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Abstract

In this paper, we study the absolute ruin problems in a compound Poisson risk process. The
integro-differential equations for the expected discounted penalty functions are derived, and some
explicit expressions are given when the claims are exponentially distributed. Finally, by a ‘renewal’
argument, we obtain the explicit expression for the probability of the recovery when the claims are
exponentially distributed.
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§1. Introduction

Consider the following compound Poisson surplus process of an insurance company

N(#)
Ut)=u+ct—S{t)=u+ct— > X, t>0, (1.1)

i=1
where w > 0 is the initial surplus; ¢ > 0 is the rate of premium; {N(t),t > 0} is a
Poisson claim-number process with intensity A > 0; representing the claim amounts are

i.i.d. random variables with common distribution function F'(z) =1 — F(z) = P(X < z),
N()
density f and mean p; S(t) = > X, is the aggregate claim process. Finally, we assume

=1
that {N(¢)} and {X;} are mutually independent.

The time to ruin for this model is defined as
T =inf{t:U(t) <0}, or oo otherwise, (1.2)

and the corresponding ruin probability is defined as ¢ (u) = P(T < co|U(0) = u).
In the insurance context, various definitions of ‘ruin’ do exist. In most of these cases,

the zero-level ruin estimate defined as above plays an important role, however, it really
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can’t reflect the surplus flow more accurate. In this paper, we consider a more general
model proposed by Embrechts and Schmidli (1994). We assume that, whenever the surplus
is negative or the company is on deficit, it could borrow an amount of money equal to
the deficit at a debit interest force ¢’ > 0; whenever the surplus is positive, the company
could earn interest with force § > 0 for capital above a certain level b > 0, where b is
the amount of capital the company retains as a liquid reserve. In this model, the surplus

process, denoted by Uy(t) with U,(0) = u, can be expressed as

cdt + §'U, (t)dt — dS(t), U,(t) < 0;
dUy(t) = q cdt — dS(t), 0 < Uy(t) < b (1.3)
cdt + 6(Uy(t) — b)dt — dS(t),  U,(t) > b.

In this paper, we call model (1.1) and (1.3) classical risk model and general risk model,
respectively. The main difference between these two models is the definition of the time to
ruin, since the insurer’s business could go on when the surplus becomes negative in model
(1.3). Note that the surplus is no longer able to become positive when the negative surplus
attains the level —c/d’ or is bellow —c¢/§’, because the debits of the insurer at this time
are greater than or equal to ¢/d" that is the present value at that time for all premium

income available after then. Then the time to absolute ruin for model (1.3) is defined as
Ty = inf {t 1 Uy(t) < —;}, oo otherwise,
and the absolute ruin probability is defined as
g(u) = P(Ty < 00|Ug(0) = u).

Furthermore, let Uy(T,—) and |Uy(T,)| denote the surplus immediately before absolute
ruin and the deficit at absolute ruin, respectively. Note that the deficit is at least ¢/¢" and
the surplus immediately before absolute ruin could be in the range of (—c/¢’, ).

Let w(z1, z2) be a nonnegative measurable function defined on (—c¢/d’, 00) X [¢/d’, 00).
For a constant number a > 0, we introduce the following well-known Gerber-Shiu expected

discounted penalty function at absolute ruin
Dg(u) = E[eiaTgw(Ug(Tg_)v [Ug(Ty))I(Tg < 00)|Ug(0) = ul, (1.4)

where u > —c¢/¢’; I(A) is an indicator function of an event A. The study of the Gerber-Shiu
function has become a standard method to study the (absolute) ruin related quantities. See
Gerber and Shiu (1998), Cai (2004, 2007), Cai and Dickson (2002), Yang and Zhang (2008).
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We point out that ®4(u) behaves differently depending on the initial surplus —¢/§" <
u <0,0<wu<band u > b. Hence, we distinguish these three situations by writing

Py, (u), —c/d <u<0;
Oy(u) = § Py, (u),  0<u<b;
¢

g5 (1), u>b.

Similarly, we write 14(u) = g, (u) for —c/é" < u < 0, g(u) = g, (u) for 0 < u < b
and g (u) = g, (u) for u > b. Note that the following relation holds 14, (u) < ¥(u), u > b.

In this paper, we assume that the net profit condition ¢ > Ap holds, which implies
that uh_)ngo gs(u) = 0. Also, we assume that uh—>n<>10 @4 (u) = 0. In particular, a sufficient
condition for this assumption is that w(z1,z2) is a bounded function.

Recently, absolute ruin has received considerable attention in the actuarial literature.
For references, see Dassios and Embrechts (1989), Embrechts and Schmidli (1994), Dick-
son and Egidio dos Reis (1997), Cai (2007) and references therein. In this paper, we study
the expected discounted penalty function (1.4) for model (1.3), which enables us to ana-
lyze many quantities related to absolute ruin, such as the absolute ruin probability, the
Laplace transform of the time to absolute ruin, the deficit at absolute ruin and the surplus

immediately before absolute ruin.

