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Abstract
In this paper, we firstly derived the expressions of the well-known ordinary least square esti-

mator (OLSE), the ordinary mixed estimator (OME) introduced by Theil and Golberger (1961) and

the stochastic restricted Liu estimator (SRLE) proposed by Yang and Xu (2007) under misspecifi-

cation due to inclusion of some superfluous variables. Then, performances of these estimators under

misspecification are examined. In particular, necessary and sufficient conditions for the superiority

of the SRLE over the OLSE and OME with respect to the mean squared error matrix (MSEM)

criterion are derived. Furthermore, superiority of the corresponding predictors of these estimators

are also investigated.
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§1. Introduction

In regression analysis, prior information about the unknown parameters of interest

is often available, such as the form of linear stochastic restrictions. In this case, the

mixed estimation procedure proposed by Durbin (1953), Theil and Golberger (1961) and

Theil (1963, 1971) has received a considerable attention in literature for its simplicity and

applications.

However, as pointed out by Madhulike (1999), the regression model may be mis-

specified for one reason or another in practice and the misspecification of the regression

model is a very serious problem in econometric theory. In general, researchers are often

concerned with two types of misspecification: excluding some relevant variables and in-

cluding some superfluous variables, where these two problems are treated separately. For
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the misspecification related to exclusion of some relevant variables, Kadiyala (1986) stud-

ied the performance of OME under misspecification and demonstrated that it performs

better than the OLSE with respect to the MSEM criterion. Trenkler and Wijekoon (1989)

and Wijekoon and Trenkler (1989) derived the conditions under which OME outperforms

OLSE in the MSEM sense. Gross et al. (1998) investigated the superiority of the misspec-

ified restricted least squares regression estimator. Hubert and Wijekoon (2004) studied

the superiority of the stochastic restricted Liu estimator.

As to the misspecification related to inclusion of some superfluous variables, Fomby

(1981) analyzed the impact of such misspecification on the efficiency of the OLSE. Dube. et

al. (1991) investigated the efficiency relation between the OLSE and Steil-rule estimator.

Madhulike (1999) obtained the conditions for the superiority of OME over the OLSE. The

purpose of this paper is to examine the performance of the SRLE by Yang and Xu (2007)

in comparison to the OLSE and OME when the regression model is misspecified due to

inclusion of some superfluous variables. Furthermore, superiority of the corresponding

predictors are also investigated with respect to the MSEM criterion.

The paper is organized as follows. Some notations and lemmas needed in the following

discussions are given in Section 2, and model specification and the estimators are derived

in Section 3. Then, performances of the SRLE and its corresponding predictor under

misspecification respect to the MSEM criterion are examined in Section 4 and Section 5,

respectively.

§2. Some Lemmas

In this section, for the convenience of the following proof, we list a few notations and

lemmas which are needed in the following discussions. For a matrix M , M > 0 denotes

M is positive semidefinite, and M ≥ 0 denotes M is positive definite. <(M) denotes the

range of the matrix M and In denotes the n× n identity matrix.

Lemma 2.1 (Rao and Toutenburg, 1995) Let matrices A ≥ 0, B > 0, Λ̃ =

diag(λB
i (A)) denotes the diagonal matrix of the eigenvalues of A in the metric of B, that

is λB
i (A) is the i-th eigenvalue of the matrix B−1A, then exists a nonsingular matrix W ,

such that A = W ′Λ̃W , B = W ′W .

Lemma 2.2 (Wang, 1987) For a partitioned regular matrix A =

(
A11 A12

A21 A22

)
,

where A11 is an n1×n1 matrix, A12 is an n1×n2 matrix, A21 is an n2×n1 matrix and A22

is an n2 × n2 matrix. If matrices A22 and A11.2 = A11 −A12A
−1
22 A21 are regular, then the
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partitioned inverse is given by A−1 =

(
A−1

11.2 −A−1
11.2A12A

−1
22

−A−1
22 A21A

−1
11.2 A−1

22 + A−1
22 A21A

−1
11.2A12A

−1
22

)
.

Lemma 2.3 (Baksalary and Kala, 1983) Let matrix A ≥ 0 and α be a column

vector, then the matrix A−αα′ ≥ 0 if and only if α ∈ <(A), α′A−α ≤ 1, where A− is any

g-inverse of A.

