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Abstract

In this paper, we study the perturbed risk model with two classes of claims and a threshold
dividend strategy. We assume that the two claim counting processes are, respectively, Poisson and
renewal process with generalized Erlang(2) inter-claim times. Integro-differential equations and
certain boundary conditions satisfied by the Gerber-Shiu penalty functions are derived in terms
of matrices. Finally, we show that the closed form for the Gerber-Shiu penalty functions can be
expressed by the Gerber-Shiu penalty functions without dividend payments and the matrix com-
posed of two linearly independent solutions to the corresponding homogeneous integro-differential
equations.
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egy, integro-differential equations.
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§1. Introduction

Dividend strategy for insurance risk model is initially introduced by De Finetti (1957)

for a binomial model. From then on, more general barrier strategies have been studied in a
number of papers, see Lin et al. (2003), Gerber and Shiu (2006), Lin and Pavlova (2006),
Li et al. (2009), Yang and Zhang (2008), Lu and Li (2009), and references therein. Lin
and Pavlova (2006) study the Gerber-Shiu penalty function and related problems for the
classical compound Poisson risk model with a threshold dividend strategy. For perturbed
compound Poisson risk model and a threshold dividend strategy, the expected discounted
dividend payments prior to ruin and the Gerber-Shiu penalty function have been studied
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by Wan (2007). Meng et al. (2007) analyze the expectation of aggregate dividends until
ruin for a Sparre Andersen model perturbed by diffusion with generalized Erlang(n)-
distributed inter-claim times and a threshold strategy. For the same model as in Meng
et al. (2007), Gao and Yin (2008) give the integro-differential equations with boundary
conditions for the moment-generating function and the Gerber-Shiu penalty functions. Li
et al. (2009) give the closed form expression of the expected discounted dividend function
for a jump-diffusion risk process by studying a constructed fluid flow process. The Gerber-
Shiu penalty function and the moments of the total dividend payments for the Markovian
regime-switching risk model with a threshold dividend strategy have been studied by Lu
and Li (2009).

There has been much recent research in the actuarial literature on the analysis of ruin
probabilities and Gerber-Shiu penalty functions for two classes of risks. Yuen et al. (2002)
consider a risk process with two dependent classes of insurance business. By transforming
this kind of risk process to a process with two independent classes of business for which
one claim number process is a Poisson and the other is a renewal process with generalized
Erlang(2) claim inter-arrival times, they derive explicit expressions for survival probabili-
ties when the claim sizes are exponentially distributed. Garrido and Li (2005) also study
the ruin probabilities for two independent classes of risk processes for which one claim
number process is a Poisson and the other is a renewal process with generalized Erlang
claim inter-arrival times. Explicit results are given when the claim amount distributions of
both classes belong to the K, family of distributions. The Gerber-Shiu penalty functions
have been studied in Li and Lu (2005) for the risk process with claim counting processes
are independent Poisson and renewal process with generalized Erlang(2) inter-claim times
and Zhang et al. (2009) for the risk process with claim counting processes are independent
Poisson and renewal process with generalized Erlang(n) inter-claim times. Explicit expres-
sions for the Gerber-Shiu penalty functions are obtained in Zhang et al. (2009) when the
claim size distributions belong to the rational family. The Gerber-Shiu penalty functions
for two classes of risks under a threshold dividend strategy have been considered in Lu et
al. (2009) for the risk process with claim counting processes are independent Poisson and
renewal process with generalized Erlang(2) inter-claim times. Recently, Chadjiconstantini-
dis and Papaioannou (2009) study the Gerber-Shiu penalty functions and the moments of
the discounted sum of the dividend payments until ruin for two classes of risk processes
with a constant dividend barrier, for which one claim number process is a Poisson and the
other is a renewal process with generalized Erlang(n) claim inter-arrival times.

In the present paper, we adopt an approach which is akin to the one used in Lu and
Li (2009) to study the Gerber-Shiu penalty functions for a perturbed risk model with two
classes of risks and a threshold dividend strategy.

