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Abstract

In this paper, we firstly derived the expressions of the well-known ordinary least square esti-
mator (OLSE), the ordinary mixed estimator (OME) introduced by Theil and Golberger (1961) and
the stochastic restricted Liu estimator (SRLE) proposed by Yang and Xu (2007) under misspecifi-
cation due to inclusion of some superfluous variables. Then, performances of these estimators under
misspecification are examined. In particular, necessary and sufficient conditions for the superiority
of the SRLE over the OLSE and OME with respect to the mean squared error matrix (MSEM)
criterion are derived. Furthermore, superiority of the corresponding predictors of these estimators
are also investigated.
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8§1. Introduction

In regression analysis, prior information about the unknown parameters of interest
is often available, such as the form of linear stochastic restrictions. In this case, the
mixed estimation procedure proposed by Durbin (1953), Theil and Golberger (1961) and
Theil (1963, 1971) has received a considerable attention in literature for its simplicity and
applications.

However, as pointed out by Madhulike (1999), the regression model may be mis-
specified for one reason or another in practice and the misspecification of the regression
model is a very serious problem in econometric theory. In general, researchers are often
concerned with two types of misspecification: excluding some relevant variables and in-

cluding some superfluous variables, where these two problems are treated separately. For
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the misspecification related to exclusion of some relevant variables, Kadiyala (1986) stud-
ied the performance of OME under misspecification and demonstrated that it performs
better than the OLSE with respect to the MSEM criterion. Trenkler and Wijekoon (1989)
and Wijekoon and Trenkler (1989) derived the conditions under which OME outperforms
OLSE in the MSEM sense. Gross et al. (1998) investigated the superiority of the misspec-
ified restricted least squares regression estimator. Hubert and Wijekoon (2004) studied
the superiority of the stochastic restricted Liu estimator.

As to the misspecification related to inclusion of some superfluous variables, Fomby
(1981) analyzed the impact of such misspecification on the efficiency of the OLSE. Dube. et
al. (1991) investigated the efficiency relation between the OLSE and Steil-rule estimator.
Madhulike (1999) obtained the conditions for the superiority of OME over the OLSE. The
purpose of this paper is to examine the performance of the SRLE by Yang and Xu (2007)
in comparison to the OLSE and OME when the regression model is misspecified due to
inclusion of some superfluous variables. Furthermore, superiority of the corresponding
predictors are also investigated with respect to the MSEM criterion.

The paper is organized as follows. Some notations and lemmas needed in the following
discussions are given in Section 2, and model specification and the estimators are derived
in Section 3. Then, performances of the SRLE and its corresponding predictor under
misspecification respect to the MSEM criterion are examined in Section 4 and Section 5,

respectively.

§2. Some Lemmas

In this section, for the convenience of the following proof, we list a few notations and
lemmas which are needed in the following discussions. For a matrix M, M > 0 denotes
M is positive semidefinite, and M > 0 denotes M is positive definite. R(M) denotes the

range of the matrix M and I,, denotes the n x n identity matrix.

Lemma 2.1 (Rao and Toutenburg, 1995) Let matrices A > 0, B > 0, A =
diag(AP(A)) denotes the diagonal matrix of the eigenvalues of A in the metric of B, that
is AP(A) is the i-th eigenvalue of the matrix B~!A, then exists a nonsingular matrix W,
such that A = W/AW, B=W'W.

. . A Ax
Lemma 2.2 (Wang, 1987) For a partitioned regular matrix A = ,
A9 Ago

where A1; is an ny X nq matrix, Ajs is an nj X ny matrix, Aoy is an ng X ny matrix and Ass

is an ng X ng matrix. If matrices A9y and A119 = A1 — A12A2_21A21 are regular, then the
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partitioned inverse is given by A=! = . 1.2 . . _11'2 12_122 I
—Ayp Aoty Ay + Ay AnAjA12Ag,

Lemma 2.3 (Baksalary and Kala, 1983) Let matrix A > 0 and « be a column

vector, then the matrix A —aa’ > 0 if and only if « € R(A), &’ A~ < 1, where A~ is any

g-inverse of A.