§2. Integro-Differential Equations

In this section, we derive the integro-differential equations for ®,(u).

Theorem 2.1 When —¢/§ < u <0,

o u+tc/d’
¥, 0) = ) - o[ [ - a)dP@) ] )
when 0 < u < b,
o u+t-c/§’
%, (0) = 20,00 = 2[ [T @y - 2)aP(@) + )], (2.2

and when u > b,

a utc/d’
B, (0) = s ) — e [ Ru—aaF@) + Aw)] 23

where A(u) = / w(u, x —u)dF(x).
utc/d’
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t
Proof First, let 3%6) = / ¢®dv and denote the solution of the following equation
0

&'t
/ e -1
hgx(t,u):ue6t+c< 5 ) =0,

by to = to(u), then we have tg = In[c/(c + 6'u)]"/?".

Now we consider the case —¢/d" < u < 0. From the definition of ¢y, we know that the
surplus returns to zero level at time ¢y if no claim occurs prior to time tg. Furthermore,
hs (t,u) < 0 is the surplus at time ¢ < ¢¢ if no claim occurs prior to time ty. Thus, by

conditioning on the time and amount of the first claim, we obtain when —c/d’ < u <0

to to-‘rb/c
B = [ A g e [ A eft — 1)
0

> —(a)t (=8
+ /t0+b/c Ae y(csm| + b) dt,

u+c/d§’
where v(u) = / O4(u—a)dF (z) + A(u).
A change oof variables in above equation leads to

0
Dy (u) = MNOu+ c)(’\““)/‘s// (8's + )~ At/ (5)ds

u

b
+)\C—(A+a)/§’—1(5/u+C)(A+a)/5’/ e~ Oka)s/en ()5 4 A+ (1/0-1/")
0

v (5/u_|_ C)()\+a)/§/€_()\+a)b/c/ (5(8 B b) + C)_(A+a)/6_1’y(s)d8. (2'4)
b

Differentiating (2.4) with respect to u yields (2.1).
Similarly, for 0 < u < b, we can obtain the following integral equation,
(o]

(b—u)/c
g, (u) = / Ae” AFo (4 ct)dt + / Ae—(A+a)t7(c§&m‘ + b)dt.
0 (b—u)/c

A change of variables in above equation leads to

>\ b — a)ls—u)/c
Bpu) = 5 [ Ol (sas

C

+ )\C(Ha)/ée(ﬂa)(bw/fs/ (8(s — b) + )" AT/ (5)ds.  (2.5)
b

For u > b,

Dy, (u) = /0 Ae ATy (4 — b)e + c§§‘6) + b)dt.

A change of variables in above equation leads to

By (u) = A(3(u — b) + )X/ / T(6(s—b) + 0" ds. (2.6)

u
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Finally, differentiating (2.5) and (2.6) gives (2.2) and (2.3), respectively. O

We remark that the expected discounted penalty function ®,(u) is continuous at

v =0 and u = b, i.e.
Dy, (0-) = Dy, (0+), Py, (b—) = Py, (b+), (2.7)

which can be obtained by setting u = 0 in (2.4) and (2.5), and v = b in (2.5) and (2.6),
respectively. Furthermore, it is easy to see from (2.1), (2.2), (2.3) and above boundary

conditions that

@y, (0—) = @, (0+), Py, (b—) = @), (b+), (2.8)

which implies that ®4(u) is differentiable at w = 0 and u = b.

Proposition 2.1 If

0

llirr}& (¢ + 0's) "M/ A(5)ds = o0,
then
If

O !

llin}é/ (¢4 0's) "M/ A(5)ds < o0,

then
wli_lg}é/ Oy (u) = 0. (2.10)
Proof Set

b
H(u) — )\C—(A-i-oz)/é’—l((slu+C)(A+a)/§’/ e~ OFs/en () g 4 A+ (1/5-1/8)
0

X (8'u + ¢) AT/ g=(Atajb/e / (8(s — b) + )" AT/ =1y (5)ds.
b

By noting that Llin}é H(u) = 0 we can complete the proof by the same arguments as that
ul—c/d’
of Proposition 2.1 in Cai (2007). O
All the boundary conditions obtained above are necessary for one to solve the integro-

differential equations satisfied by ®4(u). In Section 3, we will give some examples to

illustrate the solution procedure.
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§3. Explicit Results for Exponential Claims

In this section, we study two special cases in which explicit expressions for ®,(u) can
be obtained by solving boundary-value problems.