The outline of this paper is as follows. In Section 2, the model studied is described. In



R PhEZ gkARE ZE22 )] Threshold 7321 5K N iy TP IR 99 8 2 US4 71 (1] Geber-Shiu b £ 545

Section 3, integro-differential equations and certain boundary conditions for the Gerber-
Shiu penalty functions are derived. In Section 4, we discuss the roots of a generalized
Lundberg’s equation. The Gerber-Shiu penalty functions without dividend payments are
analyzed in Section 5, and the main results for the Gerber-Shiu penalty functions with

threshold dividend strategy are given in Section 6.

§2. The Model

Consider a continuous time risk process defined by
U(t)=u+cit — S(t) + oB(t), t>0, (2.1)

where v > 0 is the initial capital of the insurance company, ¢; > 0 is the rate of premium
which is assumed to be a constant, { B(t);t > 0} is a standard Brownian motion and o > 0
is the diffusion coefficient. In this paper, the aggregate claim amount process {S(t)} is

defined as
Ny (t) No (t)

St)y= > Xi+ > Y, t>0,
i=1 i=1
where X;’s are claim amounts from the first class, and assumed to be i.i.d. positive
random variables with common distribution function P(z) = P(X < z) and density p(x)
= P’(z), while Y;’s are claim amounts from the second class, also assumed to be i.i.d.
positive random variables with common distribution function Q(y) = P(Y < y) and

density q(y) = Q'(y). Denote the Laplace transforms of p and ¢ by

B = [ pads )= [ gl

respectively. The renewal processes {Ny(t);t > 0} and {Ny(t);¢ > 0} that denote the
number of claims up to time t caused by the first and the second class of risk, respectively,
are defined as follows.

{Ni(t);t > 0} is a poisson process with parameter A, and denote {W;};>1 as the
corresponding inter-claim arrival times. {Na(t);t > 0} is a renewal process with inter-claim
arrival times {V;;¢ > 1} which are generalized Erlang(2) distributed, that is, V; = L;;1+ Lia,
i=1,2,..., where {L;1;7 > 1} are i.i.d. exponentially distributed random variables with
parameter A\; and {L;9;7 > 1} are i.i.d. exponentially distributed random variables with
parameter As.

Finally, we assume that {X;;¢ > 1}, {Yi;i > 1}, {N1(¢);t > 0}, {Na2(t);t > 0}
and {B(t);t > 0} are mutually independent. The net profit condition is given by ¢; >
AE(X) 4 [AM1Az2/ (A1 + A2)JE(Y).

In this paper, we suppose that the company pays dividends to its shareholders in the

following way. When the surplus is below the level b, no dividends are paid. However,
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when the surplus exceeds b, dividends are paid continuously at rate d (0 < d < ¢1), thus
the net premium rate after dividend payments is ca = ¢; — d. Let {Uy(¢t);¢ > 0} be the
modified surplus process under the threshold dividend strategy described above, then it

can be expressed as
dU(t) = (ClI(Ub(t)<b) + C2I(Ub(t)2b))dt —dS(t) + odB(t), (2.2)

with Up(0) = w.
Let Ty = inf{t > 0; Uy(t) < 0} (T} = oo if ruin does not occur) be the time of ruin for
the risk process (2.2). Define, for § > 0,

or(u) = E[eTewi (Un(Ty—), |Us(To) ) I (1, <o0.1=k) | Us(0) = u], u>0, k=12,

where J is defined to be the cause-of-ruin random variable, and J = 1 (or 2) if the ruin
is caused by a claim of class 1 (or 2), wg(x,y), for z,y > 0, k = 1,2, are two possibly
distinct non-negative valued penalty functions, and Uy(T,—), |Us(Tp)| are two important
non-negative random variables in connection with the time of ruin 7j representing the
surplus immediately before ruin and the deficit at ruin, respectively. Then ¢y (u) with
¢x(0) = 0 is the Gerber-Shiu penalty function if ruin is caused by a claim of class k.
Further define, for 6 > 0,

