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Abstract
The study of empirical risk minimization (ERM) algorithm associated with least squared

loss is one of very important issues in statistical learning theory. The main results describing

the learning rates of ERM regression are almost based on independent and identically distributed

(i.i.d.) inputs. However, independence is a very restrictive concept. In this paper we go far beyond

this classical framework by establishing the bound on the learning rates of ERM regression with

geometrically β-mixing inputs. We prove that the ERM regression with geometrically β-mixing

inputs is consistent and the main results obtained in this paper are also suited to a large class of

Markov chains samples and hidden Markov models.
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§1. Introduction

The study of distribution free non-parametric estimation of regression is a very im-
portant issues in machine learning from random sampling. The previous results in this
topic are almost based on the assumption of independent and identically distributed (i.i.d.)
inputs. For example, Vapnik (1998), Cucker and Smale (2001), Smale and Zhou (2003,
2004), DeVore et al. (2006) established the theoretical justification in terms of both uni-
versal consistency and learning rates for the problem of regression estimation respectively.

However, independence is a very restrictive concept in several ways[6]. First, it is often
an assumption, rather than a deduction on the basis of observations. Second, it is an all or
nothing property, in the sense that two random variables are either independent or they are
not — the definition does not permit an intermediate notion of being nearly independent.
As a result, many of the proofs based on the assumption that the underlying stochastic

∗This research is supported by National 973 project (2007CB311002), NSFC key project (70501030), NSFC

project (61070225) and China Postdoctoral Science Foundation (20080440190, 200902592).

Received March 16, 2009.

《
应
用
概
率
统
计
》
版
权
所
用



598 应用概率统计 第二十七卷

sequence is i.i.d. are rather “fragile”. The notion of mixing allows one to put the notion
of “near independence” on a firm mathematical foundation, and moreover, permits one to
derive a robust rather than a “fragile” theory. In addition, this i.i.d. assumption can not
be strictly justified in real-world problems. For example, many machine learning applica-
tions such as market prediction, system diagnosis, and speech recognition are inherently
temporal in nature, and consequently not i.i.d. processes[7]. Therefore, relaxations of such
i.i.d. assumption have been considered for quite a while in both machine learning and
statistics literatures. For example, Smale and Zhou (2009) studied online learning with
Markov sampling. Yu (1994) established the rates of uniform convergence of the empirical
means to their means based on stationary mixing sequences. Vidyasagar (2003) proved
that most of the desirable properties (e.g. PAC property or UCEMUP property) of i.i.d.
sequence are preserved when the underlying sequence is β-mixing sequence. Nobel and
Dembo (1993) proved that, if a family of functions has the property that empirical means
based on i.i.d. sequence uniform convergence to their values as the number of samples
approaches infinity, then the family of functions continues to have the same property if
the i.i.d. sequence is replaced by β-mixing sequence. Karandikar and Vidyasagar (2002)
extended this result to the case where the underlying probability is itself not fixed, but
varies over a family of measures. Steinwart et al. (2009) proved that the SVMs for both
classification and regression are consistent if the data-generating process (e.g. β-mixing
process, Markov process) satisfies a certain type of law of large numbers (e.g. WLLNE,
SLLNE). Xu and Chen (2008) established the learning rates of regularized regression for
exponentially strongly mixing sequence. Zou et al. (2009) established the bounds on the
generalization performance of the ERM algorithm with strongly mixing observations.

There are many definitions of non-independent sequences in [6, 9], but we are only
interested in β-mixing sequence in this paper, the reasons are as follows: First, Vidyasagar
(2003) pointed out that in machine learning application, α-mixing is “too weak” an as-
sumption and φ-mixing is “too strong” an assumption, β-mixing is “just right” and more
meaningful in the context of PAC learning. Second, Markov chain samples appear so
often and naturally in applications, especially in biological (DNA or protein) sequence
analysis, speech recognition, character recognition, content-based web search and market
prediction, and Vidyasagar (2003), Meyn and Tweedie (1993) proved that a very large
class of Markov chains and hidden Markov models can produce β-mixing sequences. To
extend previous results in [2, 5] on the study of regression estimation to the case where
the i.i.d. inputs replaced by β-mixing inputs, and to improve the results in [6] based on
β-mixing sequence, we first introduce the “effective number of observations” for geometri-
cally β-mixing process by enlightening the idea from [15], and establish the bound on the
rate of uniform convergence of ERM algorithm with geometrically β-mixing for regression
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estimation. Then we obtain the bound on the learning rates of ERM regression with ge-
ometrically β-mixing and prove that the ERM algorithm with geometrically β-mixing for
regression estimation is consistent.

