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Abstract
For a repairable k-out-of-n:G system with a history-dependent critical state, this paper derives

the availability, the mean up time and the mean down time in one renewal cycle when the system

goes into the steady state. A comparison between this system and a repairable k-out-of-n:G system

without a history-dependent critical state is conducted as well.
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§1. Introduction

Since a k-out-of-n:G system functions if and only if at least k of its components work,

or equivalently, at most n−k of its components fail, the total life time of a non-repairable

k-out-of-n:G system is in fact just the (n − k + 1)-th order statistic of all n random life

times X1, . . . , Xn. This fault-tolerant structure has been investigated in large scale since

its earlier appearance in 1980. Quite a lot of works related to reliability analysis have been

completed in the past decades, leading to a large body of research papers in literature.

One may refer to Barlow and Proschan (1975), Trivedi (2001), Kuo and Zuo (2002) and

Pham (2003) etc for more details.

A repairable k-out-of-n:G system fails only if the total number of failed components

reaches n−k +1 at any instant of time. Assume that at least k components of the system

are in working state at time 0 such that the system is in the up state at time 0. When

a component fails, repair work is launched right away to restore the failed component. If

the number of all components in the failure state reaches n−k+1, a threshold, the system

makes a transition from the up state to the down state. When the system is down, repair

work continues on the failed components and the system will return to the up state as

soon as the number of failed components becomes strictly smaller than n− k + 1.
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2 应用概率统计 第二十八卷

Because of a great deal of successful applications in various areas, availability anal-

ysis of the repairable k-out-of-n:G systems with or without further failures after system

breaks down received much more attention from several authors. In a peer-to-peer net-

work, a node usually connects itself to the network through several, say n, links between

its neighbor nodes and itself; If it is necessary for the node to have at least k links so

that it can effectively communicate the information through network, then, we have a

k-out-of-n:G structure at hand when doing resilience analysis. In this model, those active

links may fail even though the node fails to successfully communicate in the network.

On the other hand, in industrial and electronic engineering, some major working compo-

nents are usually suspended in order to protect them from being overwhelmingly damaged

from a minor or accidental failure. In literature, some authors have completed interest-

ing researching works on the k-out-of-n:G systems with or without further failure when

system breaks down. For example, through using renewal theory, Angus (1988) proposed

a simple method to build availability indices for k-out-of-n:G system with active compo-

nents being suspended when system breaks down; Ross (1996) built the availability as

well as mean time between failures a repairable parallel system without suspending any

active components when system breaks down; and Barlow and Proschan (1975) also had a

discussion on system with those active components suspended after system’s breakdown.

Afterward, Sherwin (2000) and Pham (2003) made discussions on a series system and ad-

dress the difference between the availabilities of the system with and without suspending

the active components when system is down; Recently, Li, Zuo and Yam (2006) further

investigated the k-out-of-n:G system with some active components being suspended when

system breaks down, they presented formulae for the availability, the mean time between

failures and the mean working time in a cycle as well. For a comprehensive review of most

research work on repairable k-out-of-n:G system models with independent and identical

components, one may refer to Kuo and Zuo (2002).

This paper studies a repairable k-out-of-n:G system with a critical state which is

determined by the previous history of the system in the sense that, when there are only

k−1 active components, the system is active if the previous number of active components

is k, and the system is in failure state if the previous number of active components is k−2.

Under the assumption that all working units are suspended when system breaks down,

we derive the system’s availability, the mean up time and the mean down time in one

renewal cycle when the system goes into the steady state. We also make a discussion on

a repairable k-out-of-n:G system with a history-dependent critical state and that without

such kind of state.
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§2. Model

For the sake of convenience, we first list nomenclature and notations.

