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Abstract
In this paper, we study the absolute ruin problems in a compound Poisson risk process. The

integro-differential equations for the expected discounted penalty functions are derived, and some

explicit expressions are given when the claims are exponentially distributed. Finally, by a ‘renewal’

argument, we obtain the explicit expression for the probability of the recovery when the claims are

exponentially distributed.
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§1. Introduction

Consider the following compound Poisson surplus process of an insurance company

U(t) = u + ct− S(t) = u + ct−
N(t)∑
i=1

Xi, t ≥ 0, (1.1)

where u ≥ 0 is the initial surplus; c > 0 is the rate of premium; {N(t), t ≥ 0} is a

Poisson claim-number process with intensity λ > 0; representing the claim amounts are

i.i.d. random variables with common distribution function F (x) = 1− F (x) = P(X ≤ x),

density f and mean µ; S(t) =
N(t)∑
i=1

Xi is the aggregate claim process. Finally, we assume

that {N(t)} and {Xi} are mutually independent.

The time to ruin for this model is defined as

T = inf{t : U(t) < 0}, or ∞ otherwise, (1.2)

and the corresponding ruin probability is defined as ψ(u) = P(T < ∞|U(0) = u).

In the insurance context, various definitions of ‘ruin’ do exist. In most of these cases,

the zero-level ruin estimate defined as above plays an important role, however, it really
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can’t reflect the surplus flow more accurate. In this paper, we consider a more general

model proposed by Embrechts and Schmidli (1994). We assume that, whenever the surplus

is negative or the company is on deficit, it could borrow an amount of money equal to

the deficit at a debit interest force δ′ > 0; whenever the surplus is positive, the company

could earn interest with force δ > 0 for capital above a certain level b ≥ 0, where b is

the amount of capital the company retains as a liquid reserve. In this model, the surplus

process, denoted by Ug(t) with Ug(0) = u, can be expressed as

dUg(t) =





cdt + δ′Ug(t)dt− dS(t), Ug(t) < 0;

cdt− dS(t), 0 ≤ Ug(t) ≤ b;

cdt + δ(Ug(t)− b)dt− dS(t), Ug(t) > b.

(1.3)

In this paper, we call model (1.1) and (1.3) classical risk model and general risk model,

respectively. The main difference between these two models is the definition of the time to

ruin, since the insurer’s business could go on when the surplus becomes negative in model

(1.3). Note that the surplus is no longer able to become positive when the negative surplus

attains the level −c/δ′ or is bellow −c/δ′, because the debits of the insurer at this time

are greater than or equal to c/δ′ that is the present value at that time for all premium

income available after then. Then the time to absolute ruin for model (1.3) is defined as

Tg = inf
{

t : Ug(t) ≤ − c

δ′
}

, ∞ otherwise,

and the absolute ruin probability is defined as

ψg(u) = P(Tg < ∞|Ug(0) = u).

Furthermore, let Ug(Tg−) and |Ug(Tg)| denote the surplus immediately before absolute

ruin and the deficit at absolute ruin, respectively. Note that the deficit is at least c/δ′ and

the surplus immediately before absolute ruin could be in the range of (−c/δ′,∞).

Let ω(x1, x2) be a nonnegative measurable function defined on (−c/δ′,∞)× [c/δ′,∞).

For a constant number α ≥ 0, we introduce the following well-known Gerber-Shiu expected

discounted penalty function at absolute ruin

Φg(u) = E[e−αTgω(Ug(Tg−), |Ug(Tg)|)I(Tg < ∞)|Ug(0) = u], (1.4)

where u > −c/δ′; I(A) is an indicator function of an event A. The study of the Gerber-Shiu

function has become a standard method to study the (absolute) ruin related quantities. See

Gerber and Shiu (1998), Cai (2004, 2007), Cai and Dickson (2002), Yang and Zhang (2008).
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We point out that Φg(u) behaves differently depending on the initial surplus −c/δ′ <

u < 0, 0 ≤ u ≤ b and u > b. Hence, we distinguish these three situations by writing

Φg(u) =





Φg1(u), −c/δ′ < u < 0;

Φg2(u), 0 ≤ u ≤ b;

Φg3(u), u > b.