The rest of this paper is organized as follows: In Section 2, we introduce the necessary
notion and notations. In Section 3, we present the main results of this paper. In Section 4,
we give the proof of our main results. We present some useful discussions and comparisons
in Section 5. Finally, we conclude this paper with some useful remarks in Section 6.

§2. Preliminaries

We introduce some notations and do some preparations in this section.
let Z = {zi = (xi, yi)}∞i=−∞ be a stationary real-valued stochastic process defined

on a probability space (Ω∞,F∞,P). For −∞ < i < ∞, let Fk−∞ denote the σ-algebra
generated by the random variables zi, i ≤ k, and similarly let F∞k denote the σ-algebra
generated by the random variables zi, i ≥ k. Let Pk

−∞ and P∞k denote the corresponding
marginal probability measures respectively. Let P0 denote the marginal probability of each
of the zi. Let Fk−1

1 denote the σ-algebra generated by the random variables zi, i ≤ 0 as
well as zj , j ≥ k. Thus the bar over the F serves to remind us that the random variables
between 1 and k − 1 are missing from the list of variables that generated F . With these
notations, there are several definitions of mixing, but we shall be concerned with only one,
namely, β-mixing in this literature[6, 9].

Definition 2.1 The sequence Z is called β-mixing, or completely regular[6], if

sup
C∈Fk−1

1

|P(C)− (P0
−∞ × P∞1 )(C)| = β(k) → 0 as k →∞,

where β(k) is called the β-mixing coefficient.

Assumption 2.1 A sequence Z is called geometrically β-mixing[6], if the β-mixing
coefficient satisfies

β(k) ≤ µλk, k ≥ 1

for some constants µ and λ < 1.

Remark 1 (i) In Definition 2.1, if the “future” events beyond time k were to be
truly independent of the “past” events before time 0, then the probability measure P would
exactly equal the “split” measure P0

−∞×P∞1 . The β-mixing coefficient thus measures how
nearly the product measure approximates the actual measure P.

(ii) If the sequence Z consists of i.i.d. random variables, then P equals the measure
(P0)∞, which denotes the measure on (Ω∞,F∞). In such a case, β(k) is zero for any
integer k, that is, i.i.d. random variables satisfy the assumption with µ = 0.
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Denote by z the sample set of size m

z = {z1, z2, . . . , zm}

drawn from the geometrically β-mixing sequence Z. Let X be a compact domain or a
manifold in Euclidean space and Y = R. The goal of machine learning from sample set z

is to find a function f : X → Y that assigns values to objects such that if new objects are
given, the function f will forecast them correctly.

A main concept is the expected risk (or least squares error) of function f defined by

E(f) = E[`(f, z)] =
∫

Z
(f(x)− y)2d(P0),

where the function `(f, z), which is integrable for any f , called loss function. Define
f0 : X → Y by

f0 =
∫

Y
ydP(y|x).

The function f0 is called the regression function of P0, where P(y|x) is the conditional
probability measure on Y with respect to x. It is clear that the regression function f0

minimizes the expected risk E(f) (see [2]), that is,

E(f0) = inf
f∈L2(X,Px)

E(f),

where Px is the marginal distribution of P0 on X. For the sake of simplicity, we denote
E[ζ, P∞0 ] as the expected value of random variable ζ with respect to probability measure
P∞0 . If the probability measure is P0, then we simply write E[ζ] in the sequel.

A learning task is “learn” (i.e. to find a good approximation of) f0 from random
sample set z. Thus we hope to find the function that approximates the regression function
f0 through minimizing the expected risk E(f). Since one knows only the set z of random
samples instead of the distribution P0, the minimizer of the expected risk E(f) can not be
computed directly. According to the Empirical Risk Minimization (ERM) principle[1], we
minimize, instead of the expected risk E(f), the so called empirical risk (or error)

Em(f) =
1
m

m∑
i=1

(f(xi)− yi)2.

Given a function set H, we define fH to be a function minimizing the expected risk
E(f) over the function set H, i.e.,

fH = arg min
f∈H

E(f) = arg min
f∈H

∫

Z
(f(x)− y)2d(P0).

According to the principle of ERM, we shall consider the function fz

fz = arg min
f∈H

Em(f) = arg min
f∈H

1
m

m∑
i=1

(f(xi)− yi)2,
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as an approximation the function fH. Thus a central question of ERM algorithm for re-
gression estimation is how well fz really approximate fH. If it is well, the ERM algorithm
for regression estimation is said to be of generalization ability. To characterize gener-
alization capability of the ERM regression with geometrically β-mixing inputs requires
in essence to decipher how close fz is from fH. As mentioned earlier, we can primarily
measure the difference between fz and fH in the L2(X, Px) norm. Notice that for any
f ∈ L2(X, Px), we have

E(f)− E(fH) =
∫

Z
(f(x)− y)2dP0 −

∫

Z
(fH(x)− y)2d(P0)

=
∫

X
{f2 − 2ffH + f2

H}d(Px)

= ‖f − fH‖2. (2.1)

Thus the generalization capability of ERM algorithm with β-mixing inputs for regression
estimation can be measured by E(fz)− E(fH).

