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Abstract
In this paper, under some mild conditions, precise large deviations for partial sums of nega-

tively associated random arrays in multi-risk models are investigated. The obtained results extend

some known ones, and we find out the asymptotic behavior of precise large deviations is also in-

sensitive to negatively associated structures in multi-risk models.
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§1. Introduction

More recently, precise large deviations for heavy-tailed sums have been investigated

by many authors, since large deviation probabilities of the loss process can be used to

characterize the ruin probability asymptotically, which is a very important objective in

risk management. For some latest works of large deviations with heavy tails, we refer

the reader to Ng et al. (2004), Tang (2006), Wang et al. (2006), Liu (2007), Chen and

Zhang (2007), Yang et al. (2009), Liu (2009), among many others. However, all the works

mentioned above are restricted to one type of risk. That is to say they always assume

the insurer provides only one kind of insurance contract. In reality this assumption is

not right, so large deviation problem of multi-risk models is more valuable. Motivated by

this consideration, Wang and Wang (2007) firstly extended precise large deviation results

to multi-risk models with independent claims. Obviously, independence assumption in

Wang and Wang (2007) is much strong and out of place in reality. A weaker structure is

negatively associated ones, which are introduced by Alam and Saxena (1981) and Joag-Dev

and Proschan (1983).
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Definition 1.1 Let d be a positive integer, and let {Xn;n ∈ N d} be a field of

random variables. The field is called negatively associated (NA), if every pair of disjoint

subsets S, T of N d and any pair of coordinatewise increasing functions f(Xi; i ∈ S),

g(Xj ; j ∈ T ), it holds that

Cov (f(Xi; i ∈ S), g(Xj ; j ∈ T )) ≤ 0,

whenever the covariance exists.

Throughout this paper, we assume {Xij , j ≥ 1}k
i=1 are NA random arrays, where

for any i = 1, . . . , k, {Xij , j ≥ 1} denotes the ith related loss amounts with common

distribution function Fi(x), satisfying EXij = µi < ∞, F i(x) = 1 − Fi(x) > 0 for all

x ∈ (−∞,∞). We also assume Fi ∈ C, for any i = 1, . . . , k, where we say a distribution

function F belongs to heavy-tailed subclass C, if

lim
y↘1

lim inf
x→∞

F (xy)
F (x)

= 1 or equivalently lim
y↗1

lim sup
x→∞

F (xy)
F (x)

= 1.

Such a distribution function F is usually said to have a consistently varying tail. The

heavy-tailed subclass C was also studied by Cline et al. (1994) who calls it ‘intermediate

regular variation’. Another well-known heavy-tailed subclass is called the dominated vari-

ation class (denoted by D). A distribution function F supported on (−∞,∞) is in D if

and only if

lim sup
x→∞

F (xy)
F (x)

< ∞

for any 0 < y < 1 (or equivalently for some 0 < y < 1). For more details of other heavy-

tailed subclasses (eg. R,S,L, and so on) and their relations, we refer the reader to Ng et

al. (2004) or Wang and Wang (2007). Set

J∗F := inf
{
− log F ∗(y)

log y
, y > 1

}
,

where F ∗(y) = lim inf
x→∞ F (xy)/F (x). In the terminology of Tang (2006), J∗F is called the

(upper) Matuszewska index of F . Let {ni, i = 1, . . . , k} be k positive integer sequences.

For simplicity, we write Sni =
ni∑

j=1
Xij , i = 1 . . . , k; S(k;n1, . . . , nk) =

k∑
i=1

ni∑
j=1

Xij . Let

{Ni(t), i = 1, . . . , k} be independent nonnegative integer valued counting processes for the

claim numbers. We assume that {Xij , j ≥ 1}k
i=1 and {Ni(t), i = 1, . . . , k} are mutually

independent and that ENi(t) = λi(t) → ∞ as t → ∞ (i = 1, . . . , k). Let S(k; t) =
k∑

i=1

Ni(t)∑
j=1

Xij , t ≥ 0. Tang (2006) studied precise large deviations for the sums of negatively
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dependent random variables with consistently varying tails. Chen et al. (2007) and Liu

(2007) extended Tang (2006)’s results to random sums of negatively associated random

variables with consistently varying tails respectively. In the present paper, we study

precise large deviations for partial sums of negatively associated random arrays in multi-

risk models. The obtained results extend some known ones, and we find out the asymptotic

behavior of precise large deviations is also insensitive to negatively associated structures

in multi-risk models. The rest of this paper is organized as follows. In Section 2, we

present some preliminaries. Main results and their proofs are presented in Section 3. An

application of main results is stated in Section 4.

