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Abstract
Mean and covariance structure model is widely applied in behavioral, educational, medical,

social and psychological research. The classic maximum likelihood estimate is vulnerable to outliers

and distributional deviation. In this paper, robust estimate based on minimizing the objective

function is proposed, and M-ratio test based on the robust deviance is suggested to assess the

model fit. Empirical results are illustrated by a real example.
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§1. Introduction

Mean and covariance structure model, in which mean vector and covariance matrix

share the common parameter set, has been widely studied in understanding the underly-

ing structure of multivariate data[1–4]. The common assumptions about the distribution of

the observed individuals are normal and the classic maximum likelihood (ML) approach is

employed to take statistical analysis. As is well known, ML estimate is an M-estimate[5, 6]

of which the influence function (IF)[7] is not bounded. This means ML estimate is sensitive

to outliers in data. In order to downweight the influence of distributional deviation and

outliers, robust methods such as asymptotically distribution-free (ADF)[4] methods and

robust ML procedures[8, 9] are proposed. Though, less dependent on distribution, the em-

pirical evidence reported so far does not recommend their routine use, since they may lead

to excessive computational burden and/or lack of robustness in dealing with mutimodality

(see [10]). [11] illustrated that ADF can’t always downweight the influence of outliers for

Bollen’s cloud data.

In this study, we define the robust estimate for the mean and structure model based

on minimizing the objective function considered by Kent and Tyler (1991). With this
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objective function, robust deviance[13] is defined and M-ratio statistic for assessing the

adequacy of model is proposed. For clarity, the following notations will be used: for any

symmetric matrix A, vec(A) denotes the p2 dimensional vector formed by stacking the

columns of matrix Ap×p, while vecs(A) is a p∗ = p(p + 1)/2 dimensional vector formed

by the non-duplicated elements of A. The duplication matrix Dp(p2 × p∗) is defined as

Dpvecs(A) = vec(A)[14]; D+
p = (DT

p Dp)−1DT
p is the generalized inverse of Dp. For any

matrix B, BT means the transpose of B and ‖B‖ is the norm; A ⊗ B is the Kronecker

product between the matrix A and B. ḣθ means the partial derivatives of any vector

function h(θ) with respect to θ. Ip represents the p× p identity matrix. All proofs of the

related lemmas, theorems and corollaries are given in Appendix.

§2. M-estimate

Let {yi : i = 1, . . . , n} be a p-dimensional i.i.d. random sample with mean vector

µ0 and scale matrix Σ0. Suppose that µ0 and Σ0 depend on an unknown q-dimensional

parameter vector θ0 such that µ0 = µ(θ0) and Σ0 = Σ(θ0), in which θ0 lies in the

parameter space Θ ⊆ (Rq). We treat θ as a vector of mathematical variables which can

take values in Θ. The following mild regularity conditions will be assumed throughout

this paper.

Assumptions A

(a) The vector θ0 is an interior point in the parameter space Θ. The matrix Σ0 is

positive definite.

(b) The model is identification in the sense that µ(θ0) = µ(θ∗), Σ(θ0) = Σ(θ∗)

implies θ0 = θ∗.

(c) All partial derivatives of the first three orders of µ(θ) and Σ(θ) are continuous

and bounded in a neighborhood of θ0.

(d) µ̇θ and σ̇θ are full rank in a neighborhood of θ0, where σ(θ) = vecs(Σ(θ)).

To assess the mean and covariance structure, we define M-estimate θ̂n for θ0 by

minimizing

LM (θ) =
1
2

n∑
i=1

{
ρ(yi − µ(θ))TΣ(θ)−1(yi − µ(θ)) + log |Σ(θ)|}, (2.1)

for some rho function ρ(s), s ≥ 0. (2.1) is a direct extension of (1.1) in [12] which is used to

define the redescending M-estimates of multivariate location and scatter matrix without

structure. Surely, when exp{−ρ(‖yi‖2)} is integrable over Rp, (2.1) can be regarded as the
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negative log-likelihood from an elliptically symmetric distribution[15] with location µ(θ)

and scale matrix Σ(θ).

If ρ is differentiable, then setting the derivatives of (2.1) with respect to θ to zeros

gives the following estimating equation (2.2).