Note that fH may not equal the regression function f0, since fH depends on the
choice of the hypothesis space H. Thus another aim of this paper is to estimate the
deviation between fz and f0. For this purpose, we first give some basic assumptions on
the hypothesis space H and the loss function `(f, z):

(i) Assumption on the hypothesis space H: we suppose that H is a compact subset
of C(X), and H is contained in a finite ball in C(X). Thus for some positive constant C0,
the covering number of H satisfies (see [5])

N (H, ε) ≤ exp{C0ε
−1/r}. (2.2)

(ii) Assumption on the loss function: we assume that |f(x) − y| ≤ M for any z ∈ Z
and for any f ∈ H, and M is finite, thus we have `(f, z) ≤ M2.

§3. Main Results

To measure the generalization performance of learning machine, Vapnik (1998), Cucker
and Smale (2001), DeVore et al. (2006) obtained the bound on the rate of the empirical
risks uniform convergence to their expected risks on a given set H (or loss function set Q)
based on i.i.d. sequences, that is, for any ε > 0, they bounded the term

P
{

sup
f∈H

|E(f)− Em(f)| > ε
}

. (3.1)

In order to prove that the PAC property is preserved if the i.i.d. input sequence is replaced
by β-mixing process, Vidyasager (2003) also bound the term (3.1) for β-mixing sequence,
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but his results (see Theorem 6.13 of [6]) consists of two terms, without an explicit conver-
gence rate. The interested reader can consult [6] for the details.

In order to extend these results in [2, 5] to the case where the i.i.d. sequence is
replaced by β-mixing sequence, and to improve the estimates in [6], we also bound the
term (3.1) for ERM regression with geometrically β-mixing samples. Our main results can
be stated as follows.

Theorem 3.1 Let Z be a stationary β-mixing sequence with the mixing coefficient
satisfying Assumption 2.1. Assume that |f(x)− y| < M for any f ∈ H and for all z ∈ Z.
Let

m(β) =
⌊
m

⌈{ 8m

ln(1/λ)

}1/2⌉−1⌋
,

where m denotes the number of observations drawn from Z and buc (due) denotes the
greatest (least) integer less (greater) than or equal to u. Then for any ε, 0 < ε < 3M2/4,

P
{

sup
f∈H

|Em(f)− E(f)| > ε
}
≤ 2(1 + µe−2)N

(
H,

ε

8M

)
exp

{−m(β)ε2

2M4

}
. (3.2)

In particular, if Z is an i.i.d. sequence, according to Remark 1, we take µ = 0 in
Theorem 3.1 and ignore the multiplicative constant 1 + µe−2, the following bound then
immediately follows from Theorem 3.1.

Corollary 3.1 Let Z be an i.i.d. sequence, and assume that |f(x) − y| < M for
any f ∈ H and for all z ∈ Z. Then for any ε, 0 < ε ≤ 3M2/4,

P
{

sup
f∈H

|Em(f)− E(f)| > ε
}
≤ 2N

(
H,

ε

8M

)
exp

{−mε2

2M4

}
.

Remark 2 (i) m(β) is called the “effective number of observations” for geometri-
cally β-mixing process. From Theorem 3.1 and Corollary 3.1, we can find that m(β) play
the same role in our analysis as that played by the number of observations m in the i.i.d.
case.

(ii) Since m(β) → ∞ as m → ∞, by Theorem 3.1, we have that for any ε, 0 < ε ≤
3M2/4,

P
{

sup
f∈H

|Em(f)− E(f)| > ε
}
→ 0, as m →∞.

This shows that as long as the covering number of hypothesis spaceH is finite, the empirical
risk Em(f) can uniformly converge to the expected risk E(f), and the convergence speed
may be exponential. This assertion is well known for the ERM regression with i.i.d.
samples (see, e.g. [2, 5]). We have generalized this classical results in [2, 5] to geometrically
β-mixing sequences.
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Theorem 3.1 will be proven in the next section. Before going into the technical proofs,
we first deduce the bound on the learning rates of ERM regression based on geometrically
β-mixing inputs.