§3. Model Specification and the Estimators

We firstly assume the correctly specified multiple linear regression model is given by

y = Xβ + u, (3.1)

where y is an n × 1 vector of observations on the response variable, X is an n × p full

column rank matrix of n observations on the p explanatory variables, β is a p×1 vector of

regression coefficients, u is an n× 1 disturbance vector assumed to having mean vector 0

and covariance matrix σ2In. In this paper, we mainly focus on the case when σ2 is known,

while for the case when σ2 is unknown, we may replace it with its appropriate estimator

for practical use. In addition, suppose that the misspecification relates to the inclusion of

q superfluous variables in (3.1) so that the misspecified model is given by

y = Xβ + Zα + ε = Dδ + ε, (3.2)

where Z is an n× q matrix of n observations on q wrongly included variables and α is the

q× 1 coefficient vector associated with them, D =
(

X Z
)
, δ =

(
β

α

)
. The disturbance

vector ε in (3.2) is also assumed to have mean vector 0 and covariance matrix σ2In.

Furthermore, suppose we have some prior knowledge on the coefficients β in the

following form

r = Rβ + ν = R̃δ + ν, (3.3)

where r is a j× 1 stochastic known vector, R is a j× p matrix of rank j(≤ p) with known

elements and R̃ =
(

R 0
)

is a j×(p+q) matrix. The disturbance vector ν is independent

of the disturbance terms u, ε and is assumed to have mean vector 0 and covariance matrix

ψ > 0. Then, the well-known OLSE, OME by Theil and Golberger (1961) and SRLE by

Yang and Xu (2007) of the coefficient vector β in (3.1) are respectively given by

β̂OLSE = (X ′X)−1X ′y, (3.4)

β̂OME = (X ′X + σ2R′ψ−1R)−1(X ′y + σ2R′ψ−1r), (3.5)

β̂SRLE = (X ′X + σ2R′ψ−1R)−1(FdX
′y + σ2R′ψ−1r), (3.6)
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where Fd = (X ′X + I)−1(X ′X + dI) = I − (1− d)(X ′X + I)−1, 0 < d < 1.

In order to derive the corresponding estimators under misspecification due to inclusion

of some superfluous variables, we firstly consider the simultaneous spectral decomposition

of the matrices D′D and R̃′ψ−1R̃. Since D′D > 0 and R̃′ψ−1R̃ ≥ 0, by Lemma 2.1

we know there exists the non-singular matrix T = (D′D)−1/2P , such that T ′D′DT = I,

T ′R̃′ψ−1R̃T = Λ, where P is an orthogonal matrix such that

P ′[(D′D)−1/2R̃′ψ−1R̃(D′D)−1/2]P = Λ,

and Λ is a (p + q) × (p + q) diagonal matrix with elements λi > 0, i = 1, . . . , j; λi = 0,

i = j + 1, . . . , p + q. Let D∗ = DT , R̃∗ = R̃T , γ = T−1δ, we can get that D′∗D∗ = I,

R̃′∗ψ−1R̃∗ = Λ, and the model (3.2) and (3.3) can be rewritten as

y = D∗γ + ε, (3.7)

r = R̃∗γ + ν. (3.8)

Let F̃d = (D′∗D∗ + I)−1(D′∗D∗ + dI) = k1I, k1 = (1 + d)/2, then we can get that the

OLSE, OME and SRLE of γ for the transformed model (3.7) are

γ̂OLSE = (D′
∗D∗)−1D′

∗y = T ′D′y, (3.9)

γ̂OME = (D′
∗D∗ + σ2R̃′

∗ψ
−1R̃∗)−1(D′

∗y + σ2R̃′
∗ψ

−1r)

= (I + σ2Λ)−1T ′(D′y + σ2R̃′ψ−1r), (3.10)

γ̂SRLE = (D′
∗D∗ + σ2R̃′

∗ψ
−1R̃∗)−1(D′

∗y + σ2R̃′
∗ψ

−1r)

= (I + σ2Λ)−1T ′(k1D
′y + σ2R̃′ψ−1r). (3.11)

Let W1 =
(

Ip 0
)
p×(p+q)

, W2 =
(

0 Iq

)
q×(p+q)

, we have β = W1δ = W1Tγ, α = W2δ =

W2Tγ. So the corresponding OLSE, OME and SRLE for the coefficient vector β under

misspecification relates to inclusion of some superfluous variable are:

β̃OLSE = W1T γ̂OLSE = W1TT ′D′y, (3.12)

β̃OME = W1T γ̂OME = W1T (I + σ2Λ)−1T ′(D′y + σ2R̃′ψ−1r), (3.13)

β̃SRLE = W1T γ̂SRLE = W1T (I + σ2Λ)−1T ′(k1D
′y + σ2R̃′ψ−1r). (3.14)

Since T = (D′D)−1/2P , we can get that TT ′ = (D′D)−1, (T−1)′T−1 = D′D and PΛP ′ =

(D′D)−1/2R̃′ψ−1R̃(D′D)−1/2, (T−1)′ΛT−1 = (D′D)1/2PΛP ′(D′D)1/2 = R̃′ψ−1R̃. So

T (I + σ2Λ)−1T ′ = [(T−1)′T−1 + σ2(T−1)′ΛT−1]−1 = (D′D + σ2R̃′ψ−1R̃)−1
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and the estimators (3.12), (3.13) and (3.14) can be rewritten as

β̃OLSE = W1TT ′D′y = W1(D′D)−1D′y, (3.15)

β̃OME = W1T (I + σ2Λ)−1T ′(D′y + σ2R̃′ψ−1r)

= W1(D′D + σ2R̃′ψ−1R̃)−1(D′y + σ2R̃′ψ−1r), (3.16)

β̃SRLE = W1T (I + σ2Λ)−1T ′(k1D
′y + σ2R̃′ψ−1r)

= W1(D′D + σ2R̃′ψ−1R̃)−1(k1D
′y + σ2R̃′ψ−1r). (3.17)

Let (D′D)−1 =

(
D11 D12

D21 D22

)
, (D′D + σ2R̃′ψ−1R̃)−1 =

(
D̃11 D̃12

D̃21 D̃22

)
, then by Lemma

2.2 we can compute that

D11 = (X ′PZX)−1,

D12 = −(X ′PZX)−1X ′Z(Z ′Z)−1,

D21 = −(Z ′Z)−1Z ′X(X ′PZX)−1,

D22 = (Z ′Z)−1 + (Z ′Z)−1Z ′X(X ′PZX)−1X ′Z(Z ′Z)−1,

D̃11 = (X ′PZX + σ2R′ψ−1R)−1,

D̃12 = −(X ′PZX + σ2R′ψ−1R)−1X ′Z(Z ′Z)−1,

D̃21 = −(Z ′Z)−1Z ′X(X ′PZX + σ2R′ψ−1R)−1,

D̃22 = (Z ′Z)−1 + (Z ′Z)−1Z ′X(X ′PZX + σ2R′ψ−1R)−1X ′Z(Z ′Z)−1,

where PZ = I − PZ , PZ = Z(Z ′Z)−1Z ′. Therefore, from (3.15), (3.16) and (3.17) we can

get that

β̃OLSE = W1

(
D11 D12

D21 D22

)(
X ′y

Z ′y

)

= W1

(
(X ′PZX)−1X ′PZy

(Z ′Z)−1Z ′[y −X(X ′PZX)−1X ′PZy]

)

= (X ′PZX)−1X ′PZy, (3.18)

β̃OME = W1

(
D̃11 D̃12

D̃21 D̃22

)(
X ′y + σ2R′ψ−1r

Z ′y

)

= W1

(
(X ′PZX + σ2R′ψ−1R)−1(X ′PZy + σ2R′ψ−1r)

(Z ′Z)−1Z ′[y −X(X ′PZX + σ2R′ψ−1R)−1(X ′PZy + σ2R′ψ−1r)]

)

= (X ′PZX + σ2R′ψ−1R)−1(X ′PZy + σ2R′ψ−1r), (3.19)
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β̃SRLE = W1

(
D̃11 D̃12

D̃21 D̃22

)(
k1X

′y + σ2R′ψ−1r

k1Z
′y

)

= W1

(
(X ′PZX + σ2R′ψ−1R)−1(k1X

′PZy + σ2R′ψ−1r)

(Z ′Z)−1Z ′[y −X(X ′PZX + σ2R̃′ψ−1R̃)−1(k1X
′PZy + σ2R′ψ−1r)]

)

= (X ′PZX + σ2R′ψ−1R)−1(k1X
′PZy + σ2R′ψ−1r). (3.20)

