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Abstract
In this paper, the almost sure convergence and complete convergence for ϕ̃-mixing ran-

dom variables are established. The results obtained not only extend and generalize the classical

Khintchine-Kolmogorov Convergence Theorem, the Three Series Theorem for independent random

variables to the case of ϕ̃-mixing random variables, but also improve the relevant results without

necessarily adding any extra any conditions.
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§1. Introduction

In many stochastic models, the assumption of independence among random variables
is not plausible. So it is necessary to extend the concept of independence to dependence
cases, one of these dependence structures is ϕ̃-mixing. So we want to know whether the
results obtained for independent and identically distributed (i.i.d.) random variables are
still true for ϕ̃-mixing random variables.

Let (Ω, F, P) be a probability space. Let {Xn;n ≥ 1} be a sequence of random
variables that we deal with defined on (Ω, F, P), and let Fm

n denote the σ-algebra generated
by the random variables Xn, Xn+1, . . . , Xm. Let S, T ⊂ N be nonempty sets, and define
FS = σ(Xi; i ∈ S ⊂ N). Given two σ-algebras ψ, ζ in F , note that

ϕ(ψ, ζ) = sup{|P(B|A)− P(B)|;A ∈ ψ, P(A) > 0, B ∈ ζ}, (1.1)
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and define the ϕ̃-mixing coefficients by

ϕ̃(n) = sup{ϕ(FS , FT ); finite subsets S, T ⊂ N such that dist(S, T ) ≥ n}, n ≥ 0. (1.2)

Obviously, 0 ≤ ϕ̃(n + 1) ≤ ϕ̃(n) ≤ 1, n ≥ 0 and ϕ̃(0) = 1.

Definition 1.1 A sequence of random variable {Xn;n ≥ 1} is said to be a ϕ̃-mixing
random variable sequence if there exists k ∈ N such that ϕ̃(k) < 1.

Note that if {Xn;n ≥ 1} is a sequence of independent random variables, then ϕ̃(n) = 0
for all n ≥ 1.

ϕ̃-mixing is similar to ϕ-mixing, but they are quite different from each other. A large
number of limit results for ϕ̃-mixing sequences of random variables have been established
by many researchers. We refer to Wu and Lin (2004) for the complete convergence theorem
and strong law of large numbers, Wang and Hu et al. (2008) for the strong law of large
numbers and growth rate, Wang and Hu et al. (2009) for the convergence properties about
the partial sum, Jiang and Wu (2010) for weak convergence and complete convergence.
When these are compared with the corresponding results of independent random variable
sequences, there still remains much to be desired.

Here we give an example of the practical application of ϕ̃-mixing.

Example 1 According to the proof of Theorem 2 in Bradley (1992) and Remark
3 in Bryc and Smolenski (1993), let {Xi; i ≥ 1} be a strictly stationary Gaussian sequence
which has a bounded positive spectral density f(t), then the sequence {f(Xi); i ≥ 1}
has the property that ϕ̃(1) < 1. Therefore, such a sequence of instantaneous functions
{f(Xi); i ≥ 1} provides a class of examples for ϕ̃-mixing sequences.

The main purpose of this paper is to establish the almost sure convergence and com-
plete convergence of partial sums for ϕ̃-mixing random variables. The main results ob-
tained not only extend and generalize the classical Khintchine-Kolmogorov Convergence
Theorem, the Three Series Theorem for independent random variables to the case of ϕ̃-
mixing random variables, but also improve the corresponding results without necessarily
adding any extra conditions.

§2. Main Results and Proofs

Throughout this paper, c will represent a generic positive constant whose value may
change from one appearance to the next, and an = O(bn) will mean an ≤ c(bn). And
an ¿ bn will mean an = O(bn).

Lemma 2.1 Let {Xn;n ≥ 1} be a sequence of ϕ̃-mixing random variables with
EXn = 0 and E|Xn|r < ∞ for some r ≥ 2 and all n ≥ 1. Then there exists a constant
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c = c(r, k, ϕ̃(k)) depending only on r, k and ϕ̃(k) such that for any n ≥ 1,

E
(

max
1≤j≤n

∣∣∣
j∑

i=1
Xi

∣∣∣
r)
≤ c

[ n∑
i=1

E|Xi|r +
( n∑

i=1
EX2

i

)r/2]
, (2.1)

where ϕ̃(k) < 1.