Gn(θ) =
n∑

i=1
g(yi,θ) = 0 (2.2)

with g(yi,θ) = µ̇T
θ Σ(θ)−1u(si)[yi − µ(θ)] + σ̇T

θ ΓN (θ)−1[u(si)si − σ(θ)] and

si = vecs{(yi − µ(θ))(yi − µ(θ))T }, ΓN (θ) = 2D+
p {Σ(θ)⊗Σ(θ)}D+T

p ,

in which u(s) = dρ(s)/ds and si = s(yi,θ) = (yi − µ(θ))TΣ(θ)−1(yi − µ(θ)).

In general, the estimator defined by minimum of (2.1) is not equivalent to that through

the implicit estimate equation (2.2). For the multivariate location and scatter problem,

[12] provided mild conditions on ρ(s) and u(s) as well as on the observed data to ensure

the existence and uniqueness of the estimator for the finite sample. However, as pointed

out by [5], the uniqueness of the estimators may be unrealistic for a specific data. For

our problems, in order to establish the consistent and the asymptotic normality of the

estimation of structure parameters, we consider the following assumptions:

Assumptions B

(i) ρ(s) is twice continuously differentiable and u(s) = dρ(s)/ds.

(ii) s1/2u(s) and su(s)are bounded and u̇(s)s and u̇(s)s2 are also bounded.

(iii) Eθ0 [g(yi,θ0)] = 0, Q(θ0) = Cov θ0 [g(yi,θ0)] > 0, and M(θ0) = Eθ0 [ġθ(yi,θ0)] is

non-singular.

Theorem 2.1 Under Assumption A and B, there is a sequence θ̂n such that

Gn(θ̂n) = op(1), θ̂n

Pθ0−→ θ0, and
√

n(θ̂n − θ0)
L−→ N(0,Ω(θ0)),

where Ω(θ0) = M(θ0)−1Q(θ0)M(θ0)−T .

Proof See A1 in Appendix. ¤

The asymptotical covariance matrix of θ̂n can be estimated by Ω(θ̂n)/n or via

M−1
n QnM

−T
n , where Mn and Qn are the consistent estimators of M(θ0) and Q(θ0),

respectively.

An useful heuristic tool to assess the effect of the observations on the estimates is the

influence function (IF)[17]. For our problem, the IF of θ̂n is given by

IFθ(y) = −Q(θ0)−1g(y,θ0) (2.3)
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in which g(y,θ) is given in (2.2). Note that

g(y,θ) = µ̇T
θ Σ(θ)−1/2s1/2u(s)x +

1
2
Σ̇

T
θ {Σ(θ)⊗Σ(θ)}−1/2vec[su(s)xxT − I],

where x = Σ(θ)−1/2(y − µ(θ))/
√

s(y,θ) satisfying ‖x‖ = 1.0 and Σ̇θ = ∂Σ/∂θ. Based

on the Assumption A and B, it can be seen clearly that IFθ(y) is bounded.

§3. Robust Inference

3.1 Goodness-of-fit Test

To assess the hypothesized model structure, we consider the following null hypothesis

H0 : µ0 = µ(θ0), Σ0 = Σ(θ0). If H0 is rejected, one may conclude that µ(θ0) and Σ(θ0)

are not agreed with the data. Let β = (µT ,σT )T be the saturated model parameters, and

β̂n be an estimate of β0 which minimizes

L ∗
M (β) =

1
2

n∑
i=1

{
ρ((yi − µ)TΣ−1(yi − µ)) + log |Σ|}.

Similar to (2.2), under that ρ is differentiable, β̂n satisfies the following equation

G∗
n(β) =

n∑
i=1

g∗(yi,β) = 0, in which

g∗(yi,β) =

[
Σ−1 0

0 Γ−1
N

][
u(si)(yi − µ)

u(si)si − σ

]
. (3.1)

The consistence and asymptotical normality of β̂n can be obtained based on the similar

argument in Theorem 2.1. Specifically, the asymptotical covariance of
√

n(β̂ − β0) is

Ω∗(β0) = M∗−1
0 Q∗

0M
∗−T
0 with M∗

0 = −Eβ0 [ġ
∗
β(yi,β0)] and Q∗

0 = Cov β0 [g
∗(yi,β0)].

Let β̃n = β(θ̂n), and ∆̂ = ∂β/∂θT evaluated at θ = θ̂n. The following theorem

establishes the Wald-type test statistic for H0.