Similarly, we can compute the OLSE, OME and SRLE of the coefficient vector α

under misspecification as follows:

α̃OLSE = W2(D′D)−1D′y

= W2

(
β̃OLSE

(Z ′Z)−1Z ′(y −Xβ̃OLSE)

)
= (Z ′Z)−1Z ′(y −Xβ̃OLSE), (3.21)

α̃OME = W2(D′D + σ2R̃′ψ−1R̃)−1(D′y + σ2R̃′ψ−1r)

= W2

(
β̃OME

(Z ′Z)−1Z ′(y −Xβ̃OME)

)
= (Z ′Z)−1Z ′(y −Xβ̃OME), (3.22)

α̃SRLE = W2(D′D + σ2R̃′ψ−1R̃)−1(k1D
′y + σ2R̃′ψ−1r)

= W2

(
β̃SRLE

(Z ′Z)−1Z ′(y −Xβ̃SRLE)

)
= (Z ′Z)−1Z ′(y −Xβ̃SRLE). (3.23)

By some straightforward calculations, we can get the expectation vectors and covari-

ance matrices of the OLSE, OME and SRLE for β under misspecification are

E(β̃OLSE) = (X ′PZX)−1X ′PZE(y) = β,

E(β̃OME) = (X ′PZX + σ2R′ψ−1R)−1[X ′PZE(y) + σ2R′ψ−1E(r)] = β,

E(β̃SRLE) = (X ′PZX + σ2R′ψ−1R)−1[k1X
′PZE(y) + σ2R′ψ−1E(r)]

= (X ′PZX + σ2R′ψ−1R)−1(k1X
′PZX + σ2R′ψ−1R)β

= β − (1− k1)(X ′PZX + σ2R′ψ−1R)−1X ′PZXβ,

D(β̃OLSE) = (X ′PZX)−1X ′PZ · σ2In · PZX(X ′PZX)−1 = σ2(X ′PZX)−1,

D(β̃OME) = σ2(X ′PZX + σ2R′ψ−1R)−1,

D(β̃SRLE) = σ2(X ′PZX + σ2R′ψ−1R)−1(k2
1X

′PZX + σ2R′ψ−1R)

· (X ′PZX + σ2R′ψ−1R)−1.

So the bias vectors and the MSEM of the OLSE, OME and SRLE are

Bias(β̃OLSE) = Bias(β̃OME) = 0,

b1 = Bias(β̃SRLE) = −(1− k1)(X ′PZX + σ2R′ψ−1R)−1X ′PZXβ,
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and

MSEM(β̃OLSE) = σ2(X ′PZX)−1, (3.24)

MSEM(β̃OME) = σ2(X ′PZX + σ2R′ψ−1R)−1, (3.25)

MSEM(β̃SRLE) = σ2(X ′PZX + σ2R′ψ−1R)−1(k2
1X

′PZX + σ2R′ψ−1R)

· (X ′PZX + σ2R′ψ−1R)−1 + b1b
′
1. (3.26)

§4. Performances of the Estimators under Misspecification

To examine superiority of the SRLE β̃SRLE over the OLSE β̃OSLE and the OME β̃OME

for the misspecified model related to inclusion of some superfluous variables, we investigate

the following differences:

∆1 = MSEM(β̃OLSE)−MSEM(β̃SRLE) = D1 − b1b
′
1, (4.1)

∆2 = MSEM(β̃OME)−MSEM(β̃SRLE) = D2 − b1b
′
1, (4.2)

where

D1 = σ2[(X ′PZX)−1 − (X ′PZX + σ2R′ψ−1R)−1

· (k2
1X

′PZX + σ2R′ψ−1R)(X ′PZX + σ2R′ψ−1R)−1]

= σ2(X ′PZX + σ2R′ψ−1R)−1A1(X ′PZX + σ2R′ψ−1R)−1,

D2 = σ2[(X ′PZX + σ2R′ψ−1R)−1 − (X ′PZX + σ2R′ψ−1R)−1

· (k2
1X

′PZX + σ2R′ψ−1R)(X ′PZX + σ2R′ψ−1R)−1]

= σ2(X ′PZX + σ2R′ψ−1R)−1A2(X ′PZX + σ2R′ψ−1R)−1,

and

A1 = (X ′PZX + σ2R′ψ−1R)(X ′PZX)−1(X ′PZX + σ2R′ψ−1R)

− (k2
1X

′PZX + σ2R′ψ−1R)

= (1− k2
1)X

′PZX + σ2R′ψ−1R + σ4R′ψ−1R(X ′PZX)−1R′ψ−1R,

A2 = (X ′PZX + σ2R′ψ−1R)− (k2
1X

′PZX + σ2R′ψ−1R)

= (1− k2
1)X

′PZX.

