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Abstract

In this paper, under some mild conditions, precise large deviations for partial sums of nega-
tively associated random arrays in multi-risk models are investigated. The obtained results extend
some known ones, and we find out the asymptotic behavior of precise large deviations is also in-
sensitive to negatively associated structures in multi-risk models.
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§1. Introduction

More recently, precise large deviations for heavy-tailed sums have been investigated
by many authors, since large deviation probabilities of the loss process can be used to
characterize the ruin probability asymptotically, which is a very important objective in
risk management. For some latest works of large deviations with heavy tails, we refer
the reader to Ng et al. (2004), Tang (2006), Wang et al. (2006), Liu (2007), Chen and
Zhang (2007), Yang et al. (2009), Liu (2009), among many others. However, all the works
mentioned above are restricted to one type of risk. That is to say they always assume
the insurer provides only one kind of insurance contract. In reality this assumption is
not right, so large deviation problem of multi-risk models is more valuable. Motivated by
this consideration, Wang and Wang (2007) firstly extended precise large deviation results
to multi-risk models with independent claims. Obviously, independence assumption in
Wang and Wang (2007) is much strong and out of place in reality. A weaker structure is
negatively associated ones, which are introduced by Alam and Saxena (1981) and Joag-Dev

and Proschan (1983).
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Definition 1.1 Let d be a positive integer, and let {X,;n € N} be a field of
random variables. The field is called negatively associated (NA), if every pair of disjoint
subsets S,T of N and any pair of coordinatewise increasing functions f(X;;i € ),
9(Xj;j €T), it holds that

Cov (f(Xi;i € S5),9(X;;5€T)) <0,

whenever the covariance exists.

Throughout this paper, we assume {Xj;,j > 1};-“:1 are NA random arrays, where
for any i = 1,...,k, {X;;,7 > 1} denotes the ith related loss amounts with common
distribution function F;(z), satisfying EX;; = pu; < oo, Fi(z) = 1 — Fi(z) > 0 for all
x € (—o00,00). We also assume F; € C, for any i = 1,...,k, where we say a distribution

function F' belongs to heavy-tailed subclass C, if

F F
lim lim inf f(xy) =1 or equivalently lim lim sup 7(acy) =1.
y\1 z—00 F(CC) y,/ 1 z—o0 F(.T)

Such a distribution function F' is usually said to have a consistently varying tail. The
heavy-tailed subclass C was also studied by Cline et al. (1994) who calls it ‘intermediate
regular variation’. Another well-known heavy-tailed subclass is called the dominated vari-
ation class (denoted by D). A distribution function F' supported on (—o0,00) is in D if
and only if -

F(ry)

lim sup —= < 00

for any 0 < y < 1 (or equivalently for some 0 < y < 1). For more details of other heavy-
tailed subclasses (eg. R, S, L, and so on) and their relations, we refer the reader to Ng et
al. (2004) or Wang and Wang (2007). Set

log F,
Tpimint { - FET) ),

where F.(y) = liminf F(zy)/F(z). In the terminology of Tang (2006), J is called the
T—00
(upper) Matuszewska index of F'. Let {n;,i = 1,...,k} be k positive integer sequences.

n; k n;
For simplicity, we write Sy, = > Xjj5, @ = 1...,k; S(k;ny,...,ng) = > > Xjj. Let
=1 i=1j=1
{N;(t),i=1,...,k} be independent nonnegative integer valued counting processes for the

claim numbers. We assume that {X;;,7 > 1}¥_; and {N;(t),i = 1,...,k} are mutually

independent and that EN;(t) = \i(f) — oo ast — oo (i = 1,...,k). Let S(k;t) =
kE Ni(t)

> Xij, t > 0. Tang (2006) studied precise large deviations for the sums of negatively
=1 j=1
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dependent random variables with consistently varying tails. Chen et al. (2007) and Liu
(2007) extended Tang (2006)’s results to random sums of negatively associated random
variables with consistently varying tails respectively. In the present paper, we study
precise large deviations for partial sums of negatively associated random arrays in multi-
risk models. The obtained results extend some known ones, and we find out the asymptotic
behavior of precise large deviations is also insensitive to negatively associated structures
in multi-risk models. The rest of this paper is organized as follows. In Section 2, we
present some preliminaries. Main results and their proofs are presented in Section 3. An

application of main results is stated in Section 4.