83. Model Specification and the Estimators

We firstly assume the correctly specified multiple linear regression model is given by
y=X0+u, (3.1)

where y is an n x 1 vector of observations on the response variable, X is an n x p full
column rank matrix of n observations on the p explanatory variables, 3 is a p x 1 vector of
regression coefficients, w is an n x 1 disturbance vector assumed to having mean vector 0
and covariance matrix o21,,. In this paper, we mainly focus on the case when o2 is known,

2 is unknown, we may replace it with its appropriate estimator

while for the case when o
for practical use. In addition, suppose that the misspecification relates to the inclusion of

q superfluous variables in (3.1) so that the misspecified model is given by
y=X0+Za+e=Dj+e, (3.2)

where Z is an n X ¢ matrix of n observations on ¢ wrongly included variables and « is the

g

q X 1 coeflicient vector associated with them, D = ( X Z ), 0= <
Q

) . The disturbance

vector ¢ in (3.2) is also assumed to have mean vector 0 and covariance matrix o21,,.

Furthermore, suppose we have some prior knowledge on the coefficients 8 in the
following form

r=R3+v=R5+v, (3.3)

where 7 is a j x 1 stochastic known vector, R is a j X p matrix of rank j(< p) with known
elements and R = ( R 0 ) is a j X (p+¢) matrix. The disturbance vector v is independent
of the disturbance terms u, ¢ and is assumed to have mean vector 0 and covariance matrix
1 > 0. Then, the well-known OLSE, OME by Theil and Golberger (1961) and SRLE by
Yang and Xu (2007) of the coefficient vector 5 in (3.1) are respectively given by

Borse = (X'X) " X"y, (3.4)
Bome = (X'X + ? Ry R) ™Y (X"y + o* Ry ™), (3.5)
Gsree = (X'X + 0*Ry ™ R) " (FuX'y + 0> Ry~ 1r), (3.6)
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where Fy = (X'X + 1)} X'X+d)=T-(1-d)(X'X+1)"1,0<d< 1.

In order to derive the corresponding estimators under misspecification due to inclusion
of some superfluous variables, we firstly consider the simultaneous spectral decomposition
of the matrices D'D and R't)"'R. Since D'D > 0 and R'¢ 'R > 0, by Lemma 2.1
we know there exists the non-singular matrix 7' = (D’D)~'/2P, such that T7'D’'DT = I,
T'R'~'RT = A, where P is an orthogonal matrix such that

PI[(D/D)71/2§/¢71§(D/D)71/2]P = A,

and A is a (p+ q) X (p + ¢) diagonal matrix with elements \; > 0,7 =1,...,5; \; = 0,
i=j+1,....p+q. Let D, = DT, R, = RT, v = T~15, we can get that D' D, = I,
R4~ 'R, = A, and the model (3.2) and (3.3) can be rewritten as

y =D,y +e, (3.7)
r = Roy+ . (3.8)

Let Fy = (D.D, + I)"Y(D.D, + dI) = kiI, ki = (1 + d)/2, then we can get that the
OLSE, OME and SRLE of v for the transformed model (3.7) are

Jorse = (DLD.)"'Diy=TD'y, (3.9)
Jome = (D.D.+o*Ry~'R)™ (Dly+ o Ry 'r)

= (I40*N)7'T'(D'y + o? Ry~ ), (3.10)
JsrLe = (DLDu+ 0’ Ry~ R) ™ (Dly + 0*Riap~'r)

= (I+0*AN)'T'(k1D'y + >Ry~ 'r). (3.11)

Let Wi = (I 0),. i W2=1(0 1), iy Wehave §=Wid = WiTy, o = Wad =
WoTv. So the corresponding OLSE, OME and SRLE for the coefficient vector 8 under

misspecification relates to inclusion of some superfluous variable are:

Bovse = WiTHoLsg = WiTT' D'y, (3.12)
Bome = WiTqome = WiT(I + o?A) " T (D'y + o® Ry~ tr), (3.13)
BsrrE = WiTAsrie = WiT(I 4+ 0?A) " T (ki D'y 4+ o2 R\~ 'r). (3.14)

Since T' = (D'D)~'/2P, we can get that TT' = (D'D)~", (T-')'T~' = D'D and PAP' =
(D'D)"Y2R'¢y-'R(D'D)~Y2, (T-YYAT! = (D'D)"/2PAP(D'D)Y2 = R 'R. So