For 0 < d < 1 and k1 = (1 + d)/2, we have that 1/2 < k1 < 1, 0 < 1 − k2
1 < 3/4, so it’s

obvious that A1 > 0, A2 > 0, which implies that D1 > 0, D2 > 0.
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4.1 Comparison between the SRLE and OLSE

Since b1 ∈ <(D1), by Lemma 2.3, we know that ∆1 = D1 − b1b
′
1 ≥ 0 if and only if

b′1D
−1
1 b1 ≤ 1, so the following theorem is obtained:

Theorem 4.1 The SRLE dominates the OLSE under misspecification respect to

the MSEM criterion if and only if b′1D
−1
1 b1 ≤ 1.

4.2 Comparison between the SRLE and OME

Since b1 ∈ <(D2), by Lemma 2.3, we know that ∆2 = D2 − b1b
′
1 ≥ 0 if and only if

b′1D
−1
2 b1 ≤ 1, so the following theorem is obtained:

Theorem 4.2 The SRLE dominates the OME under misspecification respect to

the MSEM criterion if and only if b′1D
−1
2 b1 ≤ 1.

Remark 1 From Theorem 4.1 and Theorem 4.2, we can conclude that there are

situations where the SRLE outperforms the OLSE and OME with respect to the MSEM

criterion under misspecification due to inclusion of some superfluous variables.

§5. Performances of the Predictors under Misspecification

In order to examine performances of the predictors, we assume that the model (3.1)

holds for further realizations of the dependent variable, that is y0, u0 are m × 1 vectors

and X0 is an m× p matrix such that

y0 = X0β + u0, (5.1)

where X0 is known and the disturbance vectors u0 and u are independent. Then, the

misspeicified model due to inclusion of q superfluous variables can be written as

y0 = X0β + Z0α + ε0, (5.2)

where Z0 is known and both the disturbance vectors ε0 and u0 are assumed to have mean

vector 0 and variance covariance matrix σ2Im.

Now from (3.18)-(3.23), we can get that the ordinary least square predictor (OLSP),

the ordinary mixed predictor (OMP) and the stochastic restricted Liu predictor (SRLP)

under misspecification can be defined as

ỹOLSP = X0β̃OLSE + Z0α̃OLSE = W0β̃OLSE + Z0(Z ′Z)−1Z ′y, (5.3)

ỹOMP = X0β̃OME + Z0α̃OME = W0β̃OME + Z0(Z ′Z)−1Z ′y, (5.4)

ỹSRLP = X0β̃SRLE + Z0α̃SRLE = W0β̃SRLE + Z0(Z ′Z)−1Z ′y, (5.5)
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where W0 = X0 − Z0(Z ′Z)−1Z ′X. Since PZZ = Z − Z(Z ′Z)−1Z ′Z = 0, we have

Cov (β̃OLSE, Z0(Z ′Z)−1Z ′y) = σ2(X ′PZX)−1X ′PZZ(Z ′Z)−1Z ′0 = 0,

Cov (β̃OME, Z0(Z ′Z)−1Z ′y) = σ2(X ′PZX + σ2R′ψ−1R)−1X ′PZZ(Z ′Z)−1Z ′0 = 0,

Cov (β̃SRLE, Z0(Z ′Z)−1Z ′y) = σ2k1(X ′PZX + σ2R′ψ−1R)−1X ′PZZ(Z ′Z)−1Z ′0 = 0.