§2. Preliminaries

n N(t)
In this section, by convention, we use the notations S, = »_ X;, Snu) = > X; and
i=1 i=1
F < G in the sense that

—_ —_ o0

Clearly, if F' € D, then, for any ¢ > 0, F(cz) < F(z). See also in Tang and Yan (2002).
In the following we give some lemmas for the proofs of theorems. Lemma 2.1 is a slight

adjustment of Joag-Dev and Proschan (1983).

Lemma 2.1 Let {Xj,1 <k <n}beNA. Aj,..., A, are pairwise disjoint subsets
of {1,...,n}. If fi,i = 1,...,m be coordinatedwise non-decreasing (or non-increasing)
functions. Then f1(X;,j5 € A1),..., fm(X;,j € Ap) also be NA and

P(N{X>a}) < TTPOG>m),  P(N{X <a}) < [T PG <o)
i=1 k=1 i=1 k=1
forany n=1,2,... and all z1,z9,...,xy,.

Lemma 2.2 Let {Xy,k=1,2,...} be NA with common distribution F' and mean

w, satisfying E(X{ )" < oo for some r > 1, where X; = max{0, —X1}. If F(—x) = o(F(x))

as ¢ — oo and F' € D. Then for any v > 0, as n — oo

P(S, —nu < —x) = o(nF(x))

holds uniformly for x > yn.

Proof Note that {X,k=1,2,...} be NA, thus, by definition, {— X,k =1,2,...}
be also NA. Lemma 2.3 of Tang (2006) implies, for any z > yn, 6 > 0 and p > J}., there
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exists positive numbers vy and C such that

P(S, —nu<—z) = P(=Sp,+nu>z)<nP(—X1+p>przx)+Cx?
< nF(—voxr+p) + CxP. (2.1)

It is well known, for any fixed p > J5, 77 = o(F(z)) (x — 0o) and for large z, F(vpx) <

F(z). In (2.1), using F(—x) = o(F(z)), we get
P(Sp, — nu < —x) < nF(—vyx + p) + Cx™P

no(F(vyx)) + Ca™P _ <1 N g> o(F(z))
nF () A n/ F(z)
Therefore, proof of Lemma 2.2 is now completed. O

Remark 1 (1) In the proof of Lemma 2.2, for any ¢ > 0, replacing x with ex, as

n — 00, one can easily get

P(S, —np < —ex) = o(nF(z)) (2.2)

holds uniformly for x > yn.
(2) If {X;j,j > 1}F; are NA and F;(z) (i = 1,..., k) satisfy the conditions of Lemma
2.2, for any € > 0, as n; — 0o, by induction one can prove
k k ko
P( > Sn = Do nip < —ar) = 0( > anZ(:c)> (2.3)
i=1 i=1 i=1
holds uniformly for all z > max{yn;,i =1,...,k}. In fact, for £ = 2 and any ¢ € (0,1/2),
Lemma 2.1, Lemma 2.2 and NA property yield

2 2
P( 2 Sny = 2o mipti < —63:)
i=1 i=1
P(Sn, —nipn < —(1 —0)ex) + P(Sn, — napa < —(1 —d)ex)

IN

+P(Sp;, —nip < —0ex)P(Sy, — nape < —dex)
= o(n1F1(z)) + o(naF2(z)) + o(n1 F1(x))o(naFa(x))
= O(TllFl (a:)) + ngfg (1‘)) (2.4)

Therefore, (2.3) directly derives from (2.4) and induction hypothesis.

§3. Main Results and Their Proofs

Theorem 3.1  Let {X;;,7 > 1}¥_| be NA random arrays with common distribution

function F;(x) satisfying EX;; = p; < oo and xF;(—x) = o(F';(z)), © — oco. Let {n;} be a
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positive integer sequence. If E|X;;|" < oo for some r > 1 and F; € C for all i =1,...,k,
then, for any fixed v > 0, we have that as n; — oo, alli =1,... k,

k E _
P(S(k;nl, cey ) — Z:lnz,ul > a:) ~ Z:lmFl(x) (3.1)

holds uniformly for all x > max{yn;,i =1,...,k} := A(k).