¢a(u) = Ele " 17, oo v (1)=0) | Un(0) = u],  u >0,

to be the Gerber-Shiu penalty function with penalty value 1 if ruin is caused by oscillations.
Then we have ¢4(0) = 1. Consequently, the Gerber-Shiu penalty function for the process

(2.2) can be expressed as

(u) = ¢1(u) + g2(u) + ¢a(u), u > 0,

with boundary condition ¢(0) = 1.

In this paper we will use the following functions, The description of which are given
in Li and Lu (2005).

&k (u) = Ele 0w (Uy(Ty=), |Us(To) NI (1, <c0,0= | L1t = £, Up(t) = u],  u>0,k=1,2,

€a(u) = E[e T gy oo v my=0) [ L11 = t, Uy(t) = u], u >0,

and it is obvious that the boundary conditions are given by
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In the sequel, we use the following notations.

(1)u U (1)u .
¢1(u){ 1 (w), 0<u<b, ¢2(u)+¢d(u){¢3 (u), 0<wu<b,

32)(11), b<u< oo, ¢:(;2)(U); b<u< oo,

M u Dy "
€1(u) = {51 (u), 0<u<b, () + a(u) = { 3 (u), 0<u<b,

59(”)7 b<wu< oo, §2)(u), b<u< oo.

83. Systems of Integro-Differential Equations

Considering an infinitesimal interval from 0 to ¢ and noting that the probability with
which [Wi; < t] and [L;; < t] occur simultaneously is o(t), we can derive that, for
0<u<b,

o) = (1 =)0 = MOEG (u+ ert + o B(t))]
+ (M1 = MHE[M (u+ ert + o B(t) — X1)]
+ (1= M) MDEENY (u+ ert + oB(1)] + o(t), (3.1)

and

ey = (1= )1 = At)E[EN (u+ et + o B(1)]
+ (M) (1= AE[EN (u+ ert + 0 B(t) — X1)]
(1= M) Mt)E[@ (u + et + o B(t) — Y1)] + o(t). (3.2)

With the aid of the equations

/ 2 "

Eloy (ut ert + o B1)] = 61" (w) + 1o (Wit + Lol Wi +o(t)  (33)
and )

Bl (w+ eat + oB@)] =€ (@) + el @i+ T @t o), (34)
we get from (3.1) and (3.2) that

(1+006" (W) = (1= )1 = nt)[6f" () +erof” (Wit + “22¢§1)” (w)t]
utcit+oB(t)
£ - M| / D (4 + ert + o B(t) — 2)p(z)da
0

+/ wi(u+ et + oB(t),x —u— et — aB(t))p(:U)dzL']
utcit+oB(t)

+ (1= M) OMDEEY (u+ ert + o B(1))] + o(t),
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and

/

(1606w = (=20 -2t [ + el e+ Te (]

utcit+oB(t) D
+ 0 - Aan)E| / W (4 4 ert + 0 B(t) — 2)p(e)de
0

+/ wi(u+cat+oB(t),z —u—cit — JB(t))p(:c)da:}
utcit+oB(t)

utcit+oB(t)
+(1— )\t)(Agt)EUO e &V (u+ eyt + oB(t) — y)q(y)dy}
+o(t).

Then we have, for 0 < u < b,

2 " ’
%¢gl) (u) + 108" (u) = (A1 + A+ 0t ()

M () + A /0 " 60w — 2)p(a)da + Ay (1) = 0 (3.5)
and
T )+ el () — O+ A+ )0 )
3 [+ [ o= ey dwn =0 (36
where w1 (u) = | w2 — uw)p(z)da.

