Strong Convergence Laws for $\widetilde{\varphi}$－Mixing Sequences of Random Variables＊

Huang Haiwu ${ }^{1,2}$ Wang Dingcheng ${ }^{3,1}$ Wu Qunying ${ }^{2}$
（ ${ }^{1}$ School of Mathematics Science，University of Electronic Science and Technology of China， Chengdu，610054）
（ ${ }^{2}$ College of Science，Guilin University of Technology，Guilin，541004）
（ ${ }^{3}$ Institute of Financial Engineering，School of Finance，School of Applied Mathematics， Nanjing Audit University，Nanjing，211815）

Abstract

In this paper，the almost sure convergence and complete convergence for $\widetilde{\varphi}$－mixing ran－ dom variables are established．The results obtained not only extend and generalize the classical Khintchine－Kolmogorov Convergence Theorem，the Three Series Theorem for independent random variables to the case of $\widetilde{\varphi}$－mixing random variables，but also improve the relevant results without necessarily adding any extra any conditions．

Keywords：$\widetilde{\varphi}$－mixing random variables，almost sure convergence，complete convergence， weighted sums．

AMS Subject Classification：60F15．

§1．Introduction

In many stochastic models，the assumption of independence among random variables is not plausible．So it is necessary to extend the concept of independence to dependence cases，one of these dependence structures is $\widetilde{\varphi}$－mixing．So we want to know whether the results obtained for independent and identically distributed（i．i．d．）random variables are still true for $\widetilde{\varphi}$－mixing random variables．

Let (Ω, F, P) be a probability space．Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of random variables that we deal with defined on（ Ω, F, P ），and let F_{n}^{m} denote the σ－algebra generated by the random variables $X_{n}, X_{n+1}, \ldots, X_{m}$ ．Let $S, T \subset N$ be nonempty sets，and define $F_{S}=\sigma\left(X_{i} ; i \in S \subset N\right)$ ．Given two σ－algebras ψ, ζ in F ，note that

$$
\begin{equation*}
\varphi(\psi, \zeta)=\sup \{|\mathrm{P}(B \mid A)-\mathrm{P}(B)| ; A \in \psi, \mathrm{P}(A)>0, B \in \zeta\}, \tag{1.1}
\end{equation*}
$$

[^0]and define the $\widetilde{\varphi}$－mixing coefficients by
$$
\widetilde{\varphi}(n)=\sup \left\{\varphi\left(F_{S}, F_{T}\right) ; \text { finite subsets } S, T \subset N \text { such that } \operatorname{dist}(S, T) \geq n\right\}, \quad n \geq 0 .
$$

Obviously， $0 \leq \widetilde{\varphi}(n+1) \leq \widetilde{\varphi}(n) \leq 1, n \geq 0$ and $\widetilde{\varphi}(0)=1$ ．
Definition 1．1 A sequence of random variable $\left\{X_{n} ; n \geq 1\right\}$ is said to be a $\widetilde{\varphi}$－mixing random variable sequence if there exists $k \in N$ such that $\widetilde{\varphi}(k)<1$ ．

Note that if $\left\{X_{n} ; n \geq 1\right\}$ is a sequence of independent random variables，then $\widetilde{\varphi}(n)=0$ for all $n \geq 1$ ．
$\widetilde{\varphi}$－mixing is similar to φ－mixing，but they are quite different from each other．A large number of limit results for $\widetilde{\varphi}$－mixing sequences of random variables have been established by many researchers．We refer to Wu and $\mathrm{Lin}(2004)$ for the complete convergence theorem and strong law of large numbers，Wang and Hu et al．（2008）for the strong law of large numbers and growth rate，Wang and Hu et al．（2009）for the convergence properties about the partial sum，Jiang and Wu （2010）for weak convergence and complete convergence． When these are compared with the corresponding results of independent random variable sequences，there still remains much to be desired．

Here we give an example of the practical application of $\widetilde{\varphi}$－mixing．
Example 1 According to the proof of Theorem 2 in Bradley（1992）and Remark 3 in Bryc and Smolenski（1993），let $\left\{X_{i} ; i \geq 1\right\}$ be a strictly stationary Gaussian sequence which has a bounded positive spectral density $f(t)$ ，then the sequence $\left\{f\left(X_{i}\right) ; i \geq 1\right\}$ has the property that $\widetilde{\varphi}(1)<1$ ．Therefore，such a sequence of instantaneous functions $\left\{f\left(X_{i}\right) ; i \geq 1\right\}$ provides a class of examples for $\widetilde{\varphi}$－mixing sequences．

The main purpose of this paper is to establish the almost sure convergence and com－ plete convergence of partial sums for $\widetilde{\varphi}$－mixing random variables．The main results ob－ tained not only extend and generalize the classical Khintchine－Kolmogorov Convergence Theorem，the Three Series Theorem for independent random variables to the case of $\widetilde{\varphi}$－ mixing random variables，but also improve the corresponding results without necessarily adding any extra conditions．

§2．Main Results and Proofs

Throughout this paper，c will represent a generic positive constant whose value may change from one appearance to the next，and $a_{n}=O\left(b_{n}\right)$ will mean $a_{n} \leq c\left(b_{n}\right)$ ．And $a_{n} \ll b_{n}$ will mean $a_{n}=O\left(b_{n}\right)$ ．

