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Abstract
Let M1 and M2 be two linear models with new observations. Through matrix rank method,

we derive the necessary and sufficient conditions for the best linear unbiased predictor (BLUP) of

the new observation under the model M1 is also BLUP under the model M2. As applications, the

conditions of equality of the BLUPs under two mixed linear models are also given.
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§1. Introduction

Consider the general Gauss-Markov model

y = Xβ + ε, (1.1)

where y is an n × 1 observable random vector, X is a known n × p model matrix, β is a

p× 1 vector of unknown parameters, and ε is an n× 1 random error vector.

Let yf denote an m × 1 unobservable random vector containing new observations

(observable in future). New observations yf are assumed to follow linear model

yf = Xfβ + εf , (1.2)

where Xf is a known m×p model matrix associated with new observations, β is the same

vector of unknown parameters as in Eq. (1.1), and εf is an m × 1 random error vector

associated with new observations. The expectation vector and the covariance matrix of
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[
y

yf

]
are

E

[
y

yf

]
=

[
X

Xf

]
β, Cov

[
y

yf

]
=

[
V11 V12

V21 V22

]
:= Σ, (1.3)

respectively, where Σ is a known nonnegative definite matrix with the property of R(V12) ⊆
R(V11).

We use the notation

M1 =

{[
y

yf

]
,

[
Xβ

Xfβ

]
,

[
V11 V12

V21 V22

]}
(1.4)

to describe the general Gauss-Markov model with new observations.

Further, Rm×n denotes the set of all m × n real matrices. For any A ∈ Rm×n, the

symbols A′, A†, r(A), R(A) and N (A) denote the transpose, the Moore-Penrose inverse,

the rank, the range (column space) and the null space of a real matrix A, respectively.

EX = In −XX† and FX = Ip −X†X stand for the two orthogonal projectors induced by

X.

We assume the model M1 to be consistent in the sense that

y ∈ R(X, V11). (1.5)

The linear predictor Gy is unbiased for yf if the expected prediction error is 0 :

E(yf −Gy) = 0. This is equivalent to GX = Xf , i.e.,

X ′
f = X ′G′. (1.6)

This means that Xfβ is an estimable parametric function. Now an unbiased linear predic-

tor Gy is called the best linear unbiased predictor, BLUP, for yf , if the Lowner ordering

Cov (Gy − yf ) ≤L Cov (Fy − yf ) (1.7)

holds for all F such that Fy is an unbiased linear predictor for yf , i.e., Cov (Fy − yf ) −
Cov (Gy − yf ) is a nonnegative definite matrix.

The following lemma characterizes the BLUP; for the proof, see Isotalo and Puntanen

(2006).

Lemma 1.1 Let M1 be as given in Eq. (1.4). Then linear predictor Ty is the

best linear unbiased predictor of yf if and only if T satisfies the fundamental equation of

the BLUP:

T [X, V11EX ] = [Xf , V21EX ], (1.8)
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in this case, the BLUP of yf can be written as

BLUP(yf ) = ([Xf , V21EX ][X, V11EX ]† + UE[X,V11EX ])y, (1.9)

where U ∈ Rm×n is arbitrary.

Consider now another linear model with new observations

M2 =

{[
y

yf

]
,

[
X̂β

X̂fβ

]
,

[
V̂11 V̂12

Ṽ21 V̂22

]}
. (1.10)

This model differ from M2 through its covariance matrix and model matrix.

There is a rich literature on equality of ordinary least squares estimator, best linear

unbiased estimator and best linear unbiased predictor in the general linear model, see Bak-

salary and Kala (1981), Elian (2000), Watson (1972) and Zhang and Lu (2004). Puntanen

and Styan (1989) made a survey and presented various equivalent conditions. Tian and

Wiens (2006) used matrix rank method to consider the equality of ordinary least squares

estimator and best linear unbiased estimator, and obtained some new equivalent condi-

tions. Recently, the present author (2009, 2011) used matrix rank method to reconsider

the equality of ordinary least squares estimator, best linear unbiased estimator and best

linear unbiased predictor, and gave some new equivalent conditions.

In this paper, we will use matrix rank method to investigate the equality of the BLUPs

under linear model M1 and linear model M2. We will derive the necessary and sufficient

conditions of the BLUP for yf under the model M1 is also BLUP for yf under the model

M2. As applications, the conditions of equality of the BLUPs under two mixed linear

models are also given. For the study of mixed linear model by matrix method, the readers

can also refer to Fan and Wang (2008).

From the Eq. (1.9), we see that the BLUP for yf is a matrix expression involving

Moore-Penrose inverses. A powerful tool for simplifying matrix equality involving inverses

and Moore-Penrose inverses is rank formulas for partitioned matrices. The following rank

equalities for partitioned matrices due to Marsaglia and Styan (1974).