Proof We can prove the lemma by using the similar method as that for Theorem
2.1 of Utev and Peligrad (2003). The above lemma is a Rosenthal-type inequality for
ϕ̃-mixing random variables. ¤

Lemma 2.2 (Khintchine-Kolmogorov Convergence Theorem) Let {Xn;n ≥ 1} be
a sequence of ϕ̃-mixing random variables which satisfies

∞∑
n=1

VarXn < ∞. (2.2)

Then,
∞∑

n=1
(Xn − EXn) converges almost surely and in quadratic mean.

Proof The proof is similar to that of Theorem 3 of Wu and Lin (2004). Without
loss of generality, assume that EXn = 0. For m ≥ n → ∞, by the Lemma 2.1 and (2.2),
we get that

E(Sm − Sn)2 ¿
m∑

k=n+1

EX2
k → 0. (2.3)

Whence, {Sn;n ≥ 1} is a Cauchy sequence in L2, according to the Cauchy Convergence
Criterion, there exists a random variable S such that E(Sn − S)2 → 0, i.e. Sn

L2−→ S. A
fortiori, Sn

P−→ S, and so there exists positive integers nk →∞ such that

Snk
→ S a.s. as k →∞. (2.4)

On the other hand, it follows from Lemma 2.1 and (2.2) that for any given ε > 0 (setting
n0 = 0)

∞∑
k=1

P
(

max
nk−1<j≤nk

|Sj − Snk−1
| > ε

)

¿
∞∑

k=1

E
(

max
nk−1<j≤nk

|Sj − Snk−1
|
)2
¿

∞∑
k=1

nk∑
j=nk−1+1

EX2
j =

∞∑
j=1

EX2
j < ∞. (2.5)

By the Borel-Cantelli Lemma, we obtain that

max
nk−1<j≤nk

|Sj − Snk−1
| > ε → 0 a.s. as k →∞, (2.6)

which together with (2.4), according to the method of subsequence gives

Sn → S a.s. as k →∞. ¤ (2.7)
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Theorem 2.1 Let {Xn;n ≥ 1} be a sequence of ϕ̃-mixing random variables for
some constants c > 0, let Yn = XnI(|Xn| ≤ c) if the following three series converge, i.e.

∞∑
n=1

P(|Xn| > c) < ∞, (2.8)

∞∑
n=1

EYn < ∞, (2.9)

∞∑
n=1

VarYn < ∞. (2.10)

Then, the series
∞∑

n=1
Xn converges almost surely.

Proof If (2.10) holds true, then
∞∑

n=1
(Yn− EYn) converges almost surely by Lemma

2.2, it follows from (2.9) that
∞∑

n=1
Yn converges almost surely. According to (2.8),

∞∑
n=1

P(|Xn| > c) =
∞∑

n=1
P(Xn 6= Yn) < ∞. (2.11)

So, the sequence of {Xn;n ≥ 1} random variables and the sequence of {Yn;n ≥ 1} random
variables are equivalent. It follows from the Borel-Cantelli Lemma that

P(Xn 6= Yn; i.o.) = 0, (2.12)

which together with
∞∑

n=1
Yn converges almost surely, we can obtain that

∞∑
n=1

Xn converges

almost surely. ¤

Corollary 2.1 Let {Xn;n ≥ 1} be a sequence of ϕ̃-mixing random variables with
EXn = 0, n ≥ 1, and for some constants c > 0 such that

∞∑
n=1

E[X2
nI(|Xn| ≤ c) + |Xn|I(|Xn| > c)] < ∞. (2.13)

Then, the series
∞∑

n=1
Xn converges almost surely.

Corollary 2.2 Let {Xn;n ≥ 1} be a sequence of ϕ̃-mixing random variables, for

0 < p ≤ 2,
∞∑

n=1
E|Xn|p < ∞. Furthermore, when 1 < p ≤ 2, assume that EXn = 0. Then,

the series
∞∑

n=1
Xn converges almost surely.