§2. Preliminaries

In this section, by convention, we use the notations Sn =
n∑

i=1
Xi, SN(t) =

N(t)∑
i=1

Xi and

F ³ G in the sense that

0 < lim inf
F

G
≤ lim sup

F

G
< ∞.

Clearly, if F ∈ D, then, for any c > 0, F (cx) ³ F (x). See also in Tang and Yan (2002).

In the following we give some lemmas for the proofs of theorems. Lemma 2.1 is a slight

adjustment of Joag-Dev and Proschan (1983).

Lemma 2.1 Let {Xk, 1 ≤ k ≤ n} be NA. A1, . . . , Am are pairwise disjoint subsets

of {1, . . . , n}. If fi, i = 1, . . . , m be coordinatedwise non-decreasing (or non-increasing)

functions. Then f1(Xj , j ∈ A1), . . . , fm(Xj , j ∈ Am) also be NA and

P
( n⋂

i=1
{Xi > xi}

)
≤

n∏
k=1

P(Xk > xk), P
( n⋂

i=1
{Xi ≤ xi}

)
≤

n∏
k=1

P(Xk ≤ xk)

for any n = 1, 2, . . . and all x1, x2, . . . , xn.

Lemma 2.2 Let {Xk, k = 1, 2, . . . } be NA with common distribution F and mean

µ, satisfying E(X−
1 )r < ∞ for some r > 1, where X−

1 = max{0,−X1}. If F (−x) = o(F (x))

as x →∞ and F ∈ D. Then for any γ > 0, as n →∞

P(Sn − nµ ≤ −x) = o(nF (x))

holds uniformly for x ≥ γn.

Proof Note that {Xk, k = 1, 2, . . . } be NA, thus, by definition, {−Xk, k = 1, 2, . . . }
be also NA. Lemma 2.3 of Tang (2006) implies, for any x > γn, δ > 0 and p > J∗F , there
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exists positive numbers ν0 and C such that

P(Sn − nµ ≤ −x) = P(−Sn + nµ ≥ x) ≤ nP(−X1 + µ > ν0x) + Cx−p

≤ nF (−ν0x + µ) + Cx−p. (2.1)

It is well known, for any fixed p > J∗F , x−p = o(F (x)) (x →∞) and for large x, F (ν0x) ³
F (x). In (2.1), using F (−x) = o(F (x)), we get

P(Sn − nµ ≤ −x)
nF (x)

≤ nF (−ν0x + µ) + Cx−p

nF (x)

=
no(F (ν0x)) + Cx−p

nF (x)
³

(
1 +

C

n

)o(F (x))
F (x)

.

Therefore, proof of Lemma 2.2 is now completed. ¤

Remark 1 (1) In the proof of Lemma 2.2, for any ε > 0, replacing x with εx, as

n →∞, one can easily get

P(Sn − nµ ≤ −εx) = o(nF (x)) (2.2)

holds uniformly for x ≥ γn.

(2) If {Xij , j ≥ 1}k
i=1 are NA and Fi(x) (i = 1, . . . , k) satisfy the conditions of Lemma

2.2, for any ε > 0, as ni →∞, by induction one can prove

P
( k∑

i=1
Sni −

k∑
i=1

niµi ≤ −εx
)

= o
( k∑

i=1
niF i(x)

)
(2.3)

holds uniformly for all x ≥ max{γni, i = 1, . . . , k}. In fact, for k = 2 and any δ ∈ (0, 1/2),

Lemma 2.1, Lemma 2.2 and NA property yield

P
( 2∑

i=1
Sni −

2∑
i=1

niµi ≤ −εx
)

≤ P(Sn1 − n1µ1 ≤ −(1− δ)εx) + P(Sn2 − n2µ2 ≤ −(1− δ)εx)

+P(Sn1 − n1µ1 ≤ −δεx)P(Sn2 − n2µ2 ≤ −δεx)

= o(n1F 1(x)) + o(n2F 2(x)) + o(n1F 1(x))o(n2F 2(x))

= o(n1F 1(x)) + n2F 2(x)). (2.4)

Therefore, (2.3) directly derives from (2.4) and induction hypothesis.