Similarly, we can derive, for u < b < oo,
A+t P w) = (1= )1 = ME[SD (u+ cat + 0 B(1))]

u+tcat+oB(t)—b @)
+on - e [ 6 (u+ cat + 0B(t) — 2)p(a)d
0

utcaot+oB(t) ()
—i—/ &1 (u+cat + 0B(t) — z)p(x)dx
utcat+oB(t)—b

+/ wi(u+cat +0B(t),x —u— cot —oB(t))p(z)dx
utcat+oB(t)

+ (1= M) OMDEEP (u + ot + 0 B®)] + o(t),
and

140D w) = (1= M1 = ADEE? (u+ ot + 0 B(1))]

u+cat+oB(t)—b @)
+On0 - ane| [ €2+ et + 0 B(t) — )p(a)da
0

utcat+oB(t) ()
—i—/ & (u+ cot + 0B(t) — z)p(x)de
utcat+oB(t)—b
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o0
+/ wi(u+cot +oB(t),r —u— cot — o*B(t))p(x)dx]
utcaot+oB(t)

utcat+oB(t)—b 2)
+(1— )\t)()\gt)E[ / ¢1 (u+cot +0B(t) — y)g(y)dy
0
u+cat+oB(t) (1)
+/ ¢1 " (u+ ot +0B(t) — y)a(y)dy| + o(t).
utcat+oB(t)—b

By the aid of equations similar to Eqs. (3.3) and (3.4), we can get from the last two

formulas, for b < u < o0,
2
i¢@<>+@&”<><M+A+@%%w+wﬁ9w>
+ )\/ 2 (u z)dz + )\/ oV (u—2)pla)de + Awr(w) =0 (3.7)
and
2 ' , u—>b
%f’f) (u) + 02552) (u) — (A2 + A +0) %2) (u) + )\/0 552) (u— z)p(x)dz
u u—b
+ A/ &M (u — 2)p(w)de + Ao / ¢\ (u — y)q(y)dy
0
+)\2/ 6D (u — 1)g(y)dy + Aws () = 0. (3.8)

Let

(1) 2)
@Du:<@<w>’ amu:<1<w),
R PO

:<—()\1+/\+6) A ) B(x):< Ap(z) 0 )
0 Mo+ A+6) )] Xog(z) Mp(z) |

2o Awi (u)
Gw) ( Awr (u) ) '

Rewriting Egs. (3.5), (3.6), (3.7) and (3.8) in matrix form yields

>

and

- " 2 - / -
70 = (- 2) 0w
+/ B(z)3" (u — z)dz + ﬁ(u)}, 0<u<b, (3.9)
0
= (o\I 2 o/ . u—b .
3w = (= 5) [t w+AdPw) + /O B(2)8® (u — 2)dz

+ /u B(x)égl)(u —x)dx + 51(“)], b<u< oo, (3.10)
u—>b
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with boundary conditions

b0 =8P (b+)  and B (0-) = B (b4),

which can be obtained by the same method as in Wan (2007), where 0y = (0,0)".

By similar arguments, we get

S\ 2 S1Y/ -
3w = (= 5)[add W+ A8 w)
—i—/ B(a?)éél)(u —z)dx + é(u)}, 0<u<b, (3.11)
0
Y/ 2 ’ - u—b .
(1)52) (v) = ( - 9) [02@§2) (u) + A@i(f) (u) + /0 B(:U)(I{Sf) (u—x)dx
(3.12)

84. The Roots of the Generalized Lundberg’s Equation

Taking Laplace transform on both sides of Eq. (3.9) gives, for s € C satisfying

R(s) >0,
5 (1) =0k
5@y (s) — 5Py (s)— 2y (0)
2 (1) =1¢Y) (1) ~ = >
= (=) [als®) ()=, (0)+AS, (s)+Bl5)®; (s)+Ci(s)

Rewriting the last equation we get

=) o S

5 o )
Lsc, (s)®q (3):?5‘1)1 0)+ -2 (0) +c1®y (0) —Ci(s),

where

Lsc, (s) = %52 +cs+ A+ ]§(s) and Ci(s) = /0 e~ C (u)du.
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Similarly, we obtain from Eq. (3.11) that

o2y (1)

) o2 =) > >
®3 (0) +c1®3 (0) — (35

51
Lse, (s)®3 (s) = 33@3 (0) + 5

where (3(s) =

oo —
/ e (3 (u)du.
0
For § > 0, the generalized Lundberg’s fundamental equation

Theorem 4.1
det[Lsc(s)] = 0 has exactly two positive real roots denoted by p;(0), p2(9).