Theorem 3.1 Under the Assumptions A and B, and the null hypothesis H0 : µ0 =

µ(θ0), Σ0 = Σ(θ0),

Tn = n(β̂n − β̃n)TŴn(β̂n − β̃n) L−→ χ2(p + p∗ − q),

where Ŵn = W(θ̂n) = ∆̂
⊥{∆̂⊥T

Ω̂
∗
n∆̂

⊥}−1∆̂
⊥T

; Ω̂
∗
n is a consistent estimator of Ω∗

0 and

∆̂
⊥

is a (p + p∗)× (p + p∗ − q) matrix of which columns are orthogonal to those of ∆̂.

Proof See A2 in Appendix. ¤
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3.2 M-ratio Test

The function LM (θ) defined in (2.1) allows us to develop robust tools for further

inference and model selection. To avoid introducing too much notation, we deal with the

general case in this section. However, in the context of mean-covariance structure model,

one should keep in mind that θ in this section may be β for the statured model and ϑ may

be structured parameters. Assume that Ξ is a r (r ≤ q) dimensional parametric space

and π : Ξ 7→ Θ is a vector-valued function such that π(ϑ) is continuously differentiable

with respect to ϑ. The matrix A(ϑ) = π̇ϑ is full rank of the column. The true value ϑ0

corresponds to θ0 which lies in the interior of Ξ. A simple example is π(ϑ) = (ϑT ,0T )T
q×1.

We are interested in testing the null hypothesis H0 : θ0 = π(ϑ0).

Let θ̂n be the solution of equation (2.1) under the complete model, and ϑ̂n be the

estimator of ϑ0 under the reduction model with parametric space Ξ using the same proce-

dure. Let DM (θ) = −2LM (θ), a robust quasi-deviance[13] which describes the quality of

a fit. Denote θ̃ = π(ϑ̂), we consider a robust measure of discrepancy between two nested

models:

Wn = DM (θ̂n)−DM (θ̃n) = 2[LM (θ̃n)−LM (θ̂n)]. (3.2)

The following theorem establishes the asymptotical distribution of Wn under the null

hypothesis.

Theorem 3.2 Under the assumptions in Theorem 2.1 and H0 : θ0 = π(ϑ0),

Wn
L−→

q−r∑
j=1

λjz
2
j , (3.3)

where zj , j = 1, . . . , (q− r) are i.i.d. standard normal variables, and λj , j = 1, . . . , (q− r)

are the positive eigenvalues of matrix H0 where

H0 = Q0[M
−1
0 −A0(AT

0 M0A0)−1AT
0 ],

and Q0 and M0 is given in Theorem 2.1.

Proof See A3 in Appendix. ¤

The above H0 is evaluated at θ0 = π(ϑ0). A natural replacement of ϑ0 is the M-

estimate ϑ̂n. Under the normal assumption with ρ(s) = s, H0 is an idempotent matrix

with (q − r) unity eigenvalues. This gives (3.3) the central chi-square distribution with

(q − r) degrees of freedom. However, the asymptotical distribution of Wn is a linear

combination of (central) χ2 random variables with 1 degree of freedom when ρ(s) 6= s,

even though the data is normal. One can approximate this linear combination by a scaled
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chi-square variable[17]. Specifically, let Ĥ = H(ϑ̂), and λ̂k be the positive eigenvalues of

Ĥ, then a rescaled statistic of (3.3) is given

WR
n = Wn/ĉ, (3.4)

where ĉ =
q−r∑
k=1

λ̂k/(q − r) = trace(Ĥ)/(q − r). Using χ2(q − r) to approximate the distri-

bution of WR
n represents an improvement.

§4. Real Example

In this section, we present some results of a real example to illustrate the performances

of the proposed procedure. The open and closed data set[18] consists of n = 88 cases and

p = 5 variables. The five topics are mechanics, vector, algebra, analysis, and statistics.

First two topics were tested with closed book exams and the last three topics were tested

with open book exams. The data was reanalyzed by [19] to take influence analysis under

a two-factor model and consequently the 81st case is identified as the most influential

point. To formulate the problem, for case i, let yi = (yi1, . . . , yi5)T denote the observed

vector, and ωi = (ωi1, ωi2)T be the factor vector of which ωi1 is related to the first two

observed variables and ωi2 to the last three observed variables. The proposed model is

given by yi = Λωi + εi, in which Λ is a 5× 2 factor loading matrix and εi is the unique

error with zero mean vector and covariance matrix Υ = diag{ψ11, . . . , ψ55}. Further, it

assumed that ωi is independent of εi and has mean zeros and covariance matrix Φ > 0.