Remark 2 If all Fi(z) (i =1,...,k) are the same distribution function, then (3.1)
implies Theorem 1.1 of Tang (2006). Particularly, if we also assume {X;;,7 > 1}%_; are
nonnegative random variables, one can easily check the conditions of Theorem 3.1 naturally
satisfy. Therefore, (3.1) implies Theorem 2.1 of Liu (2007). If {X;;,5 > 1,i = 1,...,k}
are assumed to be mutually independent, (3.1) yields Theorem 3.1 of Wang and Wang
(2007).

Proof We use induction to prove (3.1). For the case of k = 2, we first show that

P(S(Q;nl,ng) — i nip; > x)

liminf inf — =L > 1. (3.2)
n1,n2—00 z>A(2) n1F1(x) + naFa(x)

Notice that for any 0 < ¢ < 1 and any z > 0,

P(S(2;n1,n2) — nips — napg > x)

v

P(Sn, —nip1 > (1 + )z, Sp, — nopg > —€x)

+P(Sp, —nopg > (L +¢e)x, Sy, — nipg > —ex)

—P(Sn, —nip > (1+¢)x, Spy, —nape > (1 +¢)x)

= L+D—1Is (3.3)

We first deal with I;. Noting that
I = P(S,, —nipr > (1 +¢)z,Sp, — nopg > —ex)
> P(Sp, —nip > (1+¢e)x) — P(Sy, — nops < —ex), (3.4)

by Theorem 2.1 of Tang (2006), for any 0 < ¢ < 1, and sufficiently large n;, we have

sup P(Sn, =1 > (1 +e)z)

— 1] < 9. 3.5
T>Yn1 anl((l—i-a)x) ( )

Since xF5(— ) o(Fy(x)) implies Fy(—z) = o(F2(z)), Lemma 2.2 yields P(S,, — naus <
—ex) = o(ne ( )) holds uniformly for > yng. Thus, for sufficiently large ni,no, and

uniformly for z > A(2),

I > (1—=86)mF1((1+¢)x) + o(naFa(x)). (3.6)
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By the same argument as above, we get Iy > (1 — §)naFo((1+¢€)x) + o(n1 F1(z)). Finally
we consider [3. Similar to (3.15) in Wang and Wang (2007), we have

Fi;(1+£
lim lim sup M

S ~1|=0, i=12 3.7
el0 ni=oog>an, | Fy(x) (37)

Noting {Xi1,..., Xin,, Xo1,..., Xon,} are NA, Lemma 2.1 imply S,, and S, are also
NA. Thus, by Theorem 2.1 of Tang (2006) and (3.11), we get
Is < P(Sp, —nipr > (1 +e)x)P(Sp, —nape > (1 +¢)x)
< (1+8)*mF1((1+e)x)naFa((1 + €)x)
(1+6)*m F1(2)noFa(z)
= o(mF1i(z) + naFa(x)). (3.8)

IN

(3.3)-(3.8) yield that
P(S(2;n1,n2) — nipn — nopg > )
> (1 =0)%(niF1(x) + noFo(x)) + o(n1 Fi(z) + naFa(x)).
Therefore, letting ¢ | 0, we obtain (3.2).

Next we show that
P(S(2;n1,n2) — iy — napg > )

limsup sup — -
n1,m2—00 £>A(2) niFy(x) + noFa(x)

<1 (3.9)

Notice that for any ¢ € (0,1/2) and any = > 0, then, by NA property, Lemma 2.1 and
Theorem 2.1 of Tang (2006), we arrive at

P(S(2;n1,n2) — nips — nape > )

IN

P(Sn, —nip1 > (1 —e)z) + P(Sp, — napa > (1 —¢)x)
+P(Sp, —nipg > ex)P(Sy, — nopg > €x)

= (mF1(z) + noFa(z)) + +o(ni Fi(z) + noFa(x)). (3.10)
(3.9) directly derives from (3.10). Thus (3.1) holds for £ = 2. Now suppose (3.1) holds for
k — 1, for the case of k, using the similar argument as (3.3), we have that,

P(S(k‘;nl,...,nk) —é:lnim > a:)

k—1 k—1
> P( > Sn, — 2o nipi > (L +e)x, Sp, — Nt > —Ex)
i=1 i=1

k—1 k—1
—|—P(Snk —ngpk > (L+¢e)z, D Sp, — D nip > —saz)
i=1 i=1

k—1 k—1
- P( % Snu = X mipi > (1), Sy = mega > (1 —i—e)x). (3.11)
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NA property, Remark 1 and induction hypothesis yields that,

