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Abstract
A likelihood approach, together with a EM-type algorithm, to jointly estimate the regression

coefficient as well as the marginal distribution of the covariant in regression model with an interval-
censored data covariant is developed. Under certain conditions the procedures are convergent, and
the resulting estimators are asymptotically normal.
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§1. Introduction

Incomplete data are frequently encountered in medical follow-up studies and in re-
liability studies. Partially motivated by problems arising from these studies, analysis of
right censored data has been one of the focal point of statistics in the past three decades.
Recently, statisticians are paying more and more attention to some more complicated
types of incomplete data, such as doubly censored data and interval censored data, as
these data occur in important clinical trials. For instance, the former were encountered in
recent studies on primary breast cancer, and the latter were encountered in AIDS research
(Kim, 1993). Inference for a linear regression model with double censored data has studied
by Kim (1993) and Ren (1989). This current paper is concerned with regression with an

interval censored covariant.

§2. Model

Consider a simple linear regression model

y=a+ BX + o€, (0 >0), (2.1)
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where Y is a continuous response variable and X an explanatory variable. We take X be

scalar, discrete with distribution
P(X = ;) = pi, 1=1,2,...,m

and linearly related to Y by (2.1), € a standard normal random variable, independent of
X. Let 0 = (a, 3,0%) is an unknown parameter vector. Denote the conditional density
function of Y given X = z by f(y|z;6). Suppose that the observable data for each subject

are of the form (Y, Z), where Z is a random variable such that
P(X €(2,2+T) =1,

where T is a fix positive constant. Thus, the response Y is full observed and X is interval
censored in the fixed length interval [Z, Z + T]. The special case T' = 0 indicates that X
is observed exactly. We shall assume that censoring occurs non-informatively in the sense
that for any X, Z

PX=z|Z=2)= (2.2)

and
fWlX =2,Z =20)= f(y|X = x;0).

Suppose that the data consist of n independent and identically distributed realization

(yiy zi), 1 = 1,2,...,n. It follows that the likelihood function is proportional to

L(0.p) = 11 5 0w f(wiles: O)py. (2.3
i=1j=1
where P’ and «;; = I(Xj € [z, 2i + T)), and I() is the indicator function.

In general, 6 is estimable but the estimability of the individual components of X
depends on the censoring process, as well as on the values of the response. For example,
suppose « and 3 are known, in the setting, only sum of p; +po is estimable if every interval
[zi, zi + T contains both x; and za or neither of them. It follows from Gentleman and
Geyer (1994) that the p; are estimable if n > m and n x m matrix A = (a;;) is of rank

m, where a;; = aj f(yilzj; 0).

§3. Parameter Estimation

The statistical goal in current paper is the estimation of # = (o, 3, 0?) in the presence
of the nuisance distribution function F' of X. We develop the estimator of # by maximizing

(2.3) simultaneously for § and X using EM algorithm as follows two steps:
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Step 1: Nonparametric estimation of X assuming 6 is known
Suppose first that 6 is known and denote the likelihood function by L(X|6), the

conditional density function of Y given X = z; can be expressed as

2

FulX,0) = < [ = 425 (= 25 2)'].

So that

3
NIE

L(X|0) = aij f(yilzs: 0)p;
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The aim is to maximize (3.1) with respect p;, this may be done via a self-consistent
algorithm, based on the idea in Turnbull (1976) and Ding (2008). For i = 1,2,...,n;
j=1,2,...,m,let §;; = I(X; = z;), the conditional expectation of d;;, given the observed
data, say A;; (7P, 0) is

Aij(P,0) = E(6i;|Yi = yi, z) = P(Xs = |Y; = yi, i)
__ ifyilegO)py (3.2)
kz i f(yilTr: 0)pk
=1

If We treat (3.2) as observed rather than expected frequencies, the proportion of
individuals with the covariant equal to Xj, say A;(?, 0), is
n

1
n
The self-consistency equation for a fixed 6 are therefore

pj = Ai(7,0), j=1,2,...,m. (3.4)

Note that E(A;(?, 6)) = pj;, but that A;(?, 6) is not a proper estimators for p; because
it depends on unobservable quantities. The solution p of equations (3.4) for a given 6 is

the unique nonparametric maximum likelihood estimator of p.
Step 2: Estimation of 6 assuming p is known

Now consider the maximum of the conditional likelihood function with respect to 6

for fixed p, this likelihood can be formalized as

L) = T1 5 o f (il: 0)p;. (3.5)

i=1j=1
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The MLE for 6 is obtained by solving the score equation, say U (6)

0log L(0|p)