T(I + O_QA)—lT/ — [(T_1>/T_1 + 02(T_1)/AT_1]_1 — (D/D 4 02§/¢_1§)_1
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and the estimators (3.12), (3.13) and (3.14) can be rewritten as

fose = WATT'D'y=W(D'D)"'D'y, (3.15)
Bosie = WAT(I +0°A)"'T/(D'y + >R'y'r)
= WA(D'D+c’R¢y 'R (D'y + o*Rv '), (3.16)
Bsrip = WAT( + 0*N)"\T' (ki D'y + o2 Ry~ r)
= Wi(D'D+c?R¢'R)" (kiD'y + o?R'y~'r). (3.17)
Let (D'D)~! = ( g; ﬁ:z ), (D'D + 0?R'¢y~'R)~! = ( g; g:z ), then by Lemma

2.2 we can compute that

D" = (X"PzX)7!,

DV =—(X'P;X)"'X'2(Z'2)7",

D = (Z'2)'Z'X(X'PzX)"},

D2 =(Z'2) '+ (Z2)' ZX(X'PzX)"'X'2(Z'Z) 7,

D" = (X'PzX + 0c®Ry~'R)™,

DY = —(X'P;X +o*RY™'R)'X'2(Z' 2) 7,

D = (7 2)"'Z'X(X'PzX + c?Ry~'R) ™,

D¥? = (Z2)' +(Z'2)' ZX(X'PzX + 0?Ry 'R\ X'2(Z' 2)7,

where Py = I — Py, Py = Z(Z'Z)~'Z'. Therefore, from (3.15), (3.16) and (3.17) we can
get that

. Dll D12 X/y
BoLse = Wi D p2 2y

W ( (X'P,X)"1X'Pyy )
(Z'Z)1Z' [y — X(X"PzX)"'X'Py]
= (X'PzX)"'X'Pgy, (3.18)
Hll P12 / 2, —1
o — W < gm 222 ) ( Xy+;j¢ r )
o ( (X'PzX + ajR’d)_lR)_l(X’sz + aiR’zZ)_lr) >
(2'2)'Z'ly — X(X'PzX + 0*R'p " R)"H(X'Pgzy + o> Ry 'r)]

= (X'PzX +*RY R "YX'Pyy + o? Ry~ r), (3.19)
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BSRLE o ( Dl pi2 ) ( le’y—i—a?R’w*lr )

D21 D22 k1 Z'y
(X'PzX + 0*RyR) "N k1 X' Pzy + o> R'v~1r)
= 1 — ~ ~ i
(Z2'Z2)7'Z'ly — X(X'PzX + >Ry~ R)" (ki X'Pzy + 0*R'y~"r)]
= (X'PzX +*RyY'R)" k1 X' Pgy + >Ry~ 7). (3.20)

Similarly, we can compute the OLSE, OME and SRLE of the coefficient vector «

under misspecification as follows:
doLse = Wa(D'D)~'D'y
EOLSE / —1 =
= Wy ~ =(2'2)"Z'(y — XBorsk), (3.21)
( (2'2)7'Z'(y — X BovLsk)
domp = Wa(D'D+?Ry™R)"HD'y + 2Ry~ 1r)
EOME ) 1 N—1 rz1 7
= W ~ =(2'2)"" Z'(y — XPowmr), (3.22)
( (2'2)7'Z'(y — X fomr)
dsprr = Wa(D'D 4 o?RY'R)™ (k1 D'y + o* Ry~ 1r)
BSRLE 1 oN—1 rzt a
= W ~ =(Z2'Z2)" Z'(y — XBsrLr). (3.23)
( (2'2)~'Z'(y — X BsrLE)
By some straightforward calculations, we can get the expectation vectors and covari-

ance matrices of the OLSE, OME and SRLE for 8 under misspecification are

E(Borse) = (X'PX)'X'PE(y) =B,
E(Bomp) = (X'PzX + Ry R) ' [X'PE(y) + o* Ry E(r)] = 3,
E(Asrie) = (X'PzX +0?RY ™ R) ™[k X'PzE(y) + >Ry 'E(r)]
(X'PzX + 0c?RYy 'RV (k1 X'PzX + 0*RY'R)3
= B—(1-k)(X'PzX + >Ry 'R)'X'P,XB,
D(Borse) = (X'PzX)'X'Py 0%, P,X(X'PsX) ' =X PsX)" !,
D(Bome) = o*(X'PzX +0*Ry™R)™,
D(BsrLe) = 0*(X'PzX +0’RYy™R)™ (kiX'PzX + o’R'y™'R)
(X'PzX 4+ o*RyIR)L.
So the bias vectors and the MSEM of the OLSE, OME and SRLE are