Proof It is easy to see that
det[Loo(s)] = [?s tes— (A +A+6) + Ap(s)} [78 tes— (ot A+6) + Ap(s)}

- >\1>\2(/]\(8)>

with which we can rewrite det[Ls.(s)] = 0 as
o? . o? .
{—52 +es—(M+A+0)+ )\p(s)] [382 +es—(Aa+A+0)+ )\p(s)]

,_ 2
’Y(SC(S) T )\1)\2
(4.3)

= 4(s).
Let C, denote the right half of a circle with its center at (0,0) and radius r assumed to
be sufficiently large, and C, denote the boundary of the contour enclosed by C, and the

imaginary axis. We first show that, for £ = 1, 2, the equation
o?
5 s tes— (A +A+9) = =Ap(s)
has exactly one root in the right half of the complex plane. In fact, by Rouche theorem it

suffices to prove
o2
\532 Fes— (At At 5)\ > Ap(s)), seC. (4.4)

It is derived that, for s € C,.,
2 2
‘%32+cs—()\k+)\+5)‘2]s](%]s]—c)—()\k+)\+5)>/\2/\\ﬁ(s)\, (4.5)
and for s = bi, b € R,
0'2 2 0'2 2 —~,
’?s +cs—(/\k+)\+6)‘2?b F (e AE3) > A > AB(s)].

Thus, Eq. (4.4) is proved to be valid. Consequently, we see from (4.3) that ys.(s) = 0 has
exactly two roots in the right half of the complex plane, and it is evident that these two

roots are real numbers.
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Similarly, by Rouche theorem, if |vs.(s)| > |g(s)| is established for s € C,, we obtain
that Eq. (4.3) has exactly two roots in the right half of the complex plane. Indeed,
[7sc(8)] > 1 > |q(s)| for s € C,., while, for s = bi, b € R,

rae(s)] 2 BEDR2ED 5 g,

Now it remains to establish that these two roots are real numbers. In the sequel, let
s € [0,00). Noting that o2s + ¢+ A\p'(s) > ¢ — AEX > 0 for s > 0, we have that

2

Ao+ A+ 26
2[02%s + ¢+ A\p'(s)] %32 +cs — (% + A) + )\ﬁ(s)}

’Cs = =0
Vsc(8) Ny

has exactly one positive real root, say so. And it is easy to check that vs.(s) is decreasing
for s € [0, s¢], increasing for s € (sp, 00), and has a minimum ~5.(s¢) < 0 for s > 0, which
with the fact that

0= L4001 19

imply that Eq. (4.3) has two real roots. The proof is finished. O

> 1=q(0)

Remark 1 If § — 0, we have p;(§) — p;(0) for i« = 1,2, and s = 0 is one of the

TOOtS.

In the following, we use p1, p2 to denote the positive real roots of det[Ls., (s)] = 0,
and 71, 2 to denote the positive real roots of det[Ls.,(s)] = 0. We also assume that

p1 # p2 and 71 # 2.