2.1 Nomenclature

order statistics the ordered array (from the smallest one to the largest one) of a set

of random variables; For any 1 ≤ k ≤ n, the k-th order statistic

represents the (n − k + 1)-th smallest one among the concerned set

of random variables.
state the total number of the active components, it may be any integer in

{0, 1, . . . , n}.
up a mode of the system which composed of those states under which

the system functions, for example, k, . . . , n.
down a mode of the system which is composed of those states under which

the system fails to function, for example, 0, . . . , k − 2.
history the sequence of the state changes just before the current time, for

example, {n, n − 1, n − 2, n − 1, n − 2, . . . , k + 2, k + 1, k}, k is the

current state of the system.
critical state a state that a change of the mode of the system may occur once it is

entered at a time.
renewal cycle the time interval spanning between two consecutive time points at

which the system enters down mode; As the time length of the interval

of a renewal process, it includes both the time that system is down

and the time that system is up.

2.2 Notations

Xi random life time of the i-th component.

Yj random repair time of the i-th component.

Xi:n the i-th order statistic of X1, . . . , Xn.

Yj:n the j-th order statistic of Y1, . . . , Yn.

λ the common failure rate of all components.

µ the common repair rate of all components.

U the time that the system with history-dependent state is up in a cycle.

D the time that the system with history-dependent state is down in a cycle.

N(t) total number of active components at time t.

S(t) total number of system’s breakdowns till time t.

P (t) the probability that the system with history-dependent state is up at t.
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4 应用概率统计 第二十八卷

p(k, λ, µ) the limit probability that the previous adjacent state is k given N(t) = k−1.

MTBF mean time between failures of the historical dependent system.

U1 the time that the system without history-dependent state is up in a cycle.

D1 the time that the system without history-dependent state is down in a

cycle.
P1(t) probability that the system without history-dependent state is up at time

t.
In some practical situations, for example, computer engineering, electronic engineer-

ing, manufacturing and defense industry etc., a special instrument is usually installed to
delay the occurrence of the failure of the system so as to avoid hazardous consequence
due to unexpected failure. For instance, an engineer using a computer with a UPS in-
strument may have enough time to safely retreat when the electricity is interrupted as a
sudden because the UPS is capable of extending the supply of electricity to some extent.
In reliability model, this mechanism may be described through introducing a critical state
which is Markov dependent upon the previous mode, that is, the mode of this state is
completely determined by the previous history of the system’s mode as follows: if the
system transform itself from a state at which system is up to this state, then the system
is in up mode as well; however, if the system transfers itself from a state at which system
is down to this state, then the system is in down mode also.

This paper deals with a k-out-of-n:G system, which has a history-dependent critical
state k− 1 and suspends all active components after system breaks down. To be clear, all
assumptions are listed as below.

A1 Identical exponential life time Random lives of all components have a com-
mon exponential distribution.

A2 Identical exponential repair time Repair times of all components have the
other common exponential distribution.

A3 Statistical independence All random lives are statistically independent, all
repair times are statistically independent, and the life time and the repair time of each
component are statistically independent.

A4 History-dependent critical state If the number of those active components
falls into k − 1 from k, the system keeps in up state; the system is down as soon as the
number of active components goes further down to k − 2 from k − 1. If the number of
active components is k − 2, the system keeps in down state; the system keeps in down
state if the number of active components goes up to k − 1 from k − 2.

A5 No further failure after system breaks down When the system breaks
down, all these active components are suspended, that is, there will be no further failure
in the time interval that the system is down.

《
应
用
概
率
统
计
》
版
权
所
用



第一期 吴玉旦: 具有历史相依临界状态的可维修n中取k:G系统的可用度分析 5

A6 No limitation on repair facilities There are n−k+2 repair facilities so that
a component is assigned a facility as soon as it fails.

A7 Perfect repair Each failed component starts to function as good as a com-
pletely new as soon as it is repaired.

In this model, the state of the system is just the total number of these components
in up state, and k − 1 serves as the critical history-dependent state. That is, if the total
number of active components goes down to k − 1 from k, then the system is in up state;
however, if the total number of active components goes up to k − 1 from k − 2, then the
system is in down state, see Figure 1 for a depiction of the path of the critical state which
depends upon system’s previous history.

state

-
time

6
4

mode: up

3

2

1

down

Figure 1 A path of a 3-out-of-4:G system with history-dependent state 2

It is evident that the first time to failure of the k-out-of-n:G system with history-
dependent state k−1 is Xn−k+2, which is just the first time to failure of a k−1-out-of-n:G
system without history-dependent state. However, there is an obvious difference between
these two systems when repair is taken into account.