Proposition 3.1 Let Z be a stationary β-mixing sequence with the mixing coef-
ficient satisfying Assumption 2.1. Assume that |f(x) − y| ≤ M for all z ∈ Z and for all
functions f in H. Then for any η ∈ (0, 1], the inequality

‖fz − fH‖2 ≤ ε(m, η) + M2

√
ln(C/η)
2m(β)

(3.3)

holds true with probability at least 1− 2η provided that

m(β) ≥ max
{64 ln(C/η)

9
,

26+5/rC0

32+1/rM1/r

}
,

where

ε(m, η) ≤ max
{

2M2
[ ln(C/η)

m(β)

]1/2
,
[4M4C0(8M)1/r

m(β)

]r/(2r+1)}
.

Remark 3 Since when m → ∞, m(β) → ∞, we have ε(m, η) → 0, as m → ∞.
By inequality (3.3), we then have E(fz) − E(fH) → 0, as m → ∞. This shows that the
ERM regression based on geometrically β-mixing inputs over the hypothesis space H is
consistent whenever the covering number of target function set H is finite.

By Proposition 3.1, we can find that as long as the covering number of hypothesis
space H is finite, the function fz minimizing the empirical risk Em(f) will converge to the
function fH minimizing the expected risk E(f) over H. But how good can we expect fz

to be as an approximation of the regression function f0? Proposition 3.2 below gives an
answer.

Proposition 3.2 With all notations as in Proposition 3.1, and assume that for
some constant c, the entropy numbers of H satisfy

εn(H) ≤ cn−r, n = 1, 2, . . . .

Then for any δ ∈ (0, 1], the inequality ‖fz − f0‖ ≤ ε(m, δ) holds true with probability at
least 1− δ provided that

m(β) ≥ min
{163 ln(2C/δ)

81M4
,

44+4/rC0

34+2/rM4+3/r

}
,

where

ε(m, δ) ≤ max
{

2M
[ ln(2C/δ)

m(β)

]1/4
,
[161+1/rC0M

4+1/r

m(β)

]r/(4r+2)}
.
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§4. Proof of Main Results

In this section, our aim is to prove the main results presented in the last section. To
bound the learning rates of ERM regression with geometrically β-mixing inputs, we firstly
establish the bound on the rate of uniform convergence of ERM regression with β-mixing
inputs. Our approach is based on the following lemmas: the first one is the covariance
inequality for β-mixing sequences, which is established by Yu in [9]. The second one is
Hoeffding’s inequality[16].

Lemma 4.1 Suppose i0 < i1 < · · · < il are integers[6], and define

k = min
0≤j≤l−1

ij+1 − ij .

Suppose f is essentially bounded and depends only on zi0 , zi1 , . . . , zil . Then

|E(f,P)− E(f,P∞0 )| ≤ lβ(k)‖f‖∞.

Lemma 4.2 Suppose that X is a zero-mean random variable assuming values in
the interval [a, b][16]. Then for any s > 0, we have

E[exp(sX)] ≤ exp(s2(b− a)2/8).

To exploit the β-mixing property, we decompose the index set I = {1, 2, . . . , m} into
different parts as follows: Given an integer m, choose any integer km ≤ m, and define
lm = bm/kmc to be the integer part of m/km. For the time being, km and lm are denoted
respectively by k and l, so as to reduce natational clutter. The dependence of k and l on
m is restored near the end of the paper. Let r = m− kl, and define

Ii =




{i, i + k, . . . , i + lk}, i = 1, 2, . . . , r,

{i, i + k, . . . , i + (l − 1)k}, i = r + 1, . . . , k.

Note that
⋃
i

Ii equals the index set I and that within each set Ii, the elements are pairwisely

separated by at least k. Then we have the following theorem.

Theorem 4.1 With all notations as in Theorem 3.1, for any ε, 0 < ε < 3M2/4,
and any f ∈ H

P{|Em(f)− E(f)| > ε} ≤ 2(1 + µe−2) exp
{−2m(β)ε2

M4

}
. (4.1)

Proof Let pi = |Ii|/m for i = 1, 2, . . . , k, and define

Ti = `(f, zi)− E[`(f, zi)], πm(z) =
1
m

m∑
i=1

Ti, bi(z) =
1
|Ii|

∑
j∈Ii

Ti.
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Then we have

Em(f)− E(f) = πm(z) =
k∑

i=1
pibi(z).

Since exp(·) is convex, we have that for any γ > 0,

exp(γπm(z)) = exp
[ k∑

i=1
γpibi(z)

]
≤

k∑
i=1

pi exp(γbi(z)).

Now take the expectation of both sides with respect to P, we have

E[exp(γπm(z)),P] ≤
k∑

i=1
piE[exp(γbi(z)),P].