Similarly, we write ψg(u) = ψg1(u) for −c/δ′ < u < 0, ψg(u) = ψg2(u) for 0 ≤ u ≤ b

and ψg(u) = ψg3(u) for u > b. Note that the following relation holds ψg3(u) ≤ ψ(u), u > b.

In this paper, we assume that the net profit condition c > λµ holds, which implies

that lim
u→∞ψg3(u) = 0. Also, we assume that lim

u→∞Φg3(u) = 0. In particular, a sufficient

condition for this assumption is that ω(x1, x2) is a bounded function.

Recently, absolute ruin has received considerable attention in the actuarial literature.

For references, see Dassios and Embrechts (1989), Embrechts and Schmidli (1994), Dick-

son and Egidio dos Reis (1997), Cai (2007) and references therein. In this paper, we study

the expected discounted penalty function (1.4) for model (1.3), which enables us to ana-

lyze many quantities related to absolute ruin, such as the absolute ruin probability, the

Laplace transform of the time to absolute ruin, the deficit at absolute ruin and the surplus

immediately before absolute ruin.

§2. Integro-Differential Equations

In this section, we derive the integro-differential equations for Φg(u).

Theorem 2.1 When −c/δ′ < u < 0,

Φ′g1
(u) =

λ + α

δ′u + c
Φg1(u)− λ

δ′u + c

[ ∫ u+c/δ′

0
Φg(u− x)dF (x) + A(u)

]
, (2.1)

when 0 ≤ u ≤ b,

Φ′g2
(u) =

λ + α

c
Φg2(u)− λ

c

[ ∫ u+c/δ′

0
Φg(u− x)dF (x) + A(u)

]
, (2.2)

and when u > b,

Φ′g3
(u) =

λ + α

δ(u− b) + c
Φg3(u)− λ

δ(u− b) + c

[ ∫ u+c/δ′

0
Φg(u− x)dF (x) + A(u)

]
, (2.3)

where A(u) =
∫ ∞

u+c/δ′
ω(u, x− u)dF (x).

《
应
用
概
率
统
计
》
版
权
所
用



第四期 杨虎 黄雯婷: 一般风险模型的绝对破产时间 383

Proof First, let s
(δ)

t| =
∫ t

0
eδvdv and denote the solution of the following equation

hδ′(t, u) = ueδ′t + c
(eδ′t − 1

δ′
)

= 0,

by t0 = t0(u), then we have t0 = ln[c/(c + δ′u)]1/δ′ .

Now we consider the case −c/δ′ < u < 0. From the definition of t0, we know that the

surplus returns to zero level at time t0 if no claim occurs prior to time t0. Furthermore,

hδ′(t, u) < 0 is the surplus at time t < t0 if no claim occurs prior to time t0. Thus, by

conditioning on the time and amount of the first claim, we obtain when −c/δ′ < u < 0

Φg1(u) =
∫ t0

0
λe−(λ+α)tγ(hδ′(t, u))dt +

∫ t0+b/c

t0

λe−(λ+α)tγ(c(t− t0))dt

+
∫ ∞

t0+b/c
λe−(λ+α)tγ

(
cs

(δ)

t−t0−b/c| + b
)
dt,

where γ(u) =
∫ u+c/δ′

0
Φg(u− x)dF (x) + A(u).

A change of variables in above equation leads to

Φg1(u) = λ(δ′u + c)(λ+α)/δ′
∫ 0

u
(δ′s + c)−(λ+α)/δ′−1γ(s)ds

+λc−(λ+α)/δ′−1(δ′u + c)(λ+α)/δ′
∫ b

0
e−(λ+α)s/cγ(s)ds + λc(λ+α)(1/δ−1/δ′)

× (δ′u + c)(λ+α)/δ′e−(λ+α)b/c

∫ ∞

b
(δ(s− b) + c)−(λ+α)/δ−1γ(s)ds. (2.4)

Differentiating (2.4) with respect to u yields (2.1).