By using technique of renewal theory as in Angus (1988), we will derive, in next
section, formulas for main availability indices including the mean down time in a failure-
repair cycle, the steady state availability and the mean up time in a failure-repair cycle of
such a k-out-of-n:G system.

§3. Main Indices

This section derives expressions of the following availability indices of the system
under study: mean down time in a cycle, steady state availability, mean up time in a
cycle.

It is obvious that the process of state changes of each component forms an independent
alternating renewal process with the state transition time having exponential distribution.
More specifically, the i-th component, i = 1, . . . , n, is in the active state for an exponential
amount of time Xi, then goes down, and stays in the down state for an exponential time
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6 应用概率统计 第二十八卷

Yi before going back to the up state as good as new. It is evident that the state of the
system N(t) varies in {k − 2, k − 1, . . . , n}. As a result, the mode changes of the system
constitutes another delayed alternating renewal process, which is up at time 0 until the
number of components simultaneously in the failure state reaches n− k + 1. The system
then stays in the down mode until the number of failed components goes below n− k + 1.
It should be noted that repair is in progress whenever there is a failed component in the
system. It is of interest to find mean time between failures of the system, mean down time
in a failure-repair cycle, and mean up time in a failure-repair cycle of the system.

Random lives and repair times of all components are exponential, that is, for i =
1, . . . , n,

P(Xi ≤ t) = 1− e−λt, t ≥ 0,

and
P(Yi ≤ t) = 1− e−µt, t ≥ 0.

According to the limit theorems of the alternating renewal process (Ross, 1996), the
limiting point availability is

lim
t→∞P(the i-th unit is up at t) =

µ

λ + µ
, i = 1, . . . , n, (3.1)

and the limiting point unavailability is

lim
t→∞P(the i-th unit is down at t) =

λ

λ + µ
, i = 1, . . . , n. (3.2)

Now, we are ready to derive the main indices.

3.1 Expected Down Time

Theorem 3.1 For 2 ≤ k ≤ n,

E[D] =
( 1

n− k + 2
+

1
n− k + 1

)
· 1
µ

. (3.3)

Proof Since there are k − 2 active components and n − k + 2 failed components
when the system enters the failure state and these active ones are suspended once the
system breaks down and the repair facilities are not limited, the system recovers to up
mode as soon as two of those failed components are successfully repaired. According to
Corollary 2.6 in Barlow and Proschan (1975), both (n − k + 2)Y1:n−k+2 and (n − k + 1)
·(Y2:n−k+2 − Y1:n−k+2) are exponential with rate µ. Thus, the mean time the system is
down in a cycle is

E[D] = E[Y2:n−k+2]

= E[Y1:n−k+2] + E[Y2:n−k+2 − Y1:n−k+2]

=
( 1

n− k + 2
+

1
n− k + 1

)
· 1
µ

. ¤
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3.2 Stationary Availability and Expected Up Time

Owing to the mutual independence among all components, it follows from (3.1) and
(3.2) that, as time tends to infinity, N(t), the total number of active components has the
binomial distribution with the number of trials n and the probability of success µ/(λ + µ).
As a result, it holds that

lim
t→∞P(N(t) ≥ k) =

[
n∑

r=k

(
n

r

)(
µ

λ + µ

)r( λ

λ + µ

)n−r]/[
n∑

r=k−2

(
n

r

)(
µ

λ

)r]
.