Since

exp(γbi(z)) = exp
[ γ

|Ii|
∑
j∈Ii

Tj

]
=

∏
j∈Ii

exp
(γTj

|Ii|
)
≤

[
exp

(γM2

|Ii|
)]|Ii| ≤ eγM2

,

where in the last step we use the fact that Ti = `(f, zi)− E[`(f, zi)] ≤ M2.
By Lemma 4.1, we get

E[eγbi(z),P] ≤ (|Ii| − 1)β(k)‖eγbi(z)‖∞ + E[eγbi(z),P∞0 ]. (4.2)

Since under the measure P∞0 , the various zi are independent, we have

E[eγbi(z),P∞0 ] = E
[ ∏

j∈Ii

exp(γTj/|Ii|),P∞0
]

= {E[exp(γTj/|Ii|),P0]}|Ii|.

Apply Lemma 4.2 to the function Tj , since Tj has zero mean and values in an interval of
width M2. It follows from Lemma 4.2 that E[exp(γTj/|Ii|)] ≤ exp(γ2M4/8|Ii|2). So

E[eγbi(z),P] ≤ exp
(γ2M4

8|Ii|
)

+ (|Ii| − 1)β(k)eγM2
.

It follows that

E[eγπm(z),P] ≤
k∑

i=1
pi

[
exp

(γ2M4

8|Ii|
)

+ (|Ii| − 1)β(k)eγM2
]
. (4.3)

We now bound the second term on the right-hand side of inequality (4.3) which is
denoted henceforth by φ. We suppose γ ≤ 3|Ii|/M2, then we have that

φ = exp
(γ2M4

8|Ii|
)

+ (|Ii| − 1)β(k)eγM2

≤ exp
(γ2M4

8|Ii|
)

+ e|Ii|e−2µλk · eγM2

≤ exp
(γ2M4

8|Ii|
)

+ µe−2 exp{k ln(λ) + 4|Ii|}.
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The second inequality follows from Assumption 2.1 and the fact that |Ii| − 1 ≤ e|Ii|−2 for
any |Ii| ≥ 2.

We require exp{k ln(λ) + 4|Ii|} ≤ 1, which holds if k ln(λ) + 4|Ii| < 0. But |Ii| ≤
(m/k + 1), thus the bound holds if 4(m/k + 1) ≤ k ln(1/λ). Since m + k ≤ 2m, then
the bound holds if 8m ≤ k ln(1/λ) or {8m/ln(1/λ)}1/2 ≤ k. Let k = d{8m/ln(1/λ)}1/2e.
Then we have

φ ≤ exp
(γ2M4

8|Ii|
)

+ µe−2. (4.4)

Since inequality (4.4) is true for all γ, 0 < γ < 3|Ii|/M2. To make the constraint uniform
over all i, we then require γ satisfy 0 < γ < 3l/M2 < 3|Ii|/M2. Since γ2M4/(8l) > 0, we
have

φ ≤ (1 + µe−2) exp
(γ2M4

8l

)
.

Returning to inequality (4.3) we have

E[eγπm(z),P] ≤ (1 + µe−2) exp
(γ2M4

8l

)
.

By Markov’s inequality, we have that for any γ > 0

P{πm(z) > ε} = P{eγπm(z) > eγε} ≤ E[exp{γπm(z)},P]
exp{γε}

≤ (1 + µe−2) exp
{γ2M4

8l
− γε

}
.

Now by substituting γ = 4lε/M4 and noting that if ε ≤ 3M2/4, then γ satisfies γ ≤ 3l/M2.
We then obtain that for any ε, 0 < ε ≤ 3M2/4, the inequality

P{πm(z) > ε} ≤ (1 + µe−2) exp
{−2lε2

M4

}

is valid. Since l = bm/kc, replacing l by m(β) then implies that for any ε, 0 < ε ≤ 3M2/4,

P{πm(z) > ε} ≤ (1 + µe−2) exp
{−2m(β)ε2

M4

}
.

By symmetry, we also have

P{πm(z) < −ε} ≤ (1 + µe−2) exp
{−2m(β)ε2

M4

}
.

Combining these two bounds leads to the desired inequality (4.1). Then we finish the
proof of Theorem 4.1. ¤

By Theorem 4.1, we now can prove our main theorem on the rate of empirical risks
uniform converging to their expected risks for ERM regression with geometrically β-mixing
sequence Z.