Example 1 Let o =0, F(z) =1 — e %/ for yu > 0, w(zy,22) = w(xz). In this
case, it is easy to check that pA’(u)+ A(u) = 0. Then, integro-differential equations (2.1),
(2.2) and (2.3) are equivalent to the following differential equations for i = 1,2, 3,

@y (u) + pi(u) @y, (u) =0, (3.1)

where

du+c+p(d —N) c— M\ (u—"0)+c+u(d—N)

s I T A O s W

The general solution of (3.1) is of the following form
Dy, (u) = Cia + CiaP;(u), (3.2)
with

Pi(u) = / e e+ §'x) M g,
0

C
Py(u) = - fku(l — e (e (e,

u—b
Ps(u) = / e /M (e + 6x) Mg,
0

where C;1, Cjo are arbitrary constants to be determined.

It is easy to see that the first condition in Proposition 2.1 holds under the conditions

in Example 1, then by (2.9) we obtain
Ci1+ C’12P1(—c/6’) = A(—C/5/). (3.3)
By the boundary conditions in (2.7), and noting P;(0) = P(0) =0, P3(b) = 0 we have

Cn = Cy, (3.4)
Ca1 + CaPa(b) = Cs;. (3.5)

While the boundary conditions in (2.8) lead to

c_1+)‘/6/012 = Cha, (3.6)
e (A (1e) 0y — AN g (3.7)
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Finally, by the assumption ®g4,(u) — 0 as v — oo, we obtain
C31 + C32P3(00) = 0. (3.8)

Let H = Py(—c/d8') — ¢ "M Py(b) — Py(o0)cMd Mg (c=Amb/(ue) - Solving equations
(3.3)-(3.8) gives

o Pi(=c/d) ’
C11 = Co1 = (1 - T>A(—0/5 );
1 c—1+)\/5/
012 = EA<—C/6/), CQQ = TA(_C/6,)7
A" =X/ o —(e=Au)b/(pc) p,
O = - g,
AN =X/8 o= (c=Ap)b/ (ic) )
32 — H A(—C/(5 )

7

Hence, the Gerber-Shiu discounted penalty functions ®g4,(u), i = 1,2, 3, are given by

25,0 = (14 () _51(_6/5')),4(—(;/5'), ¢ <u<o, (3.9)
D) = (1+ P 2(“;_ Pi(=c/ 5'))A(—c/5'), 0<u<b,  (3.10)

M =A/8 o= (c=Ap)b/ (pic) (Ps(u) — p3(oo))A
H
Proposition 3.1 Let a =0, F(z) = 1 —e */* for u > 0, w(x1,z9) = w(z). Then

Oy (u) = (—c/d), u >b. (3.11)

the Gerber-Shiu discounted function can be expressed as

Dy(u) = hy(u)A(—c/d"). (3.12)
Proof Set w(-) =1, then A(—c¢/¢') =1 and ®4(u) is reduced to 14(u). Hence, we
can obtain (3.12) from (3.9)-(3.11). O

Proposition 3.1 shows that the Gerber-Shiu discounted penalty function is propor-
tional to the absolute ruin probability under conditions in Example 1. This is true, due to
the property of the lack of memory of exponential distribution, for some penalty functions
about the deficit at absolute ruin, such as the distribution, the Laplace transform and the
moments of the deficit at absolute ruin.

Set w(xe) = I(x2 < y) for y > ¢/d’, we obtain
Gy(y,u) = P(|Ug(Ty)| <y, Ty < 00|Uy(0) = u),

which is the (defective) distribution function of the deficit at absolute ruin when absolute

ruin occurs. From (3.12), we obtain

Gg(% u) = wg(u)(l - ec/(d’u)e—y/u).
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Then the conditional distribution function of the deficit at absolute ruin, given that ab-

solute ruin occurs, satisfies for y > ¢/d’,

G /
P(IU,(T,)| < yIT, < o0) = Z2WY) _ (1 _ e/ g=u/my,

g(u)
While the expected deficit at absolute ruin, given that absolute ruin occurs, is given by

1 [ /
E(UTIT, < o0) = [ yet/Mevivdy — v

which is the formula (5.23) in Cai (2007).
Now we consider several limit cases.
Case 1 b — oo. We denote the Gerber-Shiu discounted penalty function by
P, (u) and Pog 4 (u) for —¢/d" < u < 0 and u > 0, respectively. Note that as b — oo

A8
pic N
Py(b H — P(—c/§") —
2()—’0_)\M7 — Pi(—c/d) c— i’
from which, and (3.9), (3.10), one obtains
J— 0 !
14 c )\M/ e—x/u(l +6/$/C)_1+>\/6 dz
Doo_(u) = HE Ju A(=¢/8), —c/§ <u<0,
’ c— [0 140/
1+ / e+ 8z /) N qn
pe —c/d’
e—(c=An)u/(uc) ,
Doy (u) = T 0 , A(—c/d"), u>0.
1+ K / eI 4 8z /) MY dg
pe —c/d’