Theorem 3.2 For 2 ≤ k ≤ n,

lim
t→∞P (t) =

[
n∑

r=k

(
n

r

)(
µ

λ

)r

+ p(k, λ, µ)
(

n

k − 1

)(
µ

λ

)k−1]/[
n∑

r=k−2

(
n

r

)(
µ

λ

)r]
, (3.4)

where
p(k, λ, µ) =

(n− k + 1)(n− k + 2)µ + (k − 1)(n− k + 1)λ
(n− k + 1)(n− k + 2)µ + (k − 1)(2n− 2k + 3)λ

. (3.5)

Proof The system is up if and only if the total number of active components
is not smaller than k or equivalently, the total number of active components is k − 1
and the previous total number of active components is k. In view of the fact that these
active components are suspended instantaneously once the system enters down mode,
[N(t)|N(t) ≥ k−2], the total number of active components in the system has the truncated
binomial distribution with the number of trials n and the probability of success µ/(λ+µ).
Thus, by Blackwell’s theorem, for small h > 0,

h

MTBF
= lim

t→∞E[S(t + h)− S(t)]

= lim
t→∞

∞∑
r=0

r · P(there are r system’s breakdown in (t, t + h))

= lim
t→∞P(there is only one system’s breakdowns in (t, t + h)) + o(h)

= lim
t→∞P(N(t)=k−1, N(t + h)=k−2, the adjacent state before t is k)+o(h)

= lim
t→∞P(N(t)=k−1) · lim

t→∞P(the adjacent state before t is k |N(t)=k−1)

· lim
t→∞P(N(t + h) = k − 2|N(t) = k − 1) + o(h)

=

(
n

k − 1

)(
µ

λ + µ

)k−1( λ

λ + µ

)n−k+1

n∑
r=k−2

(
n

r

)(
µ

λ + µ

)r( λ

λ + µ

)n−r
· (k, λ, µ) · (k − 1)λh + o(h)

=
{[(

n

k − 1

)(
µ

λ

)k−1]/[
n∑

r=k−2

(
n

r

)(
µ

λ

)r]}
· p(k, λ, µ) · (k − 1)λh + o(h).
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Thus, it holds that

MTBF =

n∑
r=k−2

(
n

r

)(
µ

λ

)r

(
n

k − 2

)(
µ

λ

)k−2

· (n− k + 2)µ

· 1
p(k, λ, µ)

. (3.6)

On the other hand, the limit probability for the system to be up is

lim
t→∞P (t) = lim

t→∞P(N(t) ≥ k) + lim
t→∞P

(the adjacent state before

time t is k and N(t) = k−1

)

=

n∑
r=k

(
n

r

)(
µ

λ

)r

+
(

n

k − 1

)(
µ

λ

)k−1

· p(k, λ, µ)

n∑
r=k−2

(
n

r

)(
µ

λ

)r
.

According to the limit theorem of the alternate renewal process (see Ross (1996) and
Karlin and Taylor (2002)),

lim
t→∞P (t) =

E[U ]
E[U ] + E[D]

.

By (3.3) and (3.4), we have

E[U ] =
lim
t→∞P (t)

1− lim
t→∞P (t)

E[D]

=

n∑
r=k

(
n

r

)(
µ

λ

)r

+
(

n

k − 1

)(
µ

λ

)k−1

· p(k, λ, µ)

(
n

k − 2

)(
µ

λ

)k−2

+
(

n

k − 1

)(
µ

λ

)k−1

[1− p(k, λ, µ)]

·
(

1
n− k + 2

+
1

n− k + 1

)
· 1
µ

(3.7)

and hence

MTBF = E[U ] + E[D]

=

n∑
r=k−2

(
n

r

)(
µ

λ

)r

·
(

1
n− k + 2

+
1

n− k + 1

)
· 1
µ

(
n

k − 2

)(
µ

λ

)k−2

+
(

n

k − 1

)(
µ

λ

)k−1

[1− p(k, λ, µ)]

. (3.8)
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Setting the right sides of (3.6) and (3.8) equal, (3.5) follows immediately from the resulted
equation. Now, the desired result in (3.4) is validated. ¤

The expected up time in one cycle is an immediate corollary of Theorem 3.1 and
Theorem 3.2.

Corollary 3.1 For 2 ≤ k ≤ n, E[U ] is determined by (3.5) and (3.7).

§4. Discussion

In order to get a better understanding of the main results, we list as below those
corresponding results on the system without any history-dependent critical state, reader
may see Angus (1988) and Li, Zuo and Yam (2006) for more details.