So from (5.3), (5.4) and (5.5) we can calculate the covariance matrices of the OLSP, OMP

and SRLP are

D(ỹOLSP) = W0D(β̃OLSE)W ′
0 + σ2Z0(Z ′Z)−1Z ′0, (5.6)

D(ỹOMP) = W0D(β̃OME)W ′
0 + σ2Z0(Z ′Z)−1Z ′0, (5.7)

D(ỹSRLP) = W0D(β̃SRLE)W ′
0 + σ2Z0(Z ′Z)−1Z ′0. (5.8)

On the other hand, since

E(ỹOLSP) = X0E(β̃OLSE) + Z0E(α̃OLSE)

= X0E(β̃OLSE) + Z0(Z ′Z)−1Z ′[E(y)−XE(β̃OLSE)] = X0E(β̃OLSE),

E(ỹOMP) = X0E(β̃OME) + Z0E(α̃OME)

= X0E(β̃OME) + Z0(Z ′Z)−1Z ′[E(y)−XE(β̃OME)] = X0E(β̃OME),

E(ỹSRLP) = X0E(β̃SRLE) + Z0E(α̃SRLE)

= X0E(β̃SRLE) + (Z ′Z)−1Z ′[E(y)−XE(β̃SRLE)]

= X0E(β̃SRLE)− (Z ′Z)−1Z ′XBias(β̃SRLE),

we have

Bias(ỹOLSP) = X0E(β̃OLSE)−X0β = X0Bias(β̃OLSE) = W0Bias(β̃OLSE),

Bias(ỹOMP) = X0E(β̃OME)−X0β = X0Bias(β̃OME) = W0Bias(β̃OME),

Bias(ỹSRLP) = X0Bias(β̃SRLE)− (Z ′Z)−1Z ′XBias(β̃SRLE) = W0Bias(β̃SRLE).

Therefore, the MSEM of the OLSP, OMP and SRLP are

MSEM(ỹOLSP) = D(ỹOLSP) + Bias(ỹOLSP)Bias(ỹOLSP)′

= W0MSEM(β̃OLSE)W ′
0 + σ2Z0(Z ′Z)−1Z ′0,

MSEM(ỹOMP) = D(ỹOMP) + Bias(ỹOMP)Bias(ỹOMP)′

= W0MSEM(β̃OME)W ′
0 + σ2Z0(Z ′Z)−1Z ′0,

MSEM(ỹSRLP) = D(ỹSRLP) + Bias(ỹSRLP)Bias(ỹSRLP)′

= W0MSEM(β̃SRLE)W ′
0 + σ2Z0(Z ′Z)−1Z ′0.
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5.1 Comparison between the SRLP and OLSP

In order to compare the SRLP and OLSP with respect to the MSEM criterion, we

consider the following difference

∆3 = MSEM(ỹOLSP)−MSEM(ỹSRLP) = W0∆1W
′
0.

So it’s obvious that if ∆1 ≥ 0, then ∆3 ≥ 0 and the following results is obtained:

Theorem 5.1 Under the conditions derived in Theorem 4.1, namely if the SRLE

dominates the OLSE with respect to the MSEM criterion, then the SRLP ŷSRLP dominates

the OLSP ŷOLSP with respect to the MSEM criterion.

5.2 Comparison between the SRLP and OMP

Let’s similarly investigate the following difference

∆4 = MSEM(ỹOMP)−MSEM(ỹSRLP) = W0∆2W
′
0.

Obviously if ∆2 ≥ 0, then ∆4 ≥ 0 and we may obtain:

Theorem 5.2 Under the conditions derived in Theorem 4.2, namely if the SRLE

dominates the OME with respect to the MSEM criterion, then the SRLP ŷSRLP dominates

the OMP ŷOMP with respect to the MSEM criterion.

Remark 2 The results obtained in Theorem 5.1 and Theorem 5.2 show that when

the SRLE is potentially superior the OLSE and OME in the sense of MSEM, then the

corresponding SRLP will also dominate the OLSP and OMP under the same conditions.
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包含多余回归变量的错误指定模型的随机约束Liu估计

徐建文 杨 虎

(重庆大学数学与统计学院, 重庆, 401331)

对由于包含多余回归自变量而导致的错误指定线性回归模型, 本文导出了回归系数的最小二乘估计, 普

通混合估计以及随机约束Liu估计, 并在均方误差矩阵准则下对这三个估计的优良性进行了比较, 给出了随机

约束Liu估计优于最小二乘估计和普通混合估计的充要条件. 此外, 对它们所对应的经典预测值的优良性也进

行了讨论.

关键词: 错误指定线性模型, 随机约束, 随机约束Liu估计, 均方误差矩阵.

学科分类号: O212.1.
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