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Abstract
Let M; and M3 be two linear models with new observations. Through matrix rank method,
we derive the necessary and sufficient conditions for the best linear unbiased predictor (BLUP) of
the new observation under the model M; is also BLUP under the model Ms. As applications, the
conditions of equality of the BLUPs under two mixed linear models are also given.
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§1. Introduction

Consider the general Gauss-Markov model
y=Xp+e, (1.1)

where y is an n X 1 observable random vector, X is a known n X p model matrix, G is a
p x 1 vector of unknown parameters, and ¢ is an n x 1 random error vector.
Let y; denote an m X 1 unobservable random vector containing new observations

(observable in future). New observations y; are assumed to follow linear model

yf:Xfﬂ—l—sf, (1.2)

where X is a known m x p model matrix associated with new observations, 3 is the same
vector of unknown parameters as in Eq. (1.1), and €¢ is an m x 1 random error vector

associated with new observations. The expectation vector and the covariance matrix of
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respectively, where ¥ is a known nonnegative definite matrix with the property of Z(Vi2) C

Z(Vir).
} (1.4)

We use the notation
to describe the general Gauss-Markov model with new observations.

=3, (1.3)
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Further, R™*™ denotes the set of all m x n real matrices. For any A € R™*"  the
symbols A, AT r(A), Z(A) and 4 (A) denote the transpose, the Moore-Penrose inverse,
the rank, the range (column space) and the null space of a real matrix A, respectively.
Ex=1I,— XX and Fx = I, — XTX stand for the two orthogonal projectors induced by
X.

We assume the model M7 to be consistent in the sense that
y € Z(X, V). (1.5)

The linear predictor Gy is unbiased for y; if the expected prediction error is 0 :

E(yf — Gy) = 0. This is equivalent to GX = Xy, i.e.,
X} = X'G. (1.6)

This means that X3 is an estimable parametric function. Now an unbiased linear predic-

tor Gy is called the best linear unbiased predictor, BLUP, for y, if the Lowner ordering
Cov (Gy — yy) <1 Cov(Fy —yy) (1.7)

holds for all F' such that Fy is an unbiased linear predictor for y¢, i.e., Cov (Fy — ys) —
Cov (Gy — yy) is a nonnegative definite matrix.

The following lemma characterizes the BLUP; for the proof, see Isotalo and Puntanen
(2006).

Lemma 1.1 Let M; be as given in Eq. (1.4). Then linear predictor Ty is the
best linear unbiased predictor of y; if and only if 1" satisfies the fundamental equation of
the BLUP:

T[X,ViiEx] = [X¢, Va1 Ex], (1.8)
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in this case, the BLUP of y; can be written as
BLUP(ys) = ([Xy, Va1 Ex][X, Vi1 Ex]" + UE(x v, )9 (1.9)

where U € R™*™ ig arbitrary.

Consider now another linear model with new observations

X Vi W,
My = Yy ’ Aﬁ 7 ~11 A12 ' (1.10)
ys Xy Vo1 Vaa

This model differ from My through its covariance matrix and model matrix.

There is a rich literature on equality of ordinary least squares estimator, best linear
unbiased estimator and best linear unbiased predictor in the general linear model, see Bak-
salary and Kala (1981), Elian (2000), Watson (1972) and Zhang and Lu (2004). Puntanen
and Styan (1989) made a survey and presented various equivalent conditions. Tian and
Wiens (2006) used matrix rank method to consider the equality of ordinary least squares
estimator and best linear unbiased estimator, and obtained some new equivalent condi-
tions. Recently, the present author (2009, 2011) used matrix rank method to reconsider
the equality of ordinary least squares estimator, best linear unbiased estimator and best
linear unbiased predictor, and gave some new equivalent conditions.

In this paper, we will use matrix rank method to investigate the equality of the BLUPs
under linear model M and linear model My. We will derive the necessary and sufficient
conditions of the BLUP for y; under the model M, is also BLUP for y; under the model
M. As applications, the conditions of equality of the BLUPs under two mixed linear
models are also given. For the study of mixed linear model by matrix method, the readers
can also refer to Fan and Wang (2008).