85. Gerber-Shiu Penalty Functions without Dividend

Payments

In this section, we get some results for surplus process (2.1) where no dividends are
involved, that is b = co. We denote ¢;(u) and ¢5(u) to be the corresponding Gerber-Shiu
penalty functions when b = co. Then we get, from Eqs (3.9) and (3.11),

B = (-2 [adiw + Adw)

+AHﬂ@&@—xﬁm+a@* 0 < u< oo, (5.1)
B = () [erdw) + Ads(w)

+Aﬂm@@w—xmx+@ww 0<u< oo, (5.2)

and the boundary conditions ¢1(0) = 0z and ¢3(0) = &.
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5.1 Expressions for ¢ (0) and ¢}(0)

Now we recall the divided differences of a matrix B(s) with respect to distinct numbers

1,72, ... which are defined recursively as follows (see Lu and Li (2009)).

B(s)— B
By, o] _ B =B
s—T
B - B
B[rlar273] = [rl,S] [r1’r2]7 (53)
S —1T9
B - B
B[T15T27T355] = [Tth?S] [rl’TQ’T?’]’

S—1T3
and so on.
Theorem 5.1  The closed form for ¢}(0) and ¢(0) are given by
. 2 . e .
01(0) = —[G(p2) + L, [o1, p2] 'L, (p1) 1, po] (5.4)
and
. 2 ) e ,
30) = —[(p2+501) + Lic, lor, pal " Li, (1) |
2> * —171 * g
+ 5 [Gp2) + L, lo1, p2] L5, (p1)Cslpr, ol (5.5)

where A* denotes the adjoint matrix of matrix A.
Proof By the fact that each element of ;;1(3) is finite for any s € C satisfying
R(s) > 0, we get from Eq. 4.1 that
o? - o? - >
(= 2 )i (00)31(0) = Loy () (Goi + @) 61(0) — L ()Cip), i = 1.2
Using (5.3), we derive that

2

; 2\ LE, (p2) — L. (p1) -

(- ) aloreidio) = (- 5) el Tialg )

2 2
L., (02) (2 1) = Lo, (00) (G )
- $1(0)
P2 — P1 R
_ L§c1 (P2)51 (p2) — LECI (,01)51 (p1)
P2 — P1

~
—

= (L, [on 22l (p2) + L, (01)Cilon, 2],

where in the last equation we have used the boundary condition d_;l (0) = 02. Consequently,

we have 5
1 (0) = -2 [51 (p2) + Lg,, [Ph/72]7114;(;1(/?1)51[/?1702]]‘

By similar arguments, we get Eq. (5.5) from Eq. (4.2) and ¢3(0) = é. O
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5.2 Expressions for ¢;(u) and ¢;(v)

The common homogeneous integro-differential equations of Eqs. (5.1) and (5.2) are

of the form
=4/} 2 5/ z “ =4
F(w) = (~ 2) [ ) + AGi(w) +/ B)di(u—2)dz], 0<u<oo (56)
0

Using the same method as in Burton (2005), we get the following theorem.

Theorem 5.2 Let V(u) = (Vi(u), Va(u)), 0 < u < oo, be a 2 x 2 matrix, where
Vi(u) and Va(u) are two linearly independent solutions to Eq. (5.6) such that V(0) = 0
and V'(0) = I which is the 2 x 2 identity matrix. We have

Si(w) = V@) — = [ Vw-o)d@)de,  0<u< oo, (5.7)

da(w) = [Vt + 25 Ve Vo - 5 [ V- G,
0<u<oo. (5.8)

Proof Taking Laplace transform on both sides of the equation

V') = (- %) [V () — AV () + /Ou B(2)V(u - 2)dz

yields, for s € C satisfying R(s) > 0,
52V (5) = sV(0) = V'(0)] = (= =3 ) [ea(sV(s) = V(0)) + AV(5) + B(s)V(s)]

which can be rewritten as )

~ o -~

Vi(s) = 5 Laer ()] (5.9)
where we have used the boundary conditions V(0) = 0 and V'(0) = I. It is easy to see
from Egs. (4.1), (4.2) and (5.9) that