Similarly, for 0 ≤ u ≤ b, we can obtain the following integral equation,

Φg2(u) =
∫ (b−u)/c

0
λe−(λ+α)tγ(u + ct)dt +

∫ ∞

(b−u)/c
λe−(λ+α)tγ

(
cs

(δ)

t−(b−u)/c| + b
)
dt.

A change of variables in above equation leads to

Φg2(u) =
λ

c

∫ b

u
e−(λ+α)(s−u)/cγ(s)ds

+λc(λ+α)/δe−(λ+α)(b−u)/c

∫ ∞

b
(δ(s− b) + c)−(λ+α)/δ−1γ(s)ds. (2.5)

For u > b,

Φg3(u) =
∫ ∞

0
λe−(λ+α)tγ

(
(u− b)eδt + cs

(δ)

t| + b
)
dt.

A change of variables in above equation leads to

Φg3(u) = λ(δ(u− b) + c)(λ+α)/δ

∫ ∞

u
(δ(s− b) + c)−(λ+α)/δ−1γ(s)ds. (2.6)
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Finally, differentiating (2.5) and (2.6) gives (2.2) and (2.3), respectively. ¤

We remark that the expected discounted penalty function Φg(u) is continuous at

u = 0 and u = b, i.e.

Φg1(0−) = Φg2(0+), Φ′g2
(b−) = Φ′g3

(b+), (2.7)

which can be obtained by setting u = 0 in (2.4) and (2.5), and u = b in (2.5) and (2.6),

respectively. Furthermore, it is easy to see from (2.1), (2.2), (2.3) and above boundary

conditions that

Φ′g1
(0−) = Φ′g2

(0+), Φ′g2
(b−) = Φ′g3

(b+), (2.8)

which implies that Φg(u) is differentiable at u = 0 and u = b.

Proposition 2.1 If

lim
u↓−c/δ′

∫ 0

u
(c + δ′s)−(λ+α)/δ′−1A(s)ds = ∞,

then

lim
u↓−c/δ′

Φg1(u) =
λ

λ + α
A(−c/δ′). (2.9)

If

lim
u↓−c/δ′

∫ 0

u
(c + δ′s)−(λ+α)/δ′−1A(s)ds < ∞,

then

lim
u↓−c/δ′

Φg1(u) = 0. (2.10)

Proof Set

H(u) = λc−(λ+α)/δ′−1(δ′u + c)(λ+α)/δ′
∫ b

0
e−(λ+α)s/cγ(s)ds + λc(λ+α)(1/δ−1/δ′)

× (δ′u + c)(λ+α)/δ′e−(λ+α)b/c

∫ ∞

b
(δ(s− b) + c)−(λ+α)/δ−1γ(s)ds.

By noting that lim
u↓−c/δ′

H(u) = 0 we can complete the proof by the same arguments as that

of Proposition 2.1 in Cai (2007). ¤

All the boundary conditions obtained above are necessary for one to solve the integro-

differential equations satisfied by Φg(u). In Section 3, we will give some examples to

illustrate the solution procedure.
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§3. Explicit Results for Exponential Claims

In this section, we study two special cases in which explicit expressions for Φg(u) can

be obtained by solving boundary-value problems.

Example 1 Let α = 0, F (x) = 1 − e−x/µ for µ > 0, ω(x1, x2) = ω(x2). In this

case, it is easy to check that µA′(u)+A(u) = 0. Then, integro-differential equations (2.1),

(2.2) and (2.3) are equivalent to the following differential equations for i = 1, 2, 3,

Φ′′gi
(u) + pi(u)Φ′gi

(u) = 0, (3.1)

where

p1(u) =
δ′u + c + µ(δ′ − λ)

µ(δ′u + c)
, p2(u) =

c− λµ

µc
, p3(u) =

δ(u− b) + c + µ(δ − λ)
µ(δ(u− b) + c)

.