§3. Main Results and Their Proofs

Theorem 3.1 Let {Xij , j ≥ 1}k
i=1 be NA random arrays with common distribution

function Fi(x) satisfying EXij = µi < ∞ and xFi(−x) = o(F i(x)), x →∞. Let {ni} be a

《
应
用
概
率
统
计
》
版
权
所
用



第三期 汪世界 王伟 王文胜: 一类负相伴随机阵列部分和的精致大偏差 269

positive integer sequence. If E|Xij |r < ∞ for some r > 1 and Fi ∈ C for all i = 1, . . . , k,

then, for any fixed γ > 0, we have that as ni →∞, all i = 1, . . . , k,

P
(
S(k;n1, . . . , nk)−

k∑
i=1

niµi > x
)
∼

k∑
i=1

niF i(x) (3.1)

holds uniformly for all x ≥ max{γni, i = 1, . . . , k} := ∆(k).

Remark 2 If all Fi(x) (i = 1, . . . , k) are the same distribution function, then (3.1)

implies Theorem 1.1 of Tang (2006). Particularly, if we also assume {Xij , j ≥ 1}k
i=1 are

nonnegative random variables, one can easily check the conditions of Theorem 3.1 naturally

satisfy. Therefore, (3.1) implies Theorem 2.1 of Liu (2007). If {Xij , j ≥ 1, i = 1, . . . , k}
are assumed to be mutually independent, (3.1) yields Theorem 3.1 of Wang and Wang

(2007).

Proof We use induction to prove (3.1). For the case of k = 2, we first show that

lim inf
n1,n2→∞

inf
x≥∆(2)

P
(
S(2;n1, n2)−

2∑
i=1

niµi > x
)

n1F 1(x) + n2F 2(x)
≥ 1. (3.2)

Notice that for any 0 < ε < 1 and any x > 0,

P(S(2;n1, n2)− n1µ1 − n2µ2 > x)

≥ P(Sn1 − n1µ1 > (1 + ε)x, Sn2 − n2µ2 > −εx)

+P(Sn2 − n2µ2 > (1 + ε)x, Sn1 − n1µ1 > −εx)

−P(Sn1 − n1µ1 > (1 + ε)x, Sn2 − n2µ2 > (1 + ε)x)

:= I1 + I2 − I3. (3.3)

We first deal with I1. Noting that

I1 = P(Sn1 − n1µ1 > (1 + ε)x, Sn2 − n2µ2 > −εx)

≥ P(Sn1 − n1µ1 > (1 + ε)x)− P(Sn2 − n2µ2 ≤ −εx), (3.4)

by Theorem 2.1 of Tang (2006), for any 0 < δ < 1, and sufficiently large n1, we have

sup
x≥γn1

∣∣∣P(Sn1 − n1µ1 > (1 + ε)x)
n1F 1((1 + ε)x)

− 1
∣∣∣ < δ. (3.5)

Since xF2(−x) = o(F 2(x)) implies F2(−x) = o(F 2(x)), Lemma 2.2 yields P(Sn2 − n2µ2 ≤
−εx) = o(n2F 2(x)) holds uniformly for x > γn2. Thus, for sufficiently large n1, n2, and

uniformly for x ≥ ∆(2),

I1 ≥ (1− δ)n1F 1((1 + ε)x) + o(n2F 2(x)). (3.6)

《
应
用
概
率
统
计
》
版
权
所
用



270 应用概率统计 第二十七卷

By the same argument as above, we get I2 ≥ (1− δ)n2F 2((1 + ε)x) + o(n1F 1(x)). Finally

we consider I3. Similar to (3.15) in Wang and Wang (2007), we have

lim
ε↓0

lim
ni→∞

sup
x≥γni

∣∣∣F i((1± ε)x)
F i(x)

− 1
∣∣∣ = 0, i = 1, 2. (3.7)

Noting {X11, . . . , X1n1 , X21, . . . , X2n2} are NA, Lemma 2.1 imply Sn1 and Sn2 are also

NA. Thus, by Theorem 2.1 of Tang (2006) and (3.11), we get

I3 ≤ P(Sn1 − n1µ1 > (1 + ε)x)P(Sn2 − n2µ2 > (1 + ε)x)

≤ (1 + δ)2n1F 1((1 + ε)x)n2F 2((1 + ε)x)

≤ (1 + δ)4n1F 1(x)n2F 2(x)

= o(n1F 1(x) + n2F 2(x)). (3.8)

(3.3)-(3.8) yield that

P(S(2;n1, n2)− n1µ1 − n2µ2 > x)

≥ (1− δ)2(n1F 1(x) + n2F 2(x)) + o(n1F 1(x) + n2F 2(x)).