We remark that above two formulas recover the corresponding results obtained in Cai
(2007).
Case 2 b — 0. In this case, we denote the Gerber-Shiu discounted penalty func-

tion by ®o_(u) and Poy(u) for —¢/d" < u < 0 and u > 0 respectively. As b — 0, we have
Py(b) — 0,  H — Py(—c/d) — M MPy(c0).
Thus, one can obtain from (3.9) and (3.11) that
MO =A/S /Ooo e~/ (e + 52) " Modz — Py(u)

Dy (u) = - A(—=c/d), —c/d <u <0,
c>\/5’/\/5/ e /(e + 6z) Mz — Py(—c/d)
0

N =X/8 /OO e_m/“(c + 5fv)_1+>‘/§dx
¢ A(=c/&), u>0.

Do (u) = &
C’\/(S/)‘/a/ e—x/p(c+6$)—1+)\/§dx _ Pl(—C/5/)
0
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Case 3 ¢ — oo. Note that in this case ruin occurs immediately when the surplus
process first drops below zero. We denote the Gerber-Shiu discounted penalty function by
Py (u) and Ppy(u) for 0 < u < b and u > b, respectively. As ¢’ — oo one obtains

A(u) — w(u) = / w(u,z —u)dF(z),
and .
P (u) — 0, H — —=Py(b) — ¢ Mo~ (cmMb/(1e) py ().
c
Thus, one can obtain from (3.10) and (3.11) that
M

Py(00) — . (1 — e (=) (u=b)/(ne)y
— C— Al
Py (u) - Pg(oo) _ C—H-/\/(sz(b) w(O), 0<u<b,
P3(00) — P3(u)

Dy (u) = Pa(oo0) - c—1+>‘/‘5P2(b)w(0)’ u > b.

Case 4 0 — oo, b — 0. In this case, we obtain the classical compound Pois-
son model with constant interest force. We denote the Gerber-Shiu discounted penalty

function by ®5(u) for u > 0. As ¢’ — oo and b — 0, we have
Pi(u) =0, Py(b)—0, H— —cPs(c0).
One can obtain from (3.11) that

/ e /(e + ) Mg

Ds(u) = w(0), u > 0.

/ e /(e + ) Mg
0

Case 5 ' — 00, b — oco. In this case, we obtain the classical compound Poisson
model. We denote the Gerber-Shiu discounted penalty function by ®(u) for u > 0. As
§' — oo, b — 0, we have
e

P 0 Po(b H .
1(w) =0, 2()_>c—/\,u,’ T

Finally, one can obtain from (3.10) that

B (u) = e AU/ (), u > 0.

84. Probability of Recovery

In this section, we will discuss the probability of recovery for risk model (1.3). Let

T* be the time when the surplus process Uy(t) first drops below zero, i.e.

T* = inf{t > 0,U,(t) < 0}.
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Denote by 7' the time of recovery for risk model (1.3)
T :=inf{t > 0,U,(T* +t) = 0}, (4.1)
and by ¢(u) the probability of recovery
d(u) == P(T < 00|U,(0) =u),  u>0. (4.2)

We point out that ¢(u) behaves differently depending on the initial surplus 0 < u < b,

u > b. Hence, we distinguish these two situations by writing

¢1<’U,), Ogqu7
¢2(U,)7 u>b.

¢(u) =

Denote by Tgy the first passage time for the surplus process to reach zero from a

given surplus level —y, 0 < y < ¢/¢’". Define

C

(4.3)

By the total expectation formula, one can easily obtain an expression for the probability

of recovery ¢(u) as follows:
d(u) = P(T < o0|Ug(0) = u)

c/d
- /0 P(TY, < oo|U,(0) = —y)P(T* < oo|U,(T™)| € dy|U,(0) = u). (4.4)

If F(z) =1—e %" for > 0, from (3.9) in Yuan and Hu (2008), we conclude that

—y+c/d’
/ e /MOy
0

c/§’
/ e A0 =1y
0

It is easy to obtain from Case 3 that

(4.5)

C(_y) = ) 0

VAN
<
IN
2| o

P(T* < oo|U,(T*)| € dy|U,(0) = u) = r (4.6)

Mz(u)e_y/“, u>b
1
Where
A6
_ KHe — e~ (e=Ap)(u=b)/(uc)
Ps(o0) (1— el ) N
My (u) = c—Au M) = D) = Ps(w)

Pg(oo) — C_1+>‘/5P2(b)
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Consequently, substituting (4.5) and (4.6) into (4.4) yields

i’(g)w
é1(u) = My(u)- | 1— 75 ALY , 0<u<b,
/ o~ (/) (t=c/3) A5 -1 gy
0
and
fi’(£>*/5’
Go(u) = M(u) - (1 — ———A0 . u>b

/ A e A1 g
0
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