Bias(forsk) = Bias(foumr) = 0,
by = Bias(fspLe) = —(1 — k1) (X'PzX + 0> Ry 'R) ' X' P, X 3,
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and
MSEM(Borsg) = o2(X'PzX)7!, (3.24)
MSEM(Bome) = o02(X'PzX +o?R'YyR)™!, (3.25)
MSEM(fBsrre) = 0X(X'PzX 4+ 0?Ryp 'R kiIX'P;X + c’Ry'R)
(X'PzX +?RYy ™ R)™! + byb]. (3.26)

§4. Performances of the Estimators under Misspecification

To examine superiority of the SRLE ESRLE over the OLSE ﬁoSLE and the OME BOME
for the misspecified model related to inclusion of some superfluous variables, we investigate

the following differences:

A1 = MSEM(Borse) — MSEM (Bsrir) = Dy — bib), (4.1)
Ay = MSEM(Bome) — MSEM(Bsrie) = Do — by, (4.2)

where

D1 = (X' PzX)' — (X'PzX +0*Ry'R)™?
(BX'PzX +0?RYIR)(X'PzX + 0?RYyp1R)™]
= X (X'PzX +?Ry R A(X' Pz X + o*Ry™'R) 7,
Dy = o*[(X'PzX +0*Ry™'R)™ — (X'PzX +o*Ry™'R)™
(BX'PzX + 0*Ry™'R)(X'PzX + Ry 'R)™Y
= 0*(X'PzX +0*Ry 'R A (X'PzX + Ry 'R) 1,

and

Ay = (X'PzX +?RyYIR(X'P,X) Y X'PsX + 0?Ry™R)
— (kiX'PzX + Ry 'R)
= (1-k)X'PzX + >Ry 'R+ o*Ry ™ R(X'PzX) 'Ry 'R,
Ay = (X'PzX +0’RYR) — (X'P;X 4+ 0*R'¢y'R)
= (1-k)X'PzX.

For 0 < d < 1and k; = (1 +d)/2, we have that 1/2 < k1 < 1,0 < 1 —k} < 3/4, so it’s
obvious that A; > 0, A > 0, which implies that D1 > 0, Dy > 0.



130 N FHME 2 4801 o )\G

4.1 Comparison between the SRLE and OLSE
Since by € R(D1), by Lemma 2.3, we know that Ay = Dy — bib} > 0 if and only if
b’lDl_ 1b1 < 1, so the following theorem is obtained:

Theorem 4.1 The SRLE dominates the OLSE under misspecification respect to
the MSEM criterion if and only if b; D; by < 1.

4.2 Comparison between the SRLE and OME
Since by € R(D3), by Lemma 2.3, we know that Ay = Dy — bib) > 0 if and only if
Yy Dy by < 1, so the following theorem is obtained:

Theorem 4.2 The SRLE dominates the OME under misspecification respect to
the MSEM criterion if and only if b} Dy 'b; < 1.

Remark 1 From Theorem 4.1 and Theorem 4.2, we can conclude that there are
situations where the SRLE outperforms the OLSE and OME with respect to the MSEM

criterion under misspecification due to inclusion of some superfluous variables.

§5. Performances of the Predictors under Misspecification

In order to examine performances of the predictors, we assume that the model (3.1)
holds for further realizations of the dependent variable, that is yg,ug are m x 1 vectors

and Xy is an m X p matrix such that
Yo = Xof + uo, (5.1)

where X is known and the disturbance vectors ug and u are independent. Then, the

misspeicified model due to inclusion of g superfluous variables can be written as
Yo = Xof + Zoa + e, (5.2)

where Zj is known and both the disturbance vectors ¢g and ug are assumed to have mean
vector 0 and variance covariance matrix o21,,.