Therefore, letting δ ↓ 0, we obtain (3.2).

Next we show that

lim sup
n1,n2→∞

sup
x≥∆(2)

P(S(2;n1, n2)− n1µ1 − n2µ2 > x)
n1F 1(x) + n2F 2(x)

≤ 1. (3.9)

Notice that for any ε ∈ (0, 1/2) and any x > 0, then, by NA property, Lemma 2.1 and

Theorem 2.1 of Tang (2006), we arrive at

P(S(2;n1, n2)− n1µ1 − n2µ2 > x)

≤ P(Sn1 − n1µ1 > (1− ε)x) + P(Sn2 − n2µ2 > (1− ε)x)

+P(Sn1 − n1µ1 > εx)P(Sn2 − n2µ2 > εx)

³ (n1F 1(x) + n2F 2(x)) + +o(n1F 1(x) + n2F 2(x)). (3.10)

(3.9) directly derives from (3.10). Thus (3.1) holds for k = 2. Now suppose (3.1) holds for

k − 1, for the case of k, using the similar argument as (3.3), we have that,

P
(
S(k;n1, . . . , nk)−

k∑
i=1

niµi > x
)

≥ P
( k−1∑

i=1
Sni −

k−1∑
i=1

niµi > (1 + ε)x, Snk
− nkµk > −εx

)

+P
(
Snk

− nkµk > (1 + ε)x,
k−1∑
i=1

Sni −
k−1∑
i=1

niµi > −εx
)

−P
( k−1∑

i=1
Sni −

k−1∑
i=1

niµi > (1 + ε)x, Snk
− nkµk > (1 + ε)x

)
. (3.11)
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NA property, Remark 1 and induction hypothesis yields that,

lim inf
n1,...,nk→∞

inf
x≥∆(k)

P
(
S(k;n1, . . . , nk)−

k∑
i=1

niµi > x
)

k∑
i=1

niF i(x)
≥ 1. (3.12)

For the reverse inequality, using the similar argument as (3.10) and induction hypothesis,

lim sup
n1,...,nk→∞

sup
x≥∆(k)

P
(
S(k;n1, . . . , nk)−

k∑
i=1

niµi > x
)

k∑
i=1

niF i(x)
≤ 1. (3.13)

Combining (3.12) and (3.13), the proof of Theorem 3.1 is now completed. ¤

Theorem 3.2 Let {Xij , j ≥ 1}k
i=1 be NA random arrays with common distribution

function Fi(x) that has finite expectation µi < 0, and xFi(−x) = o(F i(x)), x → ∞ and

E|Xij |r < ∞ for some r > 1 and Fi ∈ C for all i = 1, . . . , k. Let {Ni(t)}k
i=1 be independent

nonnegative integer-valued process independent of {Xij , j ≥ 1}k
i=1. If {Ni(t)}k

i=1 satisfy,

for any i = 1, . . . k, δ > 0 and some pi > J∗Fi
,

ENpi
i (t)I(Ni(t)>(1+δ)λi(t)) = O(λi(t)), (3.14)

where I{·} is the indicator function. Then for any fixed γ > max{|µi|, i = 1, . . . , k}, as

t →∞,

P
(
S(k; t)−

k∑
i=1

µiλi(t) > x
)
∼

k∑
i=1

λi(t)F i(x), (3.15)

uniformly for x ≥ max{γλi(t), i = 1, . . . , k} := Γ(k).

Remark 3 If all Fi(x) (i = 1, . . . , k) are the same distribution function, then

(3.15) implies Theorem 1.2 of Chen and Zhang (2007). Particularly, if we also assume

{Xij , j ≥ 1, i = 1, . . . , k} are nonnegative random variables, one can easily check the

conditions of Theorem 3.2 naturally satisfy. Therefore, (3.15) implies Theorem 2.2 of Liu

(2007). If {Xij , j ≥ 1, i = 1, . . . , k} are assumed to be mutually independent, (3.15) yields

Theorem 4.1 of Wang and Wang (2007).