U0 =—"%

= 0. (3.6)

Let fij = ijf(yilX;;0)pj = aijp; with a;; = aij f(yi| X3 0), and m;(0) = Zlfijw), then
]:

L(0,p) = ] mi(0), the equation (3.6) is equivalently rewritten as

_ L R 9f00)
U(e) B z‘:Zl 771(9) ]gl 00 =0, (3'7)
that is

3 LS 5O~ Sy - o o) (-2)] =0

&m0 = 0 T : :

L@ 2 S Hul®)| = atn—a— (=) o

n 1 m - 1
| % @y X 0@ [ = 507+ (- - Byt =0

Straightforward calculations yield

i(y‘ —a)=p i 0 i x; fi;(0) =0,
1=1 =1 7T’L(9) ]:1
LY —a . n m 2p _ .
= ) 2O P2 )]Z ii(®) =0, (3.7%)
n m ~ o — Brs 2r. . _n0_2 _
|2 ey 2 B (0) 0.

Since the expected value of X, say u;, and the variance of X, say v , given the observed

data for the ith individual, can be express as

—

X‘Qap7 Yi, Zl)

aija;P(X = x40, p, yi, zi)

Mi:/%(eap) = E
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ai; f(yiley;0)p;
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=
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Similarly,

'Uz‘Z _ E[(X . Mi)2|9’p’ yiazz’] _ i (xj - MJ)2fZ](0) (39)
7j=1 WZ(H)
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from expressions (3.8) and (3.9), we rewrite (3.7%) as

(yi—a)—ﬁémz(),

sA

(yi — )i — Blug + v7],

=1
i(y —a)? + 32 Z(u? +0?) —no® = 0.
=1 =1
It follows that
S & . n 2 n R
f= L;(yz Y) (1 u)}/[i;v, +§(u, 1) }
a=y- A, (3.7%)
o° = % é[(yz —@)2 + B2(p2 +v2)),

n n
where 77 = (1/n) - 3 s and 5 = (1/n) - 3" s
i=1 i=1
Remark 1 It is easy seen that if T' = 0 and Z is non-random variable, then the

expressions in (3.7**) will become

=[] /[ -2,
a=7y- fz,
# = =l )

This is usually estimation of parameters for simple linear regression.

The EM algorithm can be progressed as follows:

(1) Take initial estimator for 7’(*), for example % 7’ (© =(1/m,1/m,...,1/m).
(2)
[T — 2]?/2 and 00 = 9O (4(©) O 2(0) and evaluate A;; and A%
(3) Update D use formula (3.4).

Take initial estimator for p;, v; and 6, for example p;(0) = z; + T/2, UZ-(O)2 =

84. Asymptotic Normality Distribution for the Estimator

From the score function (3.7)

v(o) = 35— 3 a0

=0. 4.1
Zimi(0) = 00 ’ (4.1)

It follows that the observed information matrix is

- (),
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where () is 3 x 3 matrix:
o’U  9*U 9
0%?a 0adB Oado?

1(6) = —E U U
028  0p0c?
0*U
92052
Let .
a = -21 [;fz'j(yj —a— Bzj)fal| = Ei((y; — o — Bay)Fab),
1= 1
straightforward calculations yield
0*U n 68 1 .
_ el 1 1 4
8204 0_2 + 0_4 izzl 10010, ( 3)
aY 1 & ; i i i
9008~ ot '21[00102 + B(aiy — agiaiq)]; (4.4)
1=
02U | R ,
b N 4.5
D0do? 956 l;[%oam asol, (4.5)
U 1 & i i
23 =T ;[a0202 + (ay)? — ay), (4.6)
0*U 1o, ,
= it g 4.7
953002 956 Z;1[61206111 asy), (4.7)
o*U 1o ;
Po2 - 10 ;[(a2o)2 — ajy). (4.8)

Under the independent interval censoring, standard asymptotic arguments apply. The
score components in (4.1) are independent and a central limit theorem applies provided
that the censoring mechanism and the covariant are such that the Lindeberge condition
holds for the variance of the independent score components. From the expression of
variance in (3.9), this condition is

1 n

e 21 v 0 (n— o) (4.9)
1=

for some constant ¢ > 0 and § > 0. It is reasonable to assume that as n become large, the
average information converges to a positive-definite covariant matrix M. In other words

n~1I(0) — M as n — oo, it follows that

n~2U(9) — N(0, M) (4.10)
in law, and
a—o
val B-p | —=NOM™) (4.11)

0-2_0.2



E TR AR DX IR KT B I [ TR S B 149

~

in law, where M can be estimated by n~11(6).
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