《
应
用
概
率
统
计
》
版
权
所
用



第六期 邹斌 徐宗本 张海: 基于β-混合输入的经验风险最小化回归的学习速率 607

Proof of Theorem 3.1 Let H = H1 ∪ H2 ∪ · · · ∪ Hn1 , n1 ∈ N, Lz(f) = E(f)−
Em(f) then for any ε > 0, whenever sup

f∈H
|E(f)− Em(f)| ≥ 2ε, there exists k, 1 ≤ k ≤ n1,

such that sup
f∈Hk

|E(f)− Em(f)| ≥ 2ε. This implies the equivalence

sup
f∈H

|E(f)− Em(f)| ≥ 2ε ⇐⇒ ∃ k, 1 ≤ k ≤ n1, s.t. sup
f∈Hk

|E(f)− Em(f)| ≥ 2ε. (4.5)

By the equivalence (4.5), and by the fact that the probability of a union of events is
bounded by the sum of the probabilities of these events, we have

P
{

sup
f∈H

|E(f)− Em(f)| ≥ 2ε
}
≤

n1∑
k=1

P
{

sup
f∈Hk

|E(f)− Em(f)| ≥ 2ε
}

. (4.6)

Now we estimate the term on the right-hand side of inequality (4.6). Let the balls
Dk, k ∈ {1, 2, . . . , n1} be a cover of H with center at fk and radius ε/(4M). Then, for all
z ∈ Zm and all f ∈ Dk,

|E(f)− E(fk)| = |E`(f, z)]− E[`(fk, z)]|
≤ ‖f − fk‖∞

∫

Z
|(f(x)− y) + (fk(x)− y)|d(P0)

≤ 2M · ‖f − fk‖∞,

|Em(f)− Em(fk)| =
∣∣∣ 1
m

m∑
i=1

`(f, zi)− 1
m

m∑
i=1

`(fk, zi)
∣∣∣

≤ ‖f − fk‖∞ 1
m

m∑
i=1

|(f(xi)− yi) + (fk(xi)− yi)|
≤ 2M · ‖f − fk‖∞.

Therefore we have |Lz(f)−Lz(fk)| ≤ 4M · ‖f − fk‖∞ ≤ 4M · ε/(4M) = ε. It follows that
for any z ∈ Zm and all f ∈ Dk,

sup
f∈Dk

|Lz(f)| ≥ 2ε =⇒ |Lz(fk)| ≥ ε.

We thus conclude that for any k ∈ {1, 2, . . . , n},

P
{

sup
f∈Dk

|Lz(f)| ≥ 2ε
}
≤ P{|Lz(fk)| ≥ ε}.

By Theorem 4.1, we can get

P{|Lz(fk)| ≥ ε} ≤ 2(1 + µe−2) exp
{−2m(β)ε2

M4

}
.

Then

P
{

sup
f∈Dk

|Lz(f)| ≥ 2ε
}
≤ 2(1 + µe−2) exp

{−2m(β)ε2

M4

}
. (4.7)
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By inequalities (4.6) and (4.7), we have

P
{

sup
f∈H

|E(f)− Em(f)| ≥ 2ε
}
≤ 2(1 + µe−2)N

(
H,

ε

4M

)
exp

{−2m(β)ε2

M4

}
. (4.8)

Theorem 3.1 thus follows from inequality (4.8) by replacing ε by ε/2. ¤

To prove the bound (Proposition 3.1) on the learning rates of ERM regression based
on geometrically β-mixing samples, our main tool is the following lemma established by
Cucker and Smale in [17].

Lemma 4.3 Let c1, c2 > 0, and s > q > 0[17]. Then the equation xs−c1x
q−c2 = 0

has a unique positive zero x∗. In addition x∗ ≤ max{(2c1)1/(s−q), (2c2)(1/s)}.
Proof of Proposition 3.1 By inequality (2.2), we have

N
(
H,

ε

8M

)
≤ exp

{
C0

( ε

8M

)−1/r}
.

By inequality (3.2) of Theorem 3.1, we have that for any ε, 0 < ε < 3M2/4,

P
{

sup
f∈H

|Em(f)− E(f)| > ε
}
≤ 2(1 + µe−2) exp

{
C0

( ε

8M

)−1/r
− m(β)ε2

2M4

}
. (4.9)

Let us rewrite inequality (4.9) in the equivalent form. We equate the right-hand side
of inequality (4.9) to a positive value η (0 < η ≤ 1)

(1 + µe−2) exp
{

C0

( ε

8M

)−1/r
− m(β)ε2

2M4

}
= η.

It follows that

ε2+1/r − 2M4 ln(C/η)
m(β)

ε1/r − 2M4C0(8M)1/r

m(β)
= 0,

where C = 1 + µe−2. By Lemma 4.3, we can solve this equation with respect to ε. The
solution is then given by

ε
.= ε(m, η) ≤ max

{
2M2

[ ln(C/η)
m(β)

]1/2
,
[4M4C0(8M)1/r

m(β)

]r/(2r+1)}
.

It is used further to solve inequality

sup
f∈H

E(f)− Em(f) ≤ ε(m, η).