Proof Again by induction as Theorem 3.1, it is sufficient to show (3.15) for k = 2.

We first show that

lim inf
t→∞ inf

x≥Γ(2)

P(S(2; t)− λ1(t)µ1 − λ2(t)µ2 > x)
λ1(t)F 1(x) + λ2(t)F 2(x)

≥ 1. (3.16)
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The same argument yields that, for any 0 < ε < 1 and any x > 0,

P(S(2; t)− λ1(t)µ1 − λ2(t)µ2 > x)

≥ P(SN1(t) − λ1(t)µ1 > (1 + ε)x, SN2(t) − λ2(t)µ2 > −εx)

+P(SN2(t) − λ2(t)µ2 > (1 + ε)x, SN1(t) − λ1(t)µ1 > −εx)

−P(SN1(t) − λ1(t)µ1 > (1 + ε)x, SN2(t) − λ2(t)µ2 > (1 + ε)x)

:= J1 + J2 − J3. (3.17)

We first deal with J1. Note that

J1 ≥ P(SN1(t) − λ1(t)µ1 > (1 + ε)x)− P(SN2(t) − λ2(t)µ2 ≤ −εx). (3.18)

By Theorem 1.2 of Chen and Zhang (2007), we easily conclude

lim
t→∞ sup

x≥γλ1(t)

∣∣∣P(SN1(t) − λ1(t)µ1 > (1 + ε)x)

λ1(t)F 1((1 + ε)x)
− 1

∣∣∣ = 0. (3.19)

Now for any β ∈ (0, ε), note that µ2 < 0,

P(SN2(t) − λ2(t)µ2 ≤ −εx)

=
∞∑

n=1
P(Sn − nµ2 ≤ −εx + (n− λ2(t))|µ2|)P(N2(t) = n)

=
∑

−εx+(n−λ2(t))|µ2|≤−βx

+
∑

−εx+(n−λ2(t))|µ2|>−βx

:= K1 + K2. (3.20)

Firstly, using Lemma 2.2, we get

K1 ≤ ∑
−εx+(n−λ2(t))|µ2|≤−βx

P(Sn − λ2(t)µ2 ≤ −βx)P(N2(t) = n)

=
∑

−εx+(n−λ2(t))|µ2|≤−βx

o(nF 2(x))P(N2(t) = n)

≤ o(F 2(x))
∞∑

n=1
nP(N2(t) = n) = o(λ2(t)F 2(x)). (3.21)

Now we deal with K2. For simplicity, we denote (ε− β)/|µ2| by C in the following. In

fact, for any p > J∗F2
, noting that µ2 < 0, using Tchebychef inequality, we have

K2 =
∑

−εx+(n−λ2(t))|µ2|>−βx

P(Sn − λ2(t)µ2 ≤ −εx)P(N2(t) = n)

≤ P
(
N2(t) >

ε− β

|µ2| x + λ2(t)
)
≤ ENp

2 (t)I{N2(t)>Cx+λ2(t)}
(Cx + λ2(t))p

≤ ENp
2 (t)I{N2(t)>(1+Cγ)λ2(t)}

(Cx)p
= C−px−pO(λ2(t))

= o(λ2(t)F 2(x)). (3.22)

《
应
用
概
率
统
计
》
版
权
所
用



第三期 汪世界 王伟 王文胜: 一类负相伴随机阵列部分和的精致大偏差 273

The last equality holds because x−p = o(F 2(x)) by Lemma 2.1 of Tang (2006). Combining

(3.18)-(3.22), for any δ > 0, we get

J1 ≥ (1− δ)λ1(t)F 1((1 + ε)x) + o(λ2(t)F 2(x)). (3.23)

Next by the same argument as above, we also get J2 ≥ (1 − δ)λ2(t)F 2((1 + ε)x) +

o(λ1(t)F 1(x)). Finally we consider J3. Similar to (3.7) we easily arrive at

lim
ε↓0

lim
t→∞ sup

x≥γλi(t)

∣∣∣F i((1± ε)x)
F i(x)

− 1
∣∣∣ = 0, i = 1, 2. (3.24)

Note that {Ni(t)}2
i=1 be independent and {Xij}2

i=1 be NA, by Lemma 2.1, Theorem 2.1

of Chen and Zhang (2007) and (3.24), one get

J3 ≤ P(SN1(t) − λ1(t)µ1 > (1 + ε)x)P(SN2(t) − λ2(t)µ2 > (1 + ε)x)

∼ λ1(t)F 1((1 + ε)x)λ2(t)F 2((1 + ε)x)

= o(λ1(t)F 1(x) + λ2(t)F 2(x)). (3.25)

Therefore, by (3.23)-(3.25) and letting δ ↓ 0, for any sufficiently large t, x ≥ Γ(2),

lim inf
t→∞ inf

x≥Γ(2)

P(S(2; t)− λ1(t)µ1 − λ2(t)µ2 > x)
λ1(t)F 1(x) + λ2(t)F 2(x)

≥ 1.