From the Eq. (1.9), we see that the BLUP for y; is a matrix expression involving
Moore-Penrose inverses. A powerful tool for simplifying matrix equality involving inverses
and Moore-Penrose inverses is rank formulas for partitioned matrices. The following rank

equalities for partitioned matrices due to Marsaglia and Styan (1974).

Lemma 1.2 Let A € R™*" B € R™** and C' € R™*™. Then

r[A, B] = r(A) + r(E4B) = r(B) + r(EgA), (1.11)
r g = 1(A) + r(CFy) = 7(C) + r(AFe), (1.12)
ky. = r(B) +1(C) + r(EgAF, 1.13
e ol +7(C) + r(BEpAFC). (1.13)
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In particular,

r[A,B] =r(A) & E4B =0 %(B) CZ(A) < 4 (A) C ¥ (B, (1.14)
r g =r(A) & CFy=0& Z(C") C2(A) & ¥ (A) C H(C). (1.15)

The following rank formula can be proved through Lemma 1.2, and has been applied

in matrix analysis and statistics, for example., Tian (2007) and Liu (2009, 2011).

Lemma 1.3 Suppose A, B,C, D, P and @) are real matrices such that matrix ex-

pression D — CPYAQTB is well defined. Then

P'AQ" P'PP 0
r(D—-CP'AQ'B)=r | QQQ' 0 QB|—-rP)—rQ). (1.16)
0 CP'" -D

§2. Equality of the BLUPs under Two Linear Model with

New Observations

In this section, we will use the matrix rank method to derive some necessary and
sufficient conditions of the equality for the BLUPs under linear model M7 and linear

model M.

Theorem 2.1 Let the linear models with new observations M; and My be as
given in Eq. (1.4) and Eq. (1.10). Then the following statements are equivalent:

(a) There exist an BLUP(yy) under model M; such that the BLUP(yy) is also the
BLUP of y¢ under model Ma,

O

Xy Vo X I Vol

X Vi X Vi
0 X' 0 0
o 0 0 X

X} X0 0

V; Viim. X O
72| Plca| M

X} X0 0

Via Vi 0 X
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Proof We first prove the equivalent of (a) and (b). From Lemma 1.1, the repre-
sentation of the BLUP for y; is the Ty, where

T = [Xy, Va1 Ex][X, VllEX]T + UE|x v, Ex]-

Now there exist BLUP(y;) under model M such that BLUP(y¢) is also the BLUP of y

under model Mo if and only if the matrix equation
(X1, Var Ex][X, Vir Ex]T[X, Vi E¢] + UE[X7V11EX][)?7 ViiEg) = [X;, VmEg]  (22)
has a solution. From the solvability conditions of Eq. (2.2), we have

E[vallEX] [X7 VllE)?]

' PN SN
(Xf, Va1 Eg) — [Xy, Va1 Ex][X, Vi1 Ex]T[X, Vi1 E 5]

- T[E[X>V11Ex][557 ‘711E;(H (2.3)

By applying Lemma 1.2 and some basic block operation, we have

. Eix viiEx) (X, Vi1 Eg]
| (X5, Va1Eg) — (X5, Va1 Ex][X, Vi Ex]T[X, Vi1 E]
- 7 _ ()?JA/HE)?) (X, Vi1 Ex)
| (Xf, Va1 Eg) — (X5, Va1 Ex)(X, Vi1 Ex) (X, Vi1 E) 0
_T(Xa‘/llEX)
(X, VuEg) (X,ViE
=T COVIER) (X Vink) —r(X,Vi1Ex)

L (va‘A/?lEf() (X¢, Va1 Ex)