Theorem 2.2 Let {Xn;n ≥ 1} be a ϕ̃-mixing sequence of random variables with
EXn = 0. Let {an;n ≥ 1} be a sequence of positive real numbers such that 0 < an ↑ ∞.
Let {gn(t);n ≥ 1} be a sequence of nonnegative and even functions such that for each
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n ≥ 1, gn(t) > 0 as t > 0, gn(|t|)/|t| is an increasing function of |t| and gn(|t|)/|t|2 is a
decreasing function of |t|, respectively, that is,

gn(|t|)
|t| ↑ and

gn(|t|)
|t|2 ↓, as |t| ↑ . (2.14)

If
∞∑

n=1

n∑
i=1

E
gi(|Xi|)
gi(an)

< ∞ as n →∞. (2.15)

Then,
∞∑

n=1
P
(∣∣∣a−1

n

n∑
i=1

Xi

∣∣∣ > ε
)

< ∞ for any ε > 0. (2.16)

Proof For all n ≥ 1, 1 ≤ i ≤ n, define

Xni = XiI(|Xi| ≤ an) + anI(Xi > an)− anI(Xi < −an);

X1
ni = (Xi − an)I(Xi > an) + (Xi + an)I(Xi < −an).

Clearly, Xi = Xni + X1
ni for all n ≥ 1, 1 ≤ i ≤ n.

P
(∣∣∣ 1

an

n∑
i=1

Xi

∣∣∣ > ε
)

= P
(∣∣∣ 1

an

k∑
i=1

(Xni + X1
ni)

∣∣∣ > ε
)

≤ P
(∣∣∣ 1

an

n∑
i=1

X1
ni

∣∣∣ >
ε

2

)
+ P

(∣∣∣ 1
an

n∑
i=1

Xni
∣∣∣ >

ε

2

)

≤ P
(∣∣∣ 1

an

n∑
i=1

X1
ni

∣∣∣ >
ε

2

)

+P
(∣∣∣ 1

an

n∑
i=1

(Xni − EXni)
∣∣∣ >

ε

2
−

∣∣∣ 1
an

n∑
i=1

EXni

∣∣∣
)
.

It suffices to prove the following inequalities for any ε > 0,

∞∑
n=1

P
(∣∣∣ 1

an

n∑
i=1

X1
ni

∣∣∣ > ε/2
)

< ∞; (2.17)

∞∑
n=1

P
(∣∣∣ 1

an

n∑
i=1

(Xni − EXni)
∣∣∣ > ε/2

)
< ∞; (2.18)

∣∣∣ 1
an

n∑
i=1

EXni

∣∣∣ → 0 as n →∞. (2.19)

First, we show that
∣∣∣ 1
an

n∑
i=1

EXni

∣∣∣ → 0 as n →∞.
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In fact, by EXn = 0, then EXni = −EX1
ni. Note that |X1

ni| ≤ |Xi|, gn(|t|)/|t| ↑ as |t| ↑,
then we have

∣∣∣ 1
an

n∑
i=1

EXni

∣∣∣ ≤ 1
an

n∑
i=1

E|X1
ni| ≤

1
an

n∑
i=1

E|Xi|I(|Xi| > an)

=
n∑

i=1

EXi

an
× gi(an)

gi(an)
× Egi(|Xi|)

Egi(|Xi|)I(|Xi| > an)

≤
n∑

i=1

Egi(|Xi|)
gi(an)

I(|Xi| > an)

≤
n∑

i=1

Egi(|Xi|)
gi(an)

→ 0 as n →∞. (2.20)

Second, note that for each n ≥ 2, by Markov inequality and Lemma 2.1, it follows that
∞∑

n=1
P
(∣∣∣ 1

an

n∑
i=1

(Xni − EXni)
∣∣∣ > ε/2

)

≤ c
∞∑

n=1

n∑
i=1

a−2
n EX2

i I(|Xi| ≤ an) + c
∞∑

n=1
a−2

n

n∑
i=1

a2
nP(|Xi| > an). (2.21)