~
= ~ A~

51(5) = sV()51(0) + V(£)3,0) + 22V (5)61(0) ~ ZV()G3(5),

= S S 21 ~ ~ 2 . A

Gals) = sV()53(0) + V(£)F(0) + 22V (5)35(0) ~ 5V (5)Cals)

from which and the boundary conditions ¢ (0) = Oa, ¢3(0) = &, V(0) = 0 and V’(0) = I
we conclude that Eqgs. (5.7) and (5.8) are proved to be valid. O

Remark 2 Eq. (5.9) implies

02

V() = 5 L7 H{[Lse, ()]},
where £ denotes the Laplace operator. Hence V(u) can be obtained by inverting each
element of \A/(u) through partial fractions when both of the two claim amounts are from

the rational family.
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§6. Gerber-Shiu Penalty Functions under Threshold
Dividend Strategy

It is obvious that Egs. (3.9) and (3.11) have the common homogeneous integro-

differential equation (5.6). By the same derivations of Theorem 5.2, we get

2 [ -

3 () = v(u)dV (0) - = V(u—2)G(z)ds, 0<u<b, (6.1)
B w) = [V(0 + 25 V] & + Vs 0 - 5 [ Via- o,
0<u<hb. (6.2)

It is calculated from Eqgs. (6.1) and (5.7) that

() = Gi(u)+ V(w)[d (0) - F(0)]
= fi(u)+ VW)KL(b), 0<u<b. (6.3)

Similarly, we have from Egs. (6.2) and (5.8) that
3 (1) = fs(u) + V(u)Ks(b), 0<u<b. (6.4)

Here K (b) and K3(b) are two unknown vectors whose expressions will be given latter.
Using similar arguments as in Lu and Li (2009), we can get the expressions for 5%2)(u)
5(2)
and @4~ (u) as follows.
For b <u < oo,let y=u—0b, and F(y) = Cﬁgz)(u) 55 )(y—i—b) for y > 0. Eq. (3.10)
can be rewritten as

P (y) = ( - %) [@ﬂ(y) + AJi(y) + /y B(z)gi(y —x)dz +m(y)|, y>0, (6.5)
o 0

with boundary conditions Z1(0) = 552)(b+) = égl)(b—) and & (0) = 5§2y(b+) = égl)/(b—),

where
y+b

my) = B(2)3" (y + b — x)dz + (i (y + b).
Yy

By the same arguments as in Theorem 5.2, the solution to Eq. (6.5) can be expressed as

Pily) = [W'(y) + %W(y)}%(()) + Wiy — / W(y — 2)ifi (x)dz,
y >0,
that is,
B = [W-+ %W(u = 0)| 8 0) + W - 53 )

9 u—>b
— 2/0 W (u—b— x)i (x)dx, b<u < oo, (6.6)
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where )
o° _
W) = T L@ v20 (6.7
Similarly, we have
. 2 . .
3P () = [w'(u —b) + %ww — )38 (b) + W(u— )3 (b)
9 u—>b
- W(u—b— x)ijs(x)dz, b<wu< oo, (6.8)

where

y+b . .
m3(y) = / B(a:)@:(gl)(y +b—x)dz + (3(y +b) for y > 0.
y

Now we discuss the expressions for K1 (b) and Ks3(b). We recall the operator T} defined
in Lu and Li (2009) for a matrix function B(y) whose elements are real-valued integrable

functions of y.
T,B(y) = / E_T(z_y)B(l‘)d:L‘, for reC, y>0.
y

It is easy to see that, for distinct r1,72 € C and y > 0,

7. B(y) — 1,.,B(y
T, TBly) = T, T, By) = 70— 1B (6.9)

Multiplying both sides of Eq. (3.10) by e~5(“=b) and integrating with respect to u from b
to oo, we can obtain, for s € C satisfying R(s) > 0,

- s - o?
Lin L0 = |(55 +a)B0)+ T

; 0]

b -
_ /0 T.B(b — y)<f>§1) (y)dy — TsC1(b)

which implies

L 0 [(50 +e2)820) + 282 (0] - (o))
- det[Lye, (5)] ’

where

—

b (1 .
Bi(s) = /0 TB(b - 1)L () dy + TG (b).