Lemma 1.2 Let A ∈ Rm×n, B ∈ Rm×k and C ∈ Rl×n. Then

r[A,B] = r(A) + r(EAB) = r(B) + r(EBA), (1.11)

r

[
A

C

]
= r(A) + r(CFA) = r(C) + r(AFC), (1.12)

r

[
A B

C 0

]
= r(B) + r(C) + r(EBAFC). (1.13)
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In particular,

r[A,B] = r(A) ⇔ EAB = 0 ⇔ R(B) ⊆ R(A) ⇔ N (A′) ⊆ N (B′), (1.14)

r

[
A

C

]
= r(A) ⇔ CFA = 0 ⇔ R(C ′) ⊆ R(A′) ⇔ N (A) ⊆ N (C). (1.15)

The following rank formula can be proved through Lemma 1.2, and has been applied

in matrix analysis and statistics, for example., Tian (2007) and Liu (2009, 2011).

Lemma 1.3 Suppose A,B, C, D, P and Q are real matrices such that matrix ex-

pression D − CP †AQ†B is well defined. Then

r(D − CP †AQ†B) = r




P ′AQ′ P ′PP ′ 0

Q′QQ′ 0 Q′B

0 CP ′ −D


− r(P )− r(Q). (1.16)

§2. Equality of the BLUPs under Two Linear Model with

New Observations

In this section, we will use the matrix rank method to derive some necessary and

sufficient conditions of the equality for the BLUPs under linear model M1 and linear

model M2.

Theorem 2.1 Let the linear models with new observations M1 and M2 be as

given in Eq. (1.4) and Eq. (1.10). Then the following statements are equivalent:

(a) There exist an BLUP(yf ) under model M1 such that the BLUP(yf ) is also the

BLUP of yf under model M2,

(b)

r




Xf V21 X̂f V̂21

X V11 X̂ V̂11

0 X ′ 0 0

0 0 0 X̂ ′




= r[X V11 X̂ V̂11 ] + r(X) + r(X̂), (2.1)

(c)

R




X ′
f

V12

X̂ ′
f

V̂12



⊆ R




X ′ 0 0

V11 X 0

X̂ ′ 0 0

V̂11 0 X̂




.

《
应
用
概
率
统
计
》
版
权
所
用



526 应用概率统计 第二十七卷

Proof We first prove the equivalent of (a) and (b). From Lemma 1.1, the repre-

sentation of the BLUP for yf is the Ty, where

T = [Xf , V21EX ][X, V11EX ]† + UE[X,V11EX ].

Now there exist BLUP(yf ) under model M1 such that BLUP(yf ) is also the BLUP of yf

under model M2 if and only if the matrix equation

[Xf , V21EX ][X, V11EX ]†[X̂, V̂11EX̂
] + UE[X,V11EX ][X̂, V̂11EX̂

] = [X̂f , V̂21EX̂
] (2.2)

has a solution. From the solvability conditions of Eq. (2.2), we have

r

[
E[X,V11EX ][X̂, V̂11EX̂

]

(X̂f , V̂21EX̂
)− [Xf , V21EX ][X, V11EX ]†[X̂, V̂11EX̂

]

]
= r

[
E[X,V11EX ][X̂, V̂11EX̂

]
]
. (2.3)

By applying Lemma 1.2 and some basic block operation, we have

r

[
E[X,V11EX ][X̂, V̂11EX̂

]

(X̂f , V̂21EX̂
)− [Xf , V21EX ][X, V11EX ]†[X̂, V̂11EX̂

]

]

= r

[
(X̂, V̂11EX̂

) (X, V11EX)

(X̂f , V̂21EX̂
)− (Xf , V21EX)(X, V11EX)†(X̂, V̂11EX̂

) 0

]

− r(X, V11EX)

= r

[
(X̂, V̂11EX̂

) (X, V11EX)

(X̂f , V̂21EX̂
) (Xf , V21EX)

]
− r(X, V11EX)

= r

[ (
X

Xf

) (
V11

V21

)
EX

(
X̂

X̂f

) (
V̂11

V̂21

)
E

X̂

]
− r(X, V11EX)

= r




X V11 X̂ V̂11

Xf V21 X̂f V̂21

0 X ′ 0 0

0 0 0 X̂ ′



− r(X, V11EX)− r(X)− r(X̂).