Hence, we need only to prove that

I ,
∞∑

n=1

n∑
i=1

a−2
n EX2

i I(|Xi| ≤ an) < ∞; (2.22)

II ,
∞∑

n=1

n∑
i=1

P(|Xi| > an) < ∞. (2.23)

It follows from (2.14) and (2.15) that

I ,
∞∑

n=1

n∑
i=1

a−2
n EX2

i I(|Xi| ≤ an)

= C
∞∑

n=1

n∑
i=1

Egi(|Xi|)
gi(an)

× gi(an)
a2

n

× E|Xi|2
Egi(|Xi|)I(|Xi| ≤ an)

≤ C
∞∑

n=1

n∑
i=1

Egi(|Xi|)
gi(an)

< ∞. (2.24)

It follows from (2.14), (2.15) and Markov inequality that

II ,
∞∑

n=1

n∑
i=1

P(|Xi| > an) ≤
∞∑

n=1

n∑
i=1

E|Xi|
an

=
∞∑

n=1

n∑
i=1

E|Xi|
a n

× Egi(|Xi|)
Egi(|Xi|) ×

gi(an)
gi(an)

≤
∞∑

n=1

n∑
i=1

Egi(|Xi|)
gi(an)

< ∞. (2.25)

Finally, since gn(|t|)/|t| ↑ as |t| ↑, then gn(|t|) ↑ as |t| ↑. So,
∞∑

n=1
P
(∣∣∣ 1

an

n∑
i=1

X1
ni

∣∣∣ > ε/2
)

≤
∞∑

n=1

n∑
i=1

P(|Xi| > an) ≤
∞∑

n=1

n∑
i=1

E|Xi|
an

≤
∞∑

n=1

n∑
i=1

Egi(|Xi|)
gi(an)

< ∞. ¤ (2.26)
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Corollary 2.3 Under the conditions of Theorem 2.2, then

1
an

n∑
i=1

Xi → 0 a.s.. (2.27)

Proof By Theorem 2.2, it follows from Borel-Cantelli Lemma that
∣∣∣ 1
an

n∑
i=1

Xi

∣∣∣ → 0 a.s.. (2.28)

The proof of Corollary 2.3 is obvious. ¤
By taking gn(t) = |t|p, 0 < p ≤ 2 in Theorem 2.2, we can immediately obtain the

following corollary.

Corollary 2.4 Under the conditions of Theorem 2.2, if

∞∑
n=1

n∑
i=1

E(|Xi|p)
ap

n
< ∞ as n →∞, (2.29)

then
1
an

n∑
i=1

Xi → 0 a.s. as n →∞.

Corollary 2.5 Under the conditions of Theorem 2.2, If

n∑
i=1

E
gi(|Xi|)
gi(an)

→ 0 as n →∞, (2.30)

then
a−1

n

n∑
i=1

Xi → 0 in probability. (2.31)

Proof The proof can be accomplished in a similar way as Theorem 2.2. Here, we
omit the proof of this corollary. ¤

Remark 1 Corollary 2.3 holds true under the conditions of Theorem 2.2, the fact
that ∞∑

n=1

n∑
i=1

E
gi(|Xi|)
gi(an)

< ∞

is stronger than the fact that

n∑
i=1

E
gi(|Xi|)
gi(an)

→ 0 as n →∞.

Hence, Corollary 2.3 not only generalizes the result of Corollary 2.5, but also improves it
with necessarily adding a stronger condition.
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ϕ̃混合随机变量序列的强收敛定律

黄海午1,2 王定成3,1 吴群英2
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(3南京审计学院金融工程研究所, 金融学院, 应用数学学院, 南京, 211815)

本文建立了ϕ̃混合随机变量序列的几乎处处收敛性和完全收敛性的结果. 所获结果不仅把独立随机变量

经典的Khintchine-Kolmogorov收敛定理和三级数收敛定理推广至ϕ̃混合随机变量情形下, 并在没有增加任何

附加条件下改进了相关结果.

关键词: ϕ̃混合随机变量, 几乎处处收敛性, 完全收敛性, 加权和.

学科分类号: O211.4.
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