The general solution of (3.1) is of the following form

Φgi(u) = Ci1 + Ci2Pi(u), (3.2)

with

P1(u) =
∫ u

0
e−x/µ(c + δ′x)−1+λ/δ′dx,

P2(u) =
µc

c− λµ
(1− e−(c−λµ)u/(µc)),

P3(u) =
∫ u−b

0
e−x/µ(c + δx)−1+λ/δdx,

where Ci1, Ci2 are arbitrary constants to be determined.

It is easy to see that the first condition in Proposition 2.1 holds under the conditions

in Example 1, then by (2.9) we obtain

C11 + C12P1(−c/δ′) = A(−c/δ′). (3.3)

By the boundary conditions in (2.7), and noting P1(0) = P2(0) = 0, P3(b) = 0 we have

C11 = C21, (3.4)

C21 + C22P2(b) = C31. (3.5)

While the boundary conditions in (2.8) lead to

c−1+λ/δ′C12 = C22, (3.6)

e−(c−λµ)/(µc)C22 = c−1+λ/δC32. (3.7)
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Finally, by the assumption Φg3(u) → 0 as u →∞, we obtain

C31 + C32P3(∞) = 0. (3.8)

Let H = P1(−c/δ′) − c−1+λ/δ′P2(b) − P3(∞)cλ/δ′−λ/δe−(c−λµ)b/(µc). Solving equations

(3.3)-(3.8) gives

C11 = C21 =
(
1− P1(−c/δ′)

H

)
A(−c/δ′),

C12 =
1
H

A(−c/δ′), C22 =
c−1+λ/δ′

H
A(−c/δ′),

C31 = −cλ/δ′−λ/δe−(c−λµ)b/(µc)P3(∞)
H

A(−c/δ′),

C32 =
cλ/δ′−λ/δe−(c−λµ)b/(µc)

H
A(−c/δ′).

Hence, the Gerber-Shiu discounted penalty functions Φgi(u), i = 1, 2, 3, are given by

Φg1(u) =
(
1 +

P1(u)− P1(−c/δ′)
H

)
A(−c/δ′),

c

δ′
< u < 0, (3.9)

Φg2(u) =
(
1 +

c−1+λ/δ′P2(u)− P1(−c/δ′)
H

)
A(−c/δ′), 0 ≤ u ≤ b, (3.10)

Φg3(u) =
cλ/δ′−λ/δe−(c−λµ)b/(µc)(P3(u)− P3(∞))

H
A(−c/δ′), u > b. (3.11)

Proposition 3.1 Let α = 0, F (x) = 1− e−x/µ for µ > 0, ω(x1, x2) = ω(x2). Then

the Gerber-Shiu discounted function can be expressed as

Φg(u) = ψg(u)A(−c/δ′). (3.12)

Proof Set ω(·) ≡ 1, then A(−c/δ′) = 1 and Φg(u) is reduced to ψg(u). Hence, we

can obtain (3.12) from (3.9)-(3.11). ¤
Proposition 3.1 shows that the Gerber-Shiu discounted penalty function is propor-

tional to the absolute ruin probability under conditions in Example 1. This is true, due to

the property of the lack of memory of exponential distribution, for some penalty functions

about the deficit at absolute ruin, such as the distribution, the Laplace transform and the

moments of the deficit at absolute ruin.

Set ω(x2) = I(x2 ≤ y) for y ≥ c/δ′, we obtain

Gg(y, u) = P(|Ug(Tg)| ≤ y, Tg < ∞|Ug(0) = u),

which is the (defective) distribution function of the deficit at absolute ruin when absolute

ruin occurs. From (3.12), we obtain

Gg(y, u) = ψg(u)(1− ec/(δ′µ)e−y/µ).
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Then the conditional distribution function of the deficit at absolute ruin, given that ab-

solute ruin occurs, satisfies for y ≥ c/δ′,

P(|Ug(Tg)| ≤ y|Tg < ∞) =
Gg(y, u)
ψg(u)

= (1− ec/(δ′µ)e−y/µ).