Notice that, if A is nonnegative definite, the rank formula

r

[
A B C

B′ 0 0

]
= r[A B C ] + r(B)
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holds. Thus we have

r
[
E[X,V11EX ][X̂, V̂11EX̂

]
]

= r
[

X V11EX X̂ V̂11EX̂

]− r(X, V11EX)

= r

[
V11 X V̂11EX̂

X̂

X ′ 0 0 0

]
− r(X)− r(X, V11EX)

= r
[

V11 X V̂11EX̂
X̂

]− r(X, V11EX)

= r

[
V̂11 X̂ V11 X

X̂ ′ 0 0 0

]
− r(X̂)− r(X, V11EX)

= r
[

V11 X V̂11 X̂
]− r(X, V11EX). (2.4)

Substituting them into Eq. (2.3) yields Eq. (2.1).

Notice that

r




X V11 X̂ V̂11

0 X ′ 0 0

0 0 0 X̂ ′


 = r

[
X V11EX X̂ V̂11EX̂

]
+ r(X) + r(X̂)

= r
[

V11 X V̂11 X̂
]
+ r(X) + r(X̂). (2.5)

Eq. (1.15) in Lemma 1.2 yields the equivalent of (b) and(c). ¤

Theorem 2.2 Let the linear models with new observations M1 and M2 be as

given in Eq. (1.4) and Eq. (1.10). Then the following statements are equivalent:

(a) Every BLUP(yf ) under model M1 such that the BLUP(yf ) is also the BLUP of

yf under model M2,

(b)

R

[
X̂

X̂f

]
⊆ R

[
X V11EX

Xf V21EX

]
and R

[
V̂11EX̂

V̂21EX̂

]
⊆ R

[
X V11EX

Xf V21EX

]
.

(c)

r




Xf V21 X̂f V̂21

X V11 X̂ V̂11

0 X ′ 0 0

0 0 0 X̂ ′




= r[X V11 X̂ ; V̂11 ] + r(X) + r(X̂) (2.6)

and

r[X V11 X̂ V̂11 ] = r[X V11 ], (2.7)
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(d)

R




X ′
f

V12

X̂ ′
f

V̂12



⊆ R




X ′ 0 0

V11 X 0

X̂ ′ 0 0

V̂11 0 X̂




and R[ X̂ V̂11 ] ⊆ R[X V11 ],

Proof We first prove the equivalent of (a) and (b). If every BLUP(yf ) under model

M1 such that the BLUP(yf ) is also the BLUP of yf under model M2, then for any U ,

Eq. (2.2) holds. This means that

E[X,V11EX ][X̂, V̂11EX̂
] = 0 (2.8)

and

[Xf , V21EX ][X, V11EX ]†[X̂, V̂11EX̂
] = [X̂f , V̂21EX̂

] (2.9)

hold simultaneously. From Eq. (2.8), we see that

[X, V11EX ][X, V11EX ]†[X̂, V̂11EX̂
] = [X̂, V̂11EX̂

]. (2.10)

From Eq. (2.9) and Eq. (2.10), we easily get

R

[
X̂ V̂11EX̂

X̂f V̂21EX̂

]
⊆ R

[
X V11EX

Xf V21EX

]
. (2.11)

The Eq. (2.11) yields (b).

Conversely, if (b) holds, then there are matrices K1, K2 and L1, L2 such that
[

X̂

X̂f

]
=

[
X V11EX

Xf V21EX

][
K1

K2

]

and [
V̂11EX̂

V̂21EX̂

]
=

[
X V11EX

Xf V21EX

][
L1

L2

]
.

If Ty is an BLUP of yf under the model M1, then T satisfies the Eq. (1.8). Hence

we have

T [X̂, V̂11EX̂
] = T [X, V11EX ]

[
K1 L1

K2 L2

]

= [Xf , V21EX ]

[
K1 L1

K2 L2

]

= [X̂f , V̂21EX̂
].
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From Lemma 1.1, we have proved (a).

Next we derive the equivalent of (a) and (c). By applying Lemma 1.3 to the Eq. (2.9)

and notice that the Eq. (2.8) and the Eq. (1.8), we have

r[(X̂f , V̂21EX̂
)− (Xf , V21EX)(X, V11EX)†(X̂, V̂11EX̂

)]

= r

[
(X, V11EX)′(X, V11EX)(X, V11EX)′ (X, V11EX)′(X̂, V̂11EX̂

)

(Xf , V21EX)(X, V11EX)′ (X̂f , V̂21EX̂
)

]

− r[X, V11EX ]

= r

[
(X, V11EX) (X̂, V̂11EX̂

)

(Xf , V21EX) (X̂f , V̂21EX̂
)

]
− r[X, V11EX ]

= r

[ (
X

Xf

) (
V11

V21

)
EX

(
X̂

X̂f

) (
V̂11

V̂21

)
E

X̂

]
− r(X, V11EX)