Then we deduce that with probability at least 1−η simultaneously for all functions in
the function set H, the inequality E(f) ≤ Em(f) + ε(m, η) is valid. Since with probability
at least 1 − η, this inequality holds for all functions in the function set H, it holds in
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particular for the function fz that minimizes the empirical risk Em(f) over H. For this
function with probability at least 1− η,

E(fz) ≤ Em(fz) + ε(m, η). (4.10)

By Theorem 4.1, we conclude that for the same η as above, and for the function fH
that minimizes the expected risk E(f) over H, the inequality

E(fH) > Em(fH)− ε′(m, η) (4.11)

holds with probability 1− η, where

ε′(m, η) = M2

√
ln(C/η)
2m(β)

.

Note that

Em(fH) ≥ Em(fz). (4.12)

From inequalities (4.10), (4.11) and (4.12), we deduce that with probability at least 1−2η,
the inequality

E(fz)− E(fH) ≤ ε(m, η) + M2

√
ln(C/η)
2m(β)

is valid. In addition, if

m(β) ≥ max
{64 ln(C/η)

9
,

26+5/rC0

32+1/rM1/r

}
,

then we have ε ≤ 3M2/4. This leads to Proposition 3.1. ¤

Proof of Proposition 3.2 Define dist(f0,H) = dist(f0,H)L2(X,Px) = ‖f0 − fH‖.
By inequality (2.1), we have

‖fz − fH‖2 = E(fz)− E(fH) ≤ {E(fz)− Em(fz)}+ {Em(fH)− E(fH)}.

By Theorems 3.1 and 4.1, we have

P{‖fz − fH‖2 ≥ 2ε} = P{E(fz)− E(fH) ≥ 2ε}
≤ P{E(fz)− Em(fz) ≥ ε}+ P{Em(fH)− E(fH) ≥ ε}

≤ 2(1 + µe−2)N
(
H,

ε

8M

)
exp

{−m(β)ε2

2M4

}
.

It follows that

P{‖fz − fH‖ ≥ ε} ≤ 2(1 + µe−2)N
(
H,

ε2

16M

)
exp

{−m(β)ε4

8M4

}
. (4.13)
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But

‖fz − f0‖ =
( ∫

X
(fz − f0)2dPx

)1/2
=

( ∫

X
(fz − fH + fH − f0)2dPx

)1/2

≤ ‖fz − fH‖+ ‖fH − f0‖.

Thus for any ε > 0, if ‖fz − fH‖ ≤ ε, then we have that

‖fz − f0‖ ≤ dist(f0,H) + ε (4.14)

for a set νm(ε) which satisfies

P{z ∈ νm(ε)} ≥ 1− 2(1 + µe−2)N
(
H,

ε2

16M

)
exp

{−m(β)ε4

8M4

}
.

Since in the last section, we have supposed that H is contained in a finite ball in C(X),
and H is compact in C(X), then its entropy numbers εn(H) tend to 0 with n →∞. Thus
we have that if these entropy numbers behave like (see [5]) εn(H) ≤ cn−r, n = 1, 2, . . .,
the covering number N (H, ε) ≤ exp{C0ε

−1/r}, and dist(f0,H) = 0.
By inequality (4.14), we then have ‖fz − f0‖ ≤ ε, z ∈ νm(ε). In other words, for any

ε, 0 < ε ≤ 3M2/4, we have

P{‖fz − f0‖ ≥ ε} ≤ 2(1 + µe−2) exp
{

C0

( ε2

16M

)−1/r
− m(β)ε4

8M4

}
. (4.15)

By the same argument with inequality (4.9), we can rewrite inequality (4.15) in an
equivalent form. Thus we conclude that for any δ ∈ (0, 1], with probability at least 1− δ,
the inequality ‖fz − f0‖ ≤ ε(m, δ) holds, where

ε(m, δ) ≤ max
{

2M
[ ln(2C/δ)

m(β)

]1/4
,
[161+1/rC0M

4+1/r

m(β)

]r/(4r+2)}
.

In addition, if

m(β) ≥ min
{163 ln(2C/δ)

81M4
,

44+4/rC0

34+2/rM4+3/r

}
,

we have ε ≤ 3M2/4. This arrives at Proposition 3.2. ¤

§5. Comparison and Discussion

In this section, we compare our main results with previously known results and present
some useful discussions.

First, Cucker and Smale (2001), DeVore et al. (2006) established the bound on the
learning rates of ERM algorithm with i.i.d. inputs for regression estimation by using
Bernstein’s inequality. In the last section, we obtained the bound on the learning rates
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of ERM algorithm with geometrically β-mixing inputs for regression estimation by using
Hoeffding’s inequality. Comparing these results in [2, 5] with Theorem 3.1, we can find
that if the input samples are i.i.d., the bound in Theorem 3.1 has the same convergence
rate as that in [2] and [5]. Thus we extended these results of i.i.d. inputs to the case
of geometrically β-mixing inputs. Since geometrically β-mixing samples usually contain
less information than i.i.d. samples, it therefore might lead to worse learning rates. This
property of dependent samples is just what we can expect as reflected as in our results.