[ x Viy X Viy
= 7 Ex N ~ Eg | —r(X,Vi1Ex)
L\ Xy Vo Xy Vo1
X v, X |
X; Vor X¢ Vo -
= | 00 U B (X Vi Ey) — (X)) — r(X).
0 X 0 0
o 0 0 X

Notice that, if A is nonnegative definite, the rank formula

A B C

oo o | =TA B Ol
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holds. Thus we have

r[E[X,VnEX}[)?,‘A/nEXH = r| X ViEx X 1711E)A( | = r(X,Vi1Ex)

Vi X VuEg X

= r| ., X —r(X) —r(X, Vi Ex)
X0 0 0

= r[Vu X VuE; X]-r(X,ViEx)
(Vi X Vi X .

= r| T (R) — (X, Via Bx)
X0 0 0

= r[Vn X Via X] —r(X,Vi1Ex). (2.4)

Substituting them into Eq. (2.3) yields Eq. (2.1).
Notice that

X Vu X Wi
rlo X 0 0| = r[X VuBEx X ViEg]+r(X)+r(X)
0o 0 0 X
= r[Vi X Vi X]+r(X)+r(X). (2.5)
Eq. (1.15) in Lemma 1.2 yields the equivalent of (b) and(c). O

Theorem 2.2 Let the linear models with new observations M; and My be as
given in Eq. (1.4) and Eq. (1.10). Then the following statements are equivalent:

(a) Every BLUP(ys) under model M such that the BLUP(yy) is also the BLUP of
ys under model Mo,

(b)

X X VuE Vi1 E< X VuE
% - g% 114£84X and % All X _% 118X ‘
Xf Xf V21EX ‘/élE)? Xf ‘/élEX
(c) ) )
Xy Vo Xy Vi
X Vg X V S .
r H =X Vi XV ]+ (X)) + (X)) (2.6)
0 X' 0 0
o 0 0 X

and
rlX Vi X ‘711]:7"[)( Vit ], (2.7)
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-X}- (X' 0 0]
Vi Vii, X 0 L
2| Plca| ! and  Z|X V1] CZ[X Vi,
X X 0 0
‘712 ‘711 0 X

Proof We first prove the equivalent of (a) and (b). If every BLUP(ys) under model
M such that the BLUP(yy) is also the BLUP of ys under model My, then for any U,
Eq. (2.2) holds. This means that

E[X7V11Ex][)?> ‘/}IIE)?] =0 (2.8)
and

hold simultaneously. From Eq. (2.8), we see that
X, Vi1 Ex)[X, Vi Ex)T[X, Vi1 Eg] = [X, Vi Eg). (2.10)
From Eq. (2.9) and Eq. (2.10), we easily get
X ViEg
@ | = MEX , (2.11)
Xy VakEg

X FE
ca VinEx
Xy VaEx

The Eq. (2.11) yields (b).
Conversely, if (b) holds, then there are matrices K, Ko and L;, Lo such that

X| [ x wbBx||[K
X; X; VaEx | | Ky
and R
ViEg | | X VuEx || LIn
Vo1 B Xy VaEx | | L2
If Ty is an BLUP of y; under the model My, then T satisfies the Eq. (1.8). Hence
we have
o~ Ky Iy
T[X,VHEX] = T[X, Vi1 Ex]
Ky Lo
K Ly
= [Xy, Vo1 Ex]
Ky Lo

= [Xy, VaEgl.
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From Lemma 1.1, we have proved (a).
Next we derive the equivalent of (a) and (c¢). By applying Lemma 1.3 to the Eq. (2.9)
and notice that the Eq. (2.8) and the Eq. (1.8), we have

(X, Va1 Eg) — (X7, Va1 Ex)(X, Vi Ex) ' (X, Vi1 Eg)]
[ (X, Vi1Ex)'(X, Vi1 Ex)(X, Vi1 Ex)’ (X7V11EX)/()?,‘711E5()