= r




X V11 X̂ V̂11

Xf V21 X̂f V̂21

0 X ′ 0 0

0 0 0 X̂ ′



− r(X, V11EX)− r(X)− r(X̂). (2.12)

From the Eq. (2.4) and the Eq. (2.8), we get

r
[

V11 X V̂11 X̂
]

= r(X, V11EX). (2.13)

The Eq. (2.12) and the Eq. (2.13) yield (c). The equivalent of (c) and (d) follows from

Lemma 1.2 and Eq. (2.5). ¤

§3. Equality of the BLUPs under Two Mixed Linear

Models

A mixed linear model can be presented as

y = Xβ + Zγ + ε, (3.1)

where X ∈ Rn×p and Z ∈ Rn×q are known matrices, β ∈ Rp is a vector of unknown fixed

effects, γ is an unobservable vector of random effects with E(γ) = 0 ∈ Rq, Cov (γ) = D ∈
Rq×q, and

E(ε) = 0 ∈ Rn, Cov (ε) = R ∈ Rn×n, Cov (γ, ε) = 0 ∈ Rq×n. (3.2)
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We may denote this mixed model briefly as

N = {y, Xβ + Zγ,D, R}. (3.3)

Various properties of the BLUP in the mixed effects model are discussed, for example, by

Searle (1997).

The mixed model can be presented as a version of the model with “new observations”.

The new observations being now in γ:

M =

{[
y

γ

]
,

[
Xβ

0

]
,

[
ZDZ ′ + R ZD

DZ ′ D

]}
. (3.4)

Consider two mixed linear models:

N1 = {y, X1β + Z1γ, D1, R1}, N2 = {y, X2β + Z2γ, D2, R2}. (3.5)

The only difference above concerns the covariance matrices and model matrices. We may

denote Σi = ZiDiZ
′
i + Ri, (i = 1, 2). We can get two models with new observations as

follows:

M11 =

{[
y

γ

]
,

[
X1β

0

]
,

[
Σ1 Z1D1

D1Z
′
1 D1

]}
. (3.6)

M12 =

{[
y

γ

]
,

[
X2β

0

]
,

[
Σ2 Z2D2

D2Z
′
2 D2

]}
. (3.7)

Now we can apply Theorem 2.1 and Theorem 2.2 to models (3.6) and (3.7) yields the

following results:

Theorem 3.1 Let the mixed linear models N1 and N2 be given in Eq. (3.5). Then

the following statements are equivalent:

(a) There exist an BLUP(γ) under mixed model N1 such that the BLUP(γ) is also

the BLUP of γ under mixed model N2,

(b)

r




0 D1Z
′
1 0 D2Z

′
2

X1 Σ1 X2 Σ2

0 X ′
1 0 0

0 0 0 X ′
2




= r[X1 Σ1 X2 Σ2 ] + r(X1) + r(X2),
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(c)

R




0

Z1D1

0

Z1D2



⊆ R




X ′
1 0 0

Σ1 X1 0

X ′
2 0 0

Σ2 0 X2




.

Theorem 3.2 Let the mixed linear models N1 and N2 be as given in Eq. (3.5).

Then the following statements are equivalent:

(a) Every BLUP(γ) under mixed model N1 is also the BLUP of γ under mixed model

N2,

(b)

R

[
X2

0

]
⊆ R

[
X1 Σ1EX1

0 D1Z
′
1EX1

]
and R

[
Σ2EX2

D2Z
′
2EX2

]
⊆ R

[
X1 Σ1EX1

0 D1Z
′
1EX1

]
.

(c)

r




0 D1Z
′
1 0 D2Z

′
2

X1 Σ1 X2 Σ2

0 X ′
1 0 0

0 0 0 X ′
2




= r[X1 Σ1 X2 Σ2 ] + r(X1) + r(X2),

and

r[X1 Σ1 X2 Σ2 ] = r[X1 Σ1 ],

(d)

R




0

Z1D1

0

Z1D2



⊆ R




X ′
1 0 0

Σ1 X1 0

X ′
2 0 0

Σ2 0 X2




and R[X2 Σ2 ] ⊆ R[X1 Σ1 ].
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两个线性模型间最优线性无偏预测的等价性

刘 永 辉

(上海金融学院应用数学系, 上海, 201209)

设M1和M2是两个带有预测量的线性模型, 通过使用矩阵秩方法, 本文给出了模型M1下预测量的最优

线性无偏预测同时也是模型M2下的最优线性无偏预测的充分必要条件. 作为这个结果的应用, 我们给出了两

个线性混合模型间最优线性无偏预测等价性的充分必要条件.

关键词: 一般线性模型, 混合线性模型, 最优线性无偏预测, 矩阵秩方法.
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