For model identification (see [1]), we fixed some parameters in Λ and Φ as follows: λ12 =

λ22 = λ31 = λ41 = λ51 = 0, φ11 = φ22 = 1. Hence, the unknown parametric vector θ are

formed by the free parameters contained in Λ, Φ and Υ. Based on these settings, the

covariance matrix of yi is given by Σ(θ) = ΛΦΛ + Υ. Because the true distribution is

unknown, we assume the data is from the normal distribution for the ML analysis.

For the robust analysis, we consider the following weight function u(s) = cI{s ≤
s0} + c(ν + s0)/(ν + s)I{s > s0} for some ν > 0, c > 0 and s0 ≥ 0. This weight

function is normal in the middle and has t-type tail. If ν = 0 with c = 1, u(s) reduces

to the Huber type weight functions. Note that the weight function u(s) also satisfies

the M1-M4 conditions of [6] with u1(
√

s) = u2(s) = u(s). Hence, M-estimate for the

mean and covariance matrix without any structure can be obtained by using iterative

reweighting algorithm. The corresponding objective function is given by ρ(s) = csI{s ≤
s0}+ c((ν + s0) log((ν + s)/(ν + s0)) + s0)I{s > s0}. We take s0 = 11.071 and s0 = 9.236,

corresponding to the 10% percentile and 5% percentile of chi-square with freedom 5,
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respectively. Based on the previous analysis, we choose smaller value ν = 1 since the

proposal procedure with larger values of ν gives the performance as that ML method. The

values of c are chosen to meet Assumption B in Section 2 which gives c−1 = 0.977 and

c−1 = 0.952, respectively. MLE, MLE with the 81st case removed (RMLE) and M-estimate

are represented in Table 1 together with corresponding standard errors. The statistic Tn

and M-ratio statistics Wn,WR
n with freedom 4 for testing H0 : Σ = Σ(θ) are calculated.

For the ML estimate, Wn is asymptotically center chi-square distribution, so the correction

term is one. By comparing the fit indices with critical values χ2
4(0.05)−1 = 9.488, all the

fit indices are far from significant, and the two factor model is not rejected by any of the

fitting methods. There exists a slightly difference between Tn and WR
n , and WR

n is always

smaller than Tn. In order to see the effect of an outlier on different methods, we created

a artificial outlier by multiplying the score of the last case with 6. The corresponding

results of test statistics are given in the last three rows in Table 1. The likelihood ratio

test statistic and Tn under the MLE failed completely while the M-ratio statistic and Tn

based on M-estimate still give the correct model assessment.

Table 1 Parameters estimate and test statistics for open and closed data

M

Para. MLE SD RMLE SD 5% SD 10% SD

λ11 12.178 (1.823) 11.384 (1.789) 11.731 (1.834) 11.833 (1.832)

λ21 10.328 (1.365) 9.648 (1.286) 10.084 (1.360) 10.018 (1.356)

λ32 9.716 (0.917) 9.848 (0.916) 9.580 (0.921) 9.692 (0.920)

λ42 12.021 (1.396) 12.013 (1.409) 11.996 (1.416) 12.046 (1.416)

λ52 12.562 (1.640) 12.524 (1.658) 12.778 (1.669) 12.645 (1.659)

ψ11 153.99 (31.191) 161.137 (30.168) 159.249 (31.317) 158.835 (31.35)

ψ22 64.204 (17.838) 59.644 (15.600) 63.032 (17.382) 63.636 (17.406)

ψ33 17.199 (6.904) 15.895 (6.665) 17.337 (6.712) 16.840 (6.809)

ψ44 82.594 (16.253) 85.386 (16.362) 83.038 (16.456) 84.264 (16.563)

ψ55 136.575 (24.016) 140.836 (24.466) 135.047 (24.330) 136.951 (24.318)

φ12 0.817 (0.072) 0.87940 (0.069) 0.846 (0.072) 0.838 (0.072)

Wn 2.625 – 3.040 – 2.374 – 2.472 –

WR
n 2.625 – 3.040 – 2.561 – 2.572 –

Tn 2.755 – 3.177 – 2.764 – 2.738 –

Wn 26.257 – – – 3.018 – 3.140 –

WR
n 26.257 – – – 3.255 – 3.266 –

Tn 27.405 – – – 3.559 – 3.475 –
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§5. Discussion

For the mean and covariance structure analysis, more attentions are given about the fit

of a model, that is, assessing whether the mean and covariance matrix are some function of

unknown parameter. The ML and GLS methods under the common normal theory easily

breakdown when data are exposed to non-normal, outliers or model mis-specification.