While the expected deficit at absolute ruin, given that absolute ruin occurs, is given by

E(|Ug(Tg)||Tg < ∞) =
1
µ

∫ ∞

c/δ′
yec/(δ′µ)e−y/µdy = µ +

c

δ′
,

which is the formula (5.23) in Cai (2007).

Now we consider several limit cases.

Case 1 b → ∞. We denote the Gerber-Shiu discounted penalty function by

Φ∞,−(u) and Φ∞,+(u) for −c/δ′ < u < 0 and u ≥ 0, respectively. Note that as b →∞

P2(b) → µc

c− λµ
, H → P1(−c/δ′)− µcλ/δ′

c− λµ
,

from which, and (3.9), (3.10), one obtains

Φ∞,−(u) =
1 +

c− λµ

µc

∫ 0

u
e−x/µ(1 + δ′x/c)−1+λ/δ′dx

1 +
c− λµ

µc

∫ 0

−c/δ′
e−x/µ(1 + δ′x/c)−1+λ/δ′dx

A(−c/δ′), −c/δ′ < u < 0,

Φ∞,+(u) =
e−(c−λµ)u/(µc)

1 +
c− λµ

µc

∫ 0

−c/δ′
e−x/µ(1 + δ′x/c)−1+λ/δ′dx

A(−c/δ′), u ≥ 0.

We remark that above two formulas recover the corresponding results obtained in Cai

(2007).

Case 2 b → 0. In this case, we denote the Gerber-Shiu discounted penalty func-

tion by Φ0−(u) and Φ0+(u) for −c/δ′ < u < 0 and u ≥ 0 respectively. As b → 0, we have

P2(b) → 0, H → P1(−c/δ′)− cλ/δ′−λ/δP3(∞).

Thus, one can obtain from (3.9) and (3.11) that

Φ0−(u) =
cλ/δ′−λ/δ

∫ ∞

0
e−x/µ(c + δx)−1+λ/δdx− P1(u)

cλ/δ′−λ/δ

∫ ∞

0
e−x/µ(c + δx)−1+λ/δdx− P1(−c/δ′)

A(−c/δ′), −c/δ′ < u < 0,

Φ0+(u) =
cλ/δ′−λ/δ

∫ ∞

u
e−x/µ(c + δx)−1+λ/δdx

cλ/δ′−λ/δ

∫ ∞

0
e−x/µ(c + δx)−1+λ/δdx− P1(−c/δ′)

A(−c/δ′), u ≥ 0.
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Case 3 δ′ →∞. Note that in this case ruin occurs immediately when the surplus
process first drops below zero. We denote the Gerber-Shiu discounted penalty function by
Φb−(u) and Φb+(u) for 0 ≤ u ≤ b and u > b, respectively. As δ′ →∞ one obtains

A(u) → w(u) :=
∫ ∞

u
ω(u, x− u)dF (x),

and
P1(u) → 0, H → −1

c
P2(b)− c−λ/δe−(c−λµ)b/(µc)P3(∞).

Thus, one can obtain from (3.10) and (3.11) that

Φb−(u) =
P3(∞)− µcλ/δ

c− λµ
(1− e−(c−λµ)(u−b)/(µc))

P3(∞)− c−1+λ/δP2(b)
w(0), 0 ≤ u ≤ b,

Φb+(u) =
P3(∞)− P3(u)

P3(∞)− c−1+λ/δP2(b)
w(0), u > b.

Case 4 δ′ → ∞, b → 0. In this case, we obtain the classical compound Pois-
son model with constant interest force. We denote the Gerber-Shiu discounted penalty
function by Φδ(u) for u ≥ 0. As δ′ →∞ and b → 0, we have

P1(u) → 0, P2(b) → 0, H → −c−λ/δP3(∞).

One can obtain from (3.11) that

Φδ(u) =

∫ ∞

u
e−x/µ(c + δx)−1+λ/δdx

∫ ∞

0
e−x/µ(c + δx)−1+λ/δdx

w(0), u ≥ 0.