P(S(k:;nl,...,nk) - zk: nip; > m)

liminf  inf =1 > 1. (3.12)
n1,...,m—00 2> A(k) k

For the reverse inequality, using the similar argument as (3.10) and induction hypothesis,

P(S(k;nl,...,nk) — zk: nipL; > :1:)

limsup  sup - =l <1 (3.13)
R 5~ niF(a)
i=1
Combining (3.12) and (3.13), the proof of Theorem 3.1 is now completed. O

Theorem 3.2  Let {X;;,7 > 1}¥_| be NA random arrays with common distribution
function Fj(z) that has finite expectation p; < 0, and zF;(—x) = o(F;(x)), * — oo and
E|X;;|" < oo for some r > 1 and F; € C for all i = 1,..., k. Let {N;(t)}*_, be independent
nonnegative integer-valued process independent of {Xj;,j > 1}e_ L IF {N;(t)}E_, satisty,

for any i = 1,...%,0 > 0 and some p; > Jf.,

EN () I(n,(1)>1+8)n (1) = O(Ni(t)), (3.14)

where Iy is the indicator function. Then for any fixed v > max{|u;|,i = 1,...,k}, as

t — 00,

k
=1

P(S(k; £) — é 1idi(t) > :c) ~

i
uniformly for x > max{y\;(t),i =1,...,k} :=T(k).

Remark 3 If all Fi(z)(i = 1,...,k) are the same distribution function, then
(3.15) implies Theorem 1.2 of Chen and Zhang (2007). Particularly, if we also assume
{Xi;,7 > 1,i = 1,...,k} are nonnegative random variables, one can easily check the
conditions of Theorem 3.2 naturally satisfy. Therefore, (3.15) implies Theorem 2.2 of Liu
(2007). If {X;;,j > 1,i=1,...,k} are assumed to be mutually independent, (3.15) yields
Theorem 4.1 of Wang and Wang (2007).

Proof Again by induction as Theorem 3.1, it is sufficient to show (3.15) for k = 2.
We first show that

liminf inf P(5(2;1) 1)‘1@):“1 - AQEf)MQ > 1) 1
t—oo &>I(2) M () F1(x) + Aa(t)Fa(x)

(3.16)
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The same argument yields that, for any 0 < ¢ < 1 and any = > 0,

P(S(2;t) = M) — Ao (t)p2 > )

P(Sn, ) — M) > (1 +€)z, Sy — A2(t)pa > —ex)

+P(Sny) — A2(t)p2 > (1 +e)z, Sy ) — M) > —ex)

—P(Snyt) — M ()1 > (1 +€)x, Syyy — Aa(t)p > (1 +e)x)

= Ji+J— J. (3.17)

v

We first deal with J;. Note that
J1 = P(Snyp) — MO > (1 +¢€)x) — P(Sny) — A2(t)p2 < —ex). (3.18)

By Theorem 1.2 of Chen and Zhang (2007), we easily conclude

lim sup P = MO > (1 +)z) —1/=0 (3.19)
=00 e >\ (1) At F1((1 +¢)x)

Now for any 3 € (0,¢), note that ps < 0,

P(Sny(t) — A2(t)pe < —ex)

= > P(Sh— s < —ex+ (11— () 2] P(Na(t) = )

n=1
= > + 2
—ext+(n=A2(t))|p2|<-Br  —ex+(n—Az(t))|u2>—pz
= K1+ K. (320)

Firstly, using Lemma 2.2, we get

K < 3 P(Sn — Xo(t)u2 < —Bx)P(N2(t) = n)
—ea+(n-Ao() |zl <Pz
= > o(nFs(x))P(Na(t) = n)
—ea+(n-Aa(D)lal<—Bz
< ofFs(2)) 3 nP(Na(t) = n) = o(a(t)Fa(x)). (3.21)

n=1
Now we deal with K. For simplicity, we denote (¢ — (3)/|uz2| by C in the following. In
fact, for any p > J, , noting that po < 0, using Tchebychef inequality, we have

Ky = > P(Sh = Aa(t)pa < —ex)P(Na(t) = n)
—ez+(n—A2(t))|p2|>—B

— ENY(H)I .
P(Ng(t) € ﬁﬂj‘“}\Q(t)) < 5 (D) LNy (t)>Catra ()}

<

- |2 - (Cx + Xo(t))P
ENZ ()N, (> (14072 (1))