In this paper, robust version of likelihood ratio tests for mean and covariance structure

models are introduced based on general M-estimates. M-ratio test is defined on the basis of

robust quasi-deviance, a robust goodness-of-fit measure. They are a valuable complement

to a classical techniques and are more reliable in the presence of outlying points and other

deviations from the assumed model.

Appendix

A.1 Proof of Theorem 2.1

The proof of existence and consistence of estimator relies on the following lemma[20].

Lemma A.1 Let y1, . . . ,yn be a i.i.d. random sample. g(y,θ) is a stochastic

function of θ which is continuous with respect to θ. Define Gn(θ) = n−1
n∑

i=1
g(yi,θ). if (i)

Gn(θ0) −→ 0 with probability 1; (ii) In a neighborhood of θ0, Ġnθ(θ) converges uniformly

to a non-stochastic function which is not singular at θ0, then, with probability 1, there

are zeros θ̂n of Gn(θ) such that θ̂n

Pθ0−→ θ0.

Based on the Assumption A and B, we only need to show that Ġθ(θ) converges

uniformly in a neighborhood of θ0. This can be completed by showing that ġθ(y,θ)

is bounded by an integrable function (see [20]). Let z = Σ−1(θ)(y − µ(θ)) and Σ̇θ =

∂Σ(θ)/∂θ. By the matrix differential,

ġθ(y,θ) = −u(s)µ̇T
θ Σ−1µ̇θ + u(s)µ̈T

θθ[Iq ⊗ z]− u(s)Σ̇
T
θ [Σ−1 ⊗ z]µ̇θ

− 2u̇(s)µ̇T
θ [zzT ]µ̇θ − u̇(s)Σ̇

T
θ [z⊗ zzT ]µ̇θ −

1
2
Σ̈

T
θθ[vecΣ−1 ⊗ Ip]

+ Σ̇
T
θ (Σ−1 ⊗Σ−1)Σ̇θ +

1
2
u(s)Σ̈

T
θθ[vec(zzT )⊗ Ip]

− 1
2
u(s)Σ̇

T
θ [Σ−1 ⊗ zzT ]Σ̇θ − 1

2
u(s)Σ̇

T
θ [zzT ⊗Σ−1]Σ̇θ

− 1
2
u(s)µ̇T

θ [Σ−1 ⊗ zT ]Σ̇θ − 1
2
u(s)µ̇T

θ [zT ⊗Σ−1]Σ̇θ

− u̇(s)µ̇T
θ [zzT ⊗ zT ]Σ̇θ − 1

2
u̇(s)Σ̇

T
θ [zzT ⊗ zzT ]Σ̇θ.

According to the property of norms of matrices and norms of vectors: ‖AB‖ ≤ ‖A‖ ·‖B‖,
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‖A ⊗B‖ = ‖A‖ · ‖B‖, ‖A + B‖ ≤ ‖A‖ + ‖B‖. Based on the Assumption A and B, we

can conclude that ġθ(y,θ) is bounded.

By the Assumption A and B, we have Gn(θ̂n) = Gn(θ0)+Ġn(θ0)(θ̂n−θ0)+Rn(θ̂n−
θ0), where Rn −→ 0 as θ̂n −→ θ0; Hence,

√
n(θ̂n − θ0) = (Ġn(θ0))−1(Gn(θ0) + Rn).

Note that Gn(θ0)
L−→ N(0,Q(θ0)) and Gn(θ0) −→ M(θ0) in probability. We complete

the proof of asymptotic normality by the well-known Slutsky theorem.

A.2 Proof of Theorem 3.1

The proof follows the similar routine in [16]. We outlined it briefly for completeness.