Case 5 δ′ → ∞, b → ∞. In this case, we obtain the classical compound Poisson
model. We denote the Gerber-Shiu discounted penalty function by Φ(u) for u ≥ 0. As
δ′ →∞, b → 0, we have

P1(u) → 0, P2(b) → µc

c− λµ
, H → − µ

c− λµ
.

Finally, one can obtain from (3.10) that

Φ(u) = e−(c−λµ)u/(µc)w(0), u ≥ 0.

§4. Probability of Recovery

In this section, we will discuss the probability of recovery for risk model (1.3). Let
T ∗ be the time when the surplus process Ug(t) first drops below zero, i.e.

T ∗ = inf{t > 0, Ug(t) < 0}.
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Denote by T̂ the time of recovery for risk model (1.3)

T̂ := inf{t > 0, Ug(T ∗ + t) = 0}, (4.1)

and by φ(u) the probability of recovery

φ(u) := P(T̂ < ∞|Ug(0) = u), u ≥ 0. (4.2)

We point out that φ(u) behaves differently depending on the initial surplus 0 ≤ u ≤ b,
u > b. Hence, we distinguish these two situations by writing

φ(u) =





φ1(u), 0 ≤ u ≤ b,

φ2(u), u > b.

Denote by T 0−y the first passage time for the surplus process to reach zero from a
given surplus level −y, 0 < y < c/δ′. Define

ζ(−y) := P(T 0
−y < ∞|Ug(0) = −y), 0 < y <

c

δ′
. (4.3)

By the total expectation formula, one can easily obtain an expression for the probability
of recovery φ(u) as follows:

φ(u) = P(T̂ < ∞|Ug(0) = u)

=
∫ c/δ′

0
P(T 0

−y < ∞|Ug(0) = −y)P(T ∗ < ∞|Ug(T ∗)| ∈ dy|Ug(0) = u). (4.4)

If F (x) = 1− e−x/µ for µ > 0, from (3.9) in Yuan and Hu (2008), we conclude that

ζ(−y) =

∫ −y+c/δ′

0
e−t/µtλ/δ′−1dt

∫ c/δ′

0
e−t/µtλ/δ′−1dt

, 0 ≤ y ≤ c

δ′
. (4.5)

It is easy to obtain from Case 3 that

P(T ∗ < ∞|Ug(T ∗)| ∈ dy|Ug(0) = u) =





M1(u)
µ

e−y/µ, 0 ≤ u ≤ b,

M2(u)
µ

e−y/µ, u > b.

(4.6)

Where

M1(u) =
P3(∞)− µcλ/δ

c− λµ
(1− e−(c−λµ)(u−b)/(µc))

P3(∞)− c−1+λ/δP2(b)
, M2(u) =

P3(∞)− P3(u)
P3(∞)− c−1+λ/δP2(b)

.
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Consequently, substituting (4.5) and (4.6) into (4.4) yields

φ1(u) = M1(u) ·
(

1−
δ′

λ

( c

δ′
)λ/δ′

∫ c/δ′

0
e−(1/µ)(t−c/δ′)tλ/δ′−1dt

)
, 0 ≤ u ≤ b,

and

φ2(u) = M2(u) ·
(

1−
δ′

λ

( c

δ′
)λ/δ′

∫ c/δ′

0
e−(1/µ)(t−c/δ′)tλ/δ′−1dt

)
, u > b.
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一般风险模型的绝对破产时间

杨 虎 黄雯婷

(重庆大学数学与统计学院, 重庆, 401331)

本论文研究了关于复合Possion风险模型中绝对破产的问题. 得到了关于罚金折现期望函数的积分微分方

程, 并在索赔函数为指数分布时, 得到了关于罚金折现期望函数的确切解. 最后, 作为一个新的讨论, 当索赔函

数为指数分布时, 得到了关于恢复概率的确切值.

关键词: 绝对破产, 罚金折现期望函数, 积分微分方程, 恢复概率.
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