Now from (3.18)-(3.23), we can get that the ordinary least square predictor (OLSP),
the ordinary mixed predictor (OMP) and the stochastic restricted Liu predictor (SRLP)

under misspecification can be defined as
Jorsp = XofoLse + Zodorse = WoBoLse + Zo(Z'Z) " Z'y, (5.3)
Jomp = XoBoume + Zodoms = Woloume + Zo(Z'Z2) 1 2"y, (5.4)
JsrLp = XoOsrLE + ZoasrLe = WoBsrLE + Z0(Z'Z) 2"y, (5.5)
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where Wy = Xo — Zo(Z'Z)"12'X. Since PzZ = Z — Z(Z'Z)"1Z'Z = 0, we have
Cov (BoLse, Zo(2'2)7' 2'y) = o (X' Pz X) ' X'P12(2'2)™ 2 = 0,
Cov (Bome, Zo(Z'2)~ ' Z'y) = c*(X' Pz X + 0?RYy 'R\ X'P,2(Z'2) ' Z) = 0,
Cov (BsrLp, Z0(2'2) ' Z2'y) = o’k (X'PzX + 0’ RY™'R) ' X'P,2(Z2'Z)' Z} = 0.

So from (5.3), (5.4) and (5.5) we can calculate the covariance matrices of the OLSP, OMP
and SRLP are

D(Jorsp) = WoD(BoLse) Wy + 02 20(Z2' Z) 1 Z}, (5.6)
D(Gomp) = WoD(Bome) W + 02 20(2' 2) 1 Z), (5.7)
D(JsrLp) = WoD(BsrLe)We + 02 Zo(2'Z) 1 Z},. (5.8)

On the other hand, since

E(oLsp) = XoE(BoLse) + ZoE(doLsk)

= XoE(Borse) + Z0(2'2)"' Z'[E(y) — XE(Bovsk)] = XoE(Borsk),
Eomr) = XoE(Bomr) + ZoE(Gomr)

= XoE(BomE) + Z0(Z'2) " Z'[E(y) — XE(Bomr)] = XoE(fomE),
E(Jsrp) = XoE(BsrLk) + ZoE(GsrLe)

= XoE(Bsrir) + (£2'2)7'Z'[E(y) — XE(BsrLr)]

= XoE(Bsrie) — (2'2)7' 2/ X Bias(GsriE),

we have

Bias(Jorsp) = XoE(forse) — Xof = XoBias(forse) = WoBias(Sorsk),

Bias(Joup) = XoE(Bons) — Xof = XoBias(Bonr) = WoBias(Bomr),

Bias(Jsrrp) = XoBias(fsrir) — (Z2/2) 1 Z' X Bias(Gsrip) = WoBias(GsrLr)-
Therefore, the MSEM of the OLSP, OMP and SRLP are

MSEM (yorsp) = D(yorsp) + Bias(Jorsp)Bias(yorsp)’

= WoMSEM (BoLse) W} + 02 Zo(2'Z) 1 2},
MSEM(yomp) = D(Jomp) + Bias(Jomp)Bias(Jomp)’

= WoMSEM(Bome )W} + 0220(Z' 2)~' Z),
MSEM(ysrLp) = D(¥srup) + Bias(ysrip)Bias(Jsrrp)’

—  WoMSEM (Bsree) Wi + 02 20(Z2'2) ' Z}.
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5.1 Comparison between the SRLP and OLSP

In order to compare the SRLP and OLSP with respect to the MSEM criterion, we

consider the following difference
A3 = MSEM@OLSP) — MSEM@SRLP) = WOA1W6.

So it’s obvious that if Ay > 0, then Az > 0 and the following results is obtained:

Theorem 5.1 Under the conditions derived in Theorem 4.1, namely if the SRLE
dominates the OLSE with respect to the MSEM criterion, then the SRLP ysgrrp dominates
the OLSP yorsp with respect to the MSEM criterion.

5.2 Comparison between the SRLP and OMP

Let’s similarly investigate the following difference
Ay = MSEM(yonp) — MSEM(Jsrrp) = WoloWj.

Obviously if Ay > 0, then A4 > 0 and we may obtain:

Theorem 5.2 Under the conditions derived in Theorem 4.2, namely if the SRLE
dominates the OME with respect to the MSEM criterion, then the SRLP ysgrrp dominates
the OMP gomp with respect to the MSEM criterion.

Remark 2  The results obtained in Theorem 5.1 and Theorem 5.2 show that when
the SRLE is potentially superior the OLSE and OME in the sense of MSEM, then the
corresponding SRLP will also dominate the OLSP and OMP under the same conditions.
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