Let M0 = M(θ0), Q0 = Q(θ0), M∗
0 = M(β0), Q∗

0 = Q(β0), and ∆0 = ∂β/∂θ0. Under

the null hypothesis, we have Gn(θ0) = ∆T
0 G∗

n(β0) and M0 = ∆T
0 M∗

0∆0, Q0 = ∆T
0 Q∗

0∆0.

Based on the Assumption A and B, for any θ0 ∈ Θ, it can be shown that

√
n(θ̂n − θ0) = −M−1

0

1√
n
Gn(θ0) + op(1).

Similarly,
√

n(β̂n − β0) = −M∗−1
0 (1/

√
n)G∗

n(β0) + op(1). So, under the null hypothesis,√
n(β(θ̂n)− β(θ0)) = ∆0M−1

0 ∆T
0 M∗

0

√
n(β̂n − β0) + op(1), which gives

√
n(β̂n − β(θ̂n)) = (I−∆0M−1

0 ∆T
0 M∗

0)
√

n(β̂n − β0) + op(1).

By that
√

n(β̂n − β0)
L−→ N(0,Ω∗

0), and ∆⊥T
0 ∆0 = 0, we have

∆⊥T√n(β̂n − β(θ̂n)) L−→ N(0,∆⊥T
0 Ω∗

0∆
⊥
0 ).

Hence, based on the Cochran theorem, under the null hypothesis,

Tn = n(β̂n − β(θ̂n))TŴn(β̂n − β(θ̂n)) L−→ χ2(p + p∗ − q).

A.3 Proof of Theorem 3.2

Let D̃M (ϑ) = DM (π(ϑ)), then,

∂D̃M

∂ϑT
0

= A(ϑ0)T ∂DM

∂θT
0

. (A.1)

Obviously, Q̃(ϑ0) = A(ϑ0)TQ0A(ϑ0), M̃(ϑ0) = A(ϑ0)TM0A(ϑ0). Since

DM (θ̂n)−DM (θ0) =
1
2
√

n(θ̂n − θ0)T ∂2DM

n∂θ0∂θT
0

√
n(θ̂n − θ0) + op(1), (A.2)

and

√
n(θ̂n − θ0) = −

( ∂2DM

n∂θ0∂θT
0

)−1 1√
n

∂DM

∂θ0
+ op(1),

∂2DM

n∂θ0∂θT
0

Pθ0−→ M0. (A.3)
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We obtain

DM (θ̂n)−DM (θ0)
e=

1
2

[ 1√
n

∂DM

∂θT
0

]
M−1

0

[ 1√
n

∂DM

∂θ0

]
. (A.4)

Similarly, following the above step and noting (A.1),

D̃M (ϑ̂n)− D̃M (ϑ0)
e=

1
2

[ 1√
n

∂D̃M

∂ϑT
0

]
M̃

−1

0

[ 1√
n

∂D̃M

∂ϑ0

]
. (A.5)

Thus, based on Equation (A.1) to (A.5), and under the null hypothesis,

DM (θ̂n)−DM (θ̃n) = [DM (θ̂n)−DM (θ0)]− [D̃M (ϑ̂n)− D̃M (ϑ0)]
e=

1
2

[ 1√
n

∂DM

∂θT
0

]
H0

[ 1√
n

∂DM

∂θ0

]
,

where H0 = M−1
0 −A0(AT

0 M0A0)−1AT
0 . Further, for any θ0,

zn = Q−1/2
0

1√
n

∂DM

∂θ0

L−→ Np(0, I).

Thus, Wn = zT
nQ1/2

0 H0Q
1/2
0 zn +op(1). Note that the rank of the matrix Q1/2

0 H0Q
1/2
0

equal to rank of H0 is q − r, then,

Wn =
q−r∑
i=1

λiz
2
i + op(1),

where λ1, λ2, . . . , λq−r are the q − r positive eigenvalues of matrix Q0H0. We complete

the proof of Theorem 3.2.
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均值方差结构模型的渐近稳健推断

夏业茂 刘应安

(南京林业大学应用数学系, 南京, 210037)

均值方差模型广泛应用于行为、教育、医学、社会和心理学的研究. 经典的极大似然估计对于异常点和分

布扰动易受影响. 本文基于目标函数最小化给出稳健估计, 并基于稳健偏差提出模型拟合.

关键词: 均值方差模型, 拟合优度检验, 稳健偏差.

学科分类号: O212.5.
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