= T ~ ~
I (X, Va1 Ex)(X, Vi1 Ex)’ (Xy, Va1 E¢)
—T’[X,VHE)(]
[ (X, Vi1E X, Vi1E<
_ ., (X,VinEx) (X, Vi1Eg) X, Vi By]

| (Xy, Va1 Ex) (55]% ‘721E5()

[ X V11 5(: ‘711
= r Ex ~ ~ E)A( _T(X,‘/ilEX)
L Xf V21 Xf VQl
X v X Vi
X; Voo X; Vm -
= r —r(X,ViiEx) —r(X) —r(X). 2.12
o X 0 o0 (X, Vi1 Ex) — r(X) — r(X) (2.12)
0o 0 0 X
From the Eq. (2.4) and the Eq. (2.8), we get
rlvin X Vi X]=r(X,ViiEx). (2.13)

The Eq. (2.12) and the Eq. (2.13) yield (c). The equivalent of (c) and (d) follows from
Lemma 1.2 and Eq. (2.5). O

§3. Equality of the BLUPs under Two Mixed Linear
Models

A mixed linear model can be presented as
y=XB+2Zy+e, (3.1)

where X € R™P and Z € R"*? are known matrices, 8 € R? is a vector of unknown fixed

effects, 7 is an unobservable vector of random effects with E(y) =0 € R, Cov(y) =D €

RI%9. and

E(e) =0 € R", Cov(e) = Re R™", Cov (v,e) =0 € RT*™, (3.2)
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We may denote this mixed model briefly as
N ={y,XB+ Z~,D, R}. (3.3)

Various properties of the BLUP in the mixed effects model are discussed, for example, by
Searle (1997).

The mixed model can be presented as a version of the model with “new observations”.

} . (3.4)

N ={y, X1+ Z17, D1, R1}, No = {y, Xo3 + Zyv, D2, Ra}. (3.5)

The new observations being now in ~:

e (R

Consider two mixed linear models:

ZDZ'+R ZD
D7z’ D

9

The only difference above concerns the covariance matrices and model matrices. We may

denote ¥; = Z;D;Z] + R;, (i = 1,2). We can get two models with new observations as

follows:
Cyl [ x8] [ =1 2zuDy ]
My = Y ) ' ; ! A . (3.6)
L Y ] L 0 i L D1Zi D1 i
_y_ (X8 [ S ZoDs |
Mg = , , ) ) (3.7)
L Y ] L 0 i L D2ZQ D2

Now we can apply Theorem 2.1 and Theorem 2.2 to models (3.6) and (3.7) yields the

following results:

Theorem 3.1 Let the mixed linear models N7 and N5 be given in Eq. (3.5). Then
the following statements are equivalent:

(a) There exist an BLUP(v) under mixed model N such that the BLUP(vy) is also
the BLUP of v under mixed model N>,

(b)

X1 ¥ Xo %
. 1 1 2 2 =r[X1 X1 Xo Bp]+r(Xy) +7(X2),
0 X{ 0 0

0o 0 0 X
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(c) ) ) ) )
0 X, 0 0
Z,D S X; 0
R 141 CR 1 1
0 X, 0 0
71D, S 0 X,

Theorem 3.2

Let the mixed linear models N7 and N3 be as given in Eq. (3.5).

Then the following statements are equivalent:

(a) Every BLUP(7) under mixed model N is also the BLUP of v under mixed model

N27
(b)
X X YhE Yo F X YhE
P 2 C % 1 10, and p, 2lux, c % 1 10, '
0 0 DiZ|Ex, D27} Ex, 0 DiZ Ex,
(c)
[0 D1zl 0 D7 ]
X b)) X by
r ! ! 2 2 :T[Xl Y1 Xo 22}+7’(X1)+7’(X2)7
0 Y 0 0
o 0 0 X
and
r[ Xy X1 Xo Yo =r[X1 X1,
(d)
0 ] (x{ 0 0]
Z1D Y X 0
4 I R and  Z[Xy B3] C Z[ X1 1.
0 X, 0 0
Z1Dy Yo 0 X5
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