The stationary availability is

lim
t→∞P1(t) =

[
n∑

r=k

(
n

r

)(
µ

λ

)r]/[
n∑

r=k−1

(
n

r

)(
µ

λ

)r]
, (4.1)

the mean down time in a cycle is

E[D1] =
1

(n− k + 1)µ
, (4.2)

and the mean up time in a cycle is

E[U1] =
{[

n∑
r=k

(
n

r

)(
µ

λ

)r]/[(
n

k − 1

)(
µ

λ

)k−1]}
· 1
(n− k + 1)µ

. (4.3)

By (3.3) and (4.2), we have the following evident corollary. The system with history-
dependent critical state has a larger down time in a cycle since, in this case two of n−k+2
failed components need to be repaired, however, it is enough to repair only one of n−k+1
failed components. In view of the fact that in the case with history-dependent critical
state, system is also up when it transforms from state k to k − 1, the up time of the
system with history-dependent critical state in a cycle is stochastically larger than that of
the system without any history-dependent critical state.

Corollary 4.1 For 2 ≤ k ≤ n, it holds that E[D1] < E[D] and E[U1] < E[U ].

As far as the mean up time in a cycle is concerned, we have the next corollary, which
asserts that system with history-dependent critical state has a larger stationary availability
under some circumstance.

Corollary 4.2 For 2 ≤ k ≤ n, if

µ

λ
≥ k − 1

n− k + 2

√
2n− 2k + 3
n− k + 1

, (4.4)

then lim
t→∞P1(t) < lim

t→∞P (t).
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10 应用概率统计 第二十八卷

Proof Since
µ

λ
≥ k − 1

n− k + 2

√
2n− 2k + 3
n− k + 1

,

it holds that

p(k, λ, µ)
(

n

k − 1

)(
µ

λ

)k−1

≥
(

n

k − 2

)(
µ

λ

)k−2

.

Note that a/b < (a + ca)/(b + cb) for b > a > 0 and ca ≥ cb > 0, by (3.4) and (4.1),
it can be concluded that lim

t→∞P1(t) < lim
t→∞P (t). ¤

Example 1 Figure 2 plots availability of a 6-out-of-10 system with respect to the
ratio µ/λ. As can be seen, (i) the availability in (3.4) is not necessarily large than that
in (4.1), (ii) condition (4.4) holds for 1.2 < µ/λ ≤ 2.0 and lim

t→∞P1(t) < lim
t→∞P (t), (iii)

for 0.6 ≤ µ/λ ≤ 1.2, condition (4.4) does not hold. By numerical method, it holds that
lim
t→∞P1(t) > lim

t→∞P (t) for µ/λ ≤ 0.5732 and lim
t→∞P1(t) < lim

t→∞P (t) for 0.5732 ≤ µ/λ ≤ 1.2.

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
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0
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0
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1
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ratio of repair rate to failure rate

A
v
a
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b
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ty

Figure 2 Solid curve and stepwise curve correspond to limits of P (t) and P1(t),
respectively.

To end this paper, we make the following remarks.

1. State changes of the repairable k-out-of-n:G system under investigation can also be
characterized as a Markov process with state k−1 being defined as two completely different
states according to the history of the system, one can easily write out the transition matrix
of process and thus gets the desired result through traditional analysis of the transition
matrix (see Karlin and Taylor (2002)); Nonetheless, this is usually both laborious and
unwieldy when the system size n is relatively large.
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2. It is of interest to study the behavior of the two-dimensional k-out-of-n:G system
which has history-dependent critical states though we don’t know any concrete applications
at this time yet.
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具有历史相依临界状态的可维修n中取k:G系统的可用度分析

吴 玉 旦

(浙江澄潭中学, 新昌, 312530)

对于一个具有历史相依临界状态的可维修n中取k:G系统, 论文给出了当系统平稳时它的可用度, 一个循

环中的平均工作时间和平均失效时间. 并且和不具有年龄相依临界状态的可维修n中取k:G系统进行了比较.

关键词: 交替更新过程, 可用度, 指数分布, 平均工作(失效)时间.

学科分类号: O213.2.
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