< =C Pr PO(M(t

< o CP2 PO (1))

= o(X(t)Fa(x)). (3.22)
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The last equality holds because 27 = o(F2(z)) by Lemma 2.1 of Tang (2006). Combining
(3.18)-(3.22), for any § > 0, we get

Jl > (1 — (5))\1 (t)?l((l + E)ZL‘) + 0()\2@)?2(1‘)). (3.23)

Next by the same argument as above, we also get Jo > (1 — §)A2(t)Fa((1 + €)x) +

o(A\1(t)F1(z)). Finally we consider J3. Similar to (3.7) we easily arrive at

Fi((1+
lim lim sup M—lz@

- i=1,2. (3.24)
EJ,O t—oo x>’y)\ (t) Fz(x)

Note that {N;(t)}7_, be independent and {X;;}?_; be NA, by Lemma 2.1, Theorem 2.1
of Chen and Zhang (2007) and (3.24), one get

Js < P(Sw — MO > (1+)2)P(Sny — MOz > (1+2)a)
~ MOF(( + )2 (OF((1+ 2)a)
— oM Fi(x) + Ae() Fa(e). (3.25)
Therefore, by (3.23)-(3.25) and letting 0 | 0, for any sufficiently large ¢, x > I'(2),
hmint i COED ZMOm = Aot > )
PR a2t M (F (@) + Aa(t) Fa()
This proves (3.16).
We now show that
limsup sup P(S(2t) = MO = da(t)pe > ) _ (3.26)

t—oc 2>D(2) M (t)F1(x) + Aa(t) Fa(w) a

Notice that for any € € (0,1/2) and any = > 0, by NA property and the same argument
as (3.10), we have, as t — oo, x > I'(2),

P(S(2;t) — M(t)pn — Aa(t)p > )

P(Snyt) — A1 > (1 = €)z) + P(Sny) — Aa(B)pz > (1 —€)x)

+P(Sn, 1) — A(t)u1 > ex)P(Sny) — A2(t)p2 > ex)

~ MOF1((1—e)x) + Aa(t)Fa((1 — €)z) + M (t) F1(ex) Mo (t) Fo(e)

~ MOF1(x) + A () Fa(2) + oA () F1(2) + Ao (t) Fa(w)). (3.27)

Thus we get (3.26).
Combining (3.16) and (3.26), (3.15) holds for k = 2. The proof of Theorem 3.2 is now

IN

completed. O
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84. Applications

In this section we give an application of the main results. Assume there are two types
of contracts in an insurer. The first loss amounts X = {X;,j > 1} are NA nonnegative
random variables with common distribution F' € C and finite expectation pu. An ordinary
renewal counting process {N1(t),t > 0} denotes their related claim numbers, where Ay (t) =
ENi(t). Let {I;,j > 1} be a sequence of Bernoulli random variables with EI; = ¢,
0 < g < 1. The second loss amounts {Y}, j > 1} are also NA nonnegative random variables
with distribution G(# F') € C and finite expectation v, and related claim numbers Ny(t) =
N(A(t)) be a Cox process, where N (t) be an ordinary renewal process and {A(t),t > 0} be
another right-continuous nondecreasing process with \*(¢) = EA(¢), independent of N (¢).
Suppose that sequences of {X;,j > 1}, {I;,j > 1}, {Y;,j > 1} are NA, independent of
{N1(t),t > 0}, {Na(t),t > 0}. Then the total claim amount up to time ¢ is

Ni(t) Na(t)
S(t) = Z X1 + Z Y;, t>0. (4.1)
j=1 j=1

We also assume that for some p > ¢ and any 6 > 0, EAP(t)1(54))>140)a=) = O(N*(1))-
Write Ny (t) = sup{o, > t, I, = 1}, t > 0. (4.1) can be rewritten as

Ni(t) Na(¢)
St =X X;j+ X Y.
7j=1 7=1

Using the same method in Section 5 of Wang et al. (2007) and by Theorem 3.2, we get,
as t — oo, for any v > 0 and uniformly for x > max{yA1(t),yA\*(¢)},

P(S(t) — ghi(t)p — vA" () > z) ~ ghi () F(2) + A" ()G (2).
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