns of X and extracting those corresponding

to the indices in T . Then we define δX
S as the smallest quantity such that

(1− δX
S )‖c‖2

2 ≤ ‖XT c‖2
2 ≤ (1 + δX

S )‖c‖2
2

for all subsets T with |T | ≤ S and all vectors c of length |T |.
Definition 5.2 Let T and T ′ be two disjoint sets with T , T ′ ⊂ {1, · · · , p}, |T | ≤ S

and |T ′| ≤ S′. Then, provided S + S′ ≤ p, we define θX
S,S′ as the smallest quantity such

that

|(XT c)T XT ′C
′| ≤ θX

S,S′‖c‖2‖c′‖2
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for all T and T ′ and all corresponding vectors c and c′.

To prove the Theorem 2.1 and 2.2, we need one of the results from in [7].

Lemma 5.1 (Theorem 4 in [7]) Suppose that ζ̃ is an S-sparse vector with δV
2S +

θV
S,2S < 1. Let ̂̃

ζ be the corresponding solution from the Dantzig selector. If (2.10) holds,

then

‖̂̃ζ − ζ̃‖ ≤ 4λ
√

S

1− δV
2S − θV

S,2S

.

Proof (Proof of Theorem 2.1) By Lemma 5.1, we have

‖β̂ − β‖ = ‖(Ip×p, 0p×n)D−1
V (̂̃ζ − ζ̃)‖

≤ ‖(Ip×p, 0p×n)D−1
V ‖‖̂̃ζ − ζ̃‖

=
1

√
nCn,p‖̂̃ζ − ζ̃‖

≤ 1√
n

4Cn,pλ
√

S

1− δV
2S − θV

S,2S

=
1√

nNn,pλ
√

S
,

where

Cn,p =

√√√√√ max
1≤j≤p

1
1
n

n∑
i=1

X2
ij

, Nn,p =
4Cn,p

1− δV
2S − θV

S,2S

.

We need some notions. Let

Hq×n = (AT A)−1AT , Mn,q(t) =
4En,q(t)

1− δV
2S − θV

S,2S

,

where

En,q(t) =

√√√√√
n∑

j=1

(B(t)T Hj)2

1
n

n∑
i=1

(B(Ti)T Hj)2
,

Hj is the jth column of H. ¤

Proof (Proof of Theorem 2.2) Since

g(t) = B(t)T η + eq(t) = B(t)T Hq×n(0n×p, In×n)D−1
V ζ̃ + eq(t),
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we can derive

|ĝ(t)− g(t)| ≤ |ĝ(t)−B(t)T η|+ |eq(t)|
= |B(t)T Hq×n(0n×p, In×n)D−1

V (̂̃ζ − ζ̃)|+ |eq(t)|
≤ ‖B(t)T Hq×n(0n×p, In×n)D−1

V ‖‖̂̃ζ − ζ̃‖+ ωq

=
1

√
nEn,q(t)‖̂̃ζ − ζ̃‖

+ ωq

≤ 1√
n

4En,q(t)λ
√

S

1− δV
2S − θV

S,2S

+ ωq

=
1√

nMn,q(t)λ
√

S
+ ωq. ¤

Proof (Proof of Theorem 2.3) Substituting

λ = σ
√

2(1 + a) log(p + n) + ωq

√
n

into (2.10) and (2.11) gives (2.12) and (2.13), respectively. Note that

|Ṽ T
j ε∗| = |Ṽ T

j ε + Ṽ T
j eq(Tj)| ≤ |Ṽ T

j ε|+ |Ṽ T
j eq(Tj)| ≤ σ|Zj |+ ωq

√
n,

where Zj ∼ N(0, 1). This result follows from the fact that Ṽj is norm one and εi ∼
N(0, σ2), it will be the case that Ṽ T

j ε ∼ N(0, σ2). Hence

P
(

max
j
|Ṽ T

j ε∗| > λ
)

= P
(

max
j
|Ṽ T

j ε∗| > σ
√

2(1 + a) log(p + n) + ωq

√
n
)

≤ P
(

max
j
|Zj | >

√
2(1 + a) log(p + n)

)

≤ (p + n)
1√
2π

exp{−(1 + a) log(p + n)}/
√

2(1 + a) log(p + n)

= {(p + n)a
√

4π(1 + a) log(p + n)}−1.

The penultimate line follows from the fact that

P
(

sup
j
|Zj | > u

)
≤ p

u

1√
2π

exp (−u2/2). ¤
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高维部分线性模型的变量选择和估计

杨宜平

(重庆工商大学数学与统计学院, 重庆, 400067)

薛留根

(北京工业大学应用数理学院, 北京, 100124)

考虑高维部分线性模型, 提出了同时进行变量选择和估计兴趣参数的变量选择方法. 将Dantzig变量选择

应用到线性部分及非参数部分的各阶导数, 从而获得参数和非参数部分的估计, 且参数部分的估计具有稀疏

性, 证明了估计的非渐近理论界. 最后, 模拟研究了有限样本的性质.

关键词: 部分线性模型, 变量选择, Dantzig选择, SCAD.
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