Second, comparing our main results (Theorem 3.1) with the results (Theorem 6.13)
obtained by Vidyasager in [6], we can find that although our proof techniques have many
steps similar to that of Theorem 6.13 (or Theorem 3.4) in [6], the difference between The-
orem 3.1 and the bound in Theorem 6.13 is obvious: the bound in Theorem 6.13 consists
of two terms, which has not an explicit convergence rate. In this paper we introduce
the sign m(β), the “effective number of observations” for geometrically β-mixing process
to establish a new bound on the uniform convergence of ERM algorithm with geometri-
cally β-mixing inputs, which consists of only one exponential term, and has an explicit
convergence rate. Thus our main results improve the corresponding results in [6].

In addition,in some sense, β-mixing is a very “natural” assumption on non-i.i.d. se-
quences. For example, Vidyasager (2003), Meyn and Tweedie (1993) proved that if a
Markov chain {zi} is V -geometrically ergodic, then the sequence {zi} is geometrically β-
mixing, i.e., there exist constants B and λ < 1 such that the β-mixing coefficient β(k)
satisfies

β(k) ≤ Bλk (5.1)

for all k. Moreover, the β-mixing coefficient is given by

β(k) ≤ E{ρ[Pk(x,A), π], π} ≤
∫

X
ρ[Pk(x,A), π]π(dx),

where Pk(x,A) is the transition probability that the state x will belong to the set A after k

time steps. π is the stationary distribution of the Markov chain {zi}. ρ is the total variation
metric between two probability measures. Especially, if a Markov chain can be described
by the recursion relation xt+1 = f(xt) + et where xt ∈ Rk for some integer k, subject to
three suitable assumptions (see Theorem 3.11 in [6]), then we can define a V -function such
that the Markov chain is geometrically β-mixing[6]. Moreover, Meyn and Tweedie (1994)
have presented a method to compute the parameters B and λ in inequality (5.1). Thus
we can obtain the parameters B and λ of geometrically β-mixing coefficient in inequality
(5.1) for the Markov chain described by the above recursion relation, but other mixing
sequences (e.g., α-mixing, and φ-mixing) have not this property of β-mixing sequence.
The interested readers can consult [6] for the details. Moreover, Vidyasagar (2003) proved
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that in hidden Markov models, if the underlying Markov chain has β-mixing property,
then so does the corresponding hidden Markov model. Therefore, the results established
in this paper are suited to geometrically β-mixing inputs are also suited to geometrically
ergodic Markov chain inputs and hidden Markov models.

§6. Conclusions

In this paper, we have studied the learning rates of ERM regression with geometrically
β-mixing inputs. We first established a new bound on the rate of uniform convergence
of ERM algorithm with geometrically β-mixing input samples for regression estimation.
Then we derived the bounds on the learning rates of ERM regression based on geomet-
rically β-mixing inputs and proved that the ERM algorithm with geometrically β-mixing
inputs for regression estimation is consistent. To our knowledge, these results here are the
first explicit bounds on the rate of convergence in this topic. In order to better understand
the significance and value of the established results in this paper, we compared our main
results with previously known results, and concluded that the established results in this
paper not only improve previously known results in [6], but also extend the results for
i.i.d. samples in [2, 5] to the case of β-mixing sequence. Since a very large class of Markov
chains and hidden Markov models can produce β-mixing sequences, we also shown that
the results on learning rates of the ERM algorithm with geometrically β-mixing inputs for
regression estimation are suited to geometrically ergodic Markov chain inputs and hidden
Markov models.

Further directions of research include the question of how to control the learning rates
of ERM regression with geometrically β-mixing inputs? What is the essential difference of
generalization ability of ERM algorithm for regression estimation with i.i.d. samples and
geometrically β-mixing samples? All these problems are under our current investigation.
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基于β-混合输入的经验风险最小化回归的学习速率
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研究最小平方损失下的经验风险最小化算法是统计学习理论中非常重要研究内容之一. 而以往研究经验

风险最小化回归学习速率的几乎所有工作都是基于独立同分布输入假设的. 然而, 独立的输入样本是一个非

常强的条件. 因此, 在本文, 我们超出了独立输入样本这个经典框架来研究了基于β混合输入样本的经验风险

最小化回归算法学习速率的界. 我们证明了基于β混合输入样本的经验风险最小化回归算法是一致的, 指出了

本文所建立的结果同样适合输入样本是马氏链、隐马氏链的情形.

关键词: 学习速率, 经验风险最小化, β混合, 最小平方损失.
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