This proves (3.16).

We now show that

lim sup
t→∞

sup
x≥Γ(2)

P(S(2; t)− λ1(t)µ1 − λ2(t)µ2 > x)
λ1(t)F 1(x) + λ2(t)F 2(x)

≤ 1. (3.26)

Notice that for any ε ∈ (0, 1/2) and any x > 0, by NA property and the same argument

as (3.10), we have, as t →∞, x ≥ Γ(2),

P(S(2; t)− λ1(t)µ1 − λ2(t)µ2 > x)

≤ P(SN1(t) − λ1(t)µ1 > (1− ε)x) + P(SN2(t) − λ2(t)µ2 > (1− ε)x)

+P(SN1(t) − λ1(t)µ1 > εx)P(SN2(t) − λ2(t)µ2 > εx)

∼ λ1(t)F 1((1− ε)x) + λ2(t)F 2((1− ε)x) + λ1(t)F 1(εx)λ2(t)F 2(εx)

∼ λ1(t)F 1(x) + λ2(t)F 2(x) + o(λ1(t)F 1(x) + λ2(t)F 2(x)). (3.27)

Thus we get (3.26).

Combining (3.16) and (3.26), (3.15) holds for k = 2. The proof of Theorem 3.2 is now

completed. ¤
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§4. Applications

In this section we give an application of the main results. Assume there are two types

of contracts in an insurer. The first loss amounts X = {Xj , j ≥ 1} are NA nonnegative

random variables with common distribution F ∈ C and finite expectation µ. An ordinary

renewal counting process {N1(t), t ≥ 0} denotes their related claim numbers, where λ1(t) =

EN1(t). Let {Ij , j ≥ 1} be a sequence of Bernoulli random variables with EIj = q,

0 < q ≤ 1. The second loss amounts {Yj , j ≥ 1} are also NA nonnegative random variables

with distribution G(6= F ) ∈ C and finite expectation ν, and related claim numbers N2(t) =

N(Λ(t)) be a Cox process, where N(t) be an ordinary renewal process and {Λ(t), t ≥ 0} be

another right-continuous nondecreasing process with λ∗(t) = EΛ(t), independent of N(t).

Suppose that sequences of {Xj , j ≥ 1}, {Ij , j ≥ 1}, {Yj , j ≥ 1} are NA, independent of

{N1(t), t ≥ 0}, {N2(t), t ≥ 0}. Then the total claim amount up to time t is

S(t) =
N1(t)∑
j=1

XjIj +
N2(t)∑
j=1

Yj , t ≥ 0. (4.1)

We also assume that for some p > γG and any θ > 0, EΛp(t)1(Λ(t))>(1+θ)λ∗(t) = O(λ∗(t)).

Write N∗
1 (t) = sup{σn ≥ t, In = 1}, t ≥ 0. (4.1) can be rewritten as

S(t) =
N∗

1 (t)∑
j=1

Xj +
N2(t)∑
j=1

Yj .

Using the same method in Section 5 of Wang et al. (2007) and by Theorem 3.2, we get,

as t →∞, for any γ > 0 and uniformly for x ≥ max{γλ1(t), γλ∗(t)},

P(S(t)− qλ1(t)µ− νλ∗(t) > x) ∼ qλ1(t)F (x) + λ∗(t)G(x).
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一类负相伴随机阵列部分和的精致大偏差

汪世界

(安徽大学数学科学学院, 合肥, 230039)

王 伟 王文胜

(华东师范大学金融统计学院, 上海, 200241)

本文在一些适当的条件下得到了多风险模型中负相伴随机阵列的精致大偏差, 推广了一些已知的结果,

同时表明在多风险模型中负相伴结构对精致大偏差同样不具有敏感性.
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