By the fact that the two elements of qu_ﬁg2)(b) are finite for s € C such that R(s) > 0,

we have, from (6.10),

—(9\/ 2., - -
L, 008 (1) = (= 5)[(G2 +e2) Lo 0082 0) — Ly ()i (0)
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for i = 1,2, where ~;, i = 1,2, have been given in Section 4.

Using Eq. (5.3) we derive that

Li., [, 728 (0)

2
o772

2 < +C2)L?§c2(72) *(

(_ ) [ ) 72"

L5, (2) 51 (72) — L, (11) 61 (71)]
2"

0271 N
9 + 62) LJCQ (’71)

& ()

2 o*y2 \ o’ =(2)
= ( - P) { [(T + 02)L5CQ 1, 72] + 5 L, (71)} @7 (b)
— (L, 11, 72181 (2) + L, (10) B [11, 72 } (6.11)
With boundary conditions at b, and Eqgs. (6.3) and (6.9) in hand, we can rewrite (6.11) as
L, (71572185 (9) + Lic, 1,72 V! (0) K1 (b)
2¢ * * g
= (=7 = =3 )Lic, b2l = L, ()| 616)

—

#[(= 72 = 22) L] — L o) VO R (0
b
+ %LEQ 1,72 /O T,,B(b — y)¢1 (y)dy
2 b S 2 -
+ —5Lse, 71,72 /0 T5.B(b — y)V(y)dyK1(b) + —5Lie, [11,72] T G2 (0)
2 b -
- L) | TuTB0— 03 0y

2 ., b . 2, .
- ﬁLacg (’Yl)/o T, T,,B(b—y)V(y)dyK1(b) — ﬁLcch ()T, Ty, C1 (D),

from which we get

Ki(b)=H 'Ry, (6.12)

where

* 2C * *
H = Li, ] V/(0) + | (12 + =5 )Lie, a2l + L, ()| V(0)

2 b
— —3Lse, [V1,72] /0 T,,B(b—y)V(y)dy

2, b
+ L) [ LB =)V
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and
Ry = —Lj,[y,7]8h () — [(72 + )L&Q 1, 72] + L, (11) |61 (D)
2 b .
+—3Lbe, [’71772]/0 T, B(b —y)¢1(y)dy
2 b .
- L (n) | TuTBO =030y

2 _, - 2, -
+ ;Lécg [’717 72]T’72 Cl (b) - ﬁL(ch (71)T’Yl T’YQ Cl (b)

By the same arguments, we obtain
K3(b) = H'Rs, (6.13)
where
Ry = —Li,[n,2)d(0) — [(72 + )Lgcg 1, 72) + Ly (1) | 63(0)
2, b =
+ gL, [v1:72] /0 T, B(b —y)¢s(y)dy
2, b -
- L) | TuTBO = )30y

2 _, - 2 _, -
+ ﬁdeg [’717 72]T’72 C3 (b) - ﬁL(ch (71)T’71 T’YQ <3 (b)

Finally, we summarize our main results in the following theorem.

Theorem 6.1 The analytical expressions for 5%1)(10, 552) (u),éél)(u) and <I_5£(,)2) (u)
are given by

BV (w) = d1(u) + VW),  0<u<b,
P () = [Wu— ) + 22 W~ 0)] 8 0) + Wia— ) (0)
b
- W(u —b— )i (z)dz, b<u< oo,

and

3 (u) = [W'(u —b) + —2W(u— b) |85 () + W (u — )& (b)

2 u—b .
_02/0 W(u—b—z)f(z)de,  b<u<oo,

—

where ¢ (1) and ¢s(u) are given by Theorem 5.2, and V (u), W (u), K, (b), K3(b) are given
by (5.9), (6.7), (6.12), (6.13), respectively.
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