Lemma 2．1 Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of $\widetilde{\varphi}$－mixing random variables with $\mathrm{E} X_{n}=0$ and $\mathrm{E}\left|X_{n}\right|^{r}<\infty$ for some $r \geq 2$ and all $n \geq 1$ ．Then there exists a constant
$c=c(r, k, \widetilde{\varphi}(k))$ depending only on r, k and $\widetilde{\varphi}(k)$ such that for any $n \geq 1$,

$$
\begin{equation*}
\mathrm{E}\left(\max _{1 \leq j \leq n}\left|\sum_{i=1}^{j} X_{i}\right|^{r}\right) \leq c\left[\sum_{i=1}^{n} \mathrm{E}\left|X_{i}\right|^{r}+\left(\sum_{i=1}^{n} \mathrm{E} X_{i}^{2}\right)^{r / 2}\right] \tag{2.1}
\end{equation*}
$$

where $\widetilde{\varphi}(k)<1$ ．
Proof We can prove the lemma by using the similar method as that for Theorem
2.1 of Utev and Peligrad（2003）．The above lemma is a Rosenthal－type inequality for $\widetilde{\varphi}$－mixing random variables．

Lemma 2.2 （Khintchine－Kolmogorov Convergence Theorem）Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of $\widetilde{\varphi}$－mixing random variables which satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{Var} X_{n}<\infty \tag{2.2}
\end{equation*}
$$

Then，$\sum_{n=1}^{\infty}\left(X_{n}-\mathrm{E} X_{n}\right)$ converges almost surely and in quadratic mean．
Proof The proof is similar to that of Theorem 3 of Wu and Lin（2004）．Without loss of generality，assume that $\mathrm{E} X_{n}=0$ ．For $m \geq n \rightarrow \infty$ ，by the Lemma 2.1 and（2．2）， we get that

$$
\begin{equation*}
\mathrm{E}\left(S_{m}-S_{n}\right)^{2} \ll \sum_{k=n+1}^{m} \mathrm{E} X_{k}^{2} \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Whence，$\left\{S_{n} ; n \geq 1\right\}$ is a Cauchy sequence in L_{2} ，according to the Cauchy Convergence Criterion，there exists a random variable S such that $\mathrm{E}\left(S_{n}-S\right)^{2} \rightarrow 0$ ，i．e．$S_{n} \xrightarrow{L_{2}} S$ ．A fortiori，$S_{n} \xrightarrow{\mathrm{P}} S$ ，and so there exists positive integers $n_{k} \rightarrow \infty$ such that

$$
\begin{equation*}
S_{n_{k}} \rightarrow S \quad \text { a.s. } \quad \text { as } \quad k \rightarrow \infty \tag{2.4}
\end{equation*}
$$

On the other hand，it follows from Lemma 2.1 and（2．2）that for any given $\varepsilon>0$（setting $n_{0}=0$ ）

$$
\begin{align*}
& \sum_{k=1}^{\infty} \mathrm{P}\left(\max _{n_{k-1}<j \leq n_{k}}\left|S_{j}-S_{n_{k-1}}\right|>\varepsilon\right) \\
\ll & \sum_{k=1}^{\infty} \mathrm{E}\left(\max _{n_{k-1}<j \leq n_{k}}\left|S_{j}-S_{n_{k-1}}\right|\right)^{2} \ll \sum_{k=1}^{\infty} \sum_{j=n_{k-1}+1}^{n_{k}} \mathrm{E} X_{j}^{2}=\sum_{j=1}^{\infty} \mathrm{E} X_{j}^{2}<\infty . \tag{2.5}
\end{align*}
$$

By the Borel－Cantelli Lemma，we obtain that

$$
\begin{equation*}
\max _{n_{k-1}<j \leq n_{k}}\left|S_{j}-S_{n_{k-1}}\right|>\varepsilon \rightarrow 0 \quad \text { a.s. } \quad \text { as } \quad k \rightarrow \infty \tag{2.6}
\end{equation*}
$$

which together with（2．4），according to the method of subsequence gives

$$
\begin{equation*}
S_{n} \rightarrow S \quad \text { a.s. } \quad \text { as } \quad k \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Theorem 2．1 Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of $\widetilde{\varphi}$－mixing random variables for some constants $c>0$ ，let $Y_{n}=X_{n} I\left(\left|X_{n}\right| \leq c\right)$ if the following three series converge，i．e．

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathrm{P}\left(\left|X_{n}\right|>c\right)<\infty \tag{2.8}\\
& \sum_{n=1}^{\infty} \mathrm{E} Y_{n}<\infty \tag{2.9}\\
& \sum_{n=1}^{\infty} \operatorname{Var} Y_{n}<\infty
\end{align*}
$$

Then，the series $\sum_{n=1}^{\infty} X_{n}$ converges almost surely．
Proof If（2．10）holds true，then $\sum_{n=1}^{\infty}\left(Y_{n}-\mathrm{E} Y_{n}\right)$ converges almost surely by Lemma 2．2，it follows from（2．9）that $\sum_{n=1}^{\infty} Y_{n}$ converges almost surely．According to（2．8），

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{P}\left(\left|X_{n}\right|>c\right)=\sum_{n=1}^{\infty} \mathrm{P}\left(X_{n} \neq Y_{n}\right)<\infty \tag{2.11}
\end{equation*}
$$

So，the sequence of $\left\{X_{n} ; n \geq 1\right\}$ random variables and the sequence of $\left\{Y_{n} ; n \geq 1\right\}$ random variables are equivalent．It follows from the Borel－Cantelli Lemma that

$$
\begin{equation*}
\mathrm{P}\left(X_{n} \neq Y_{n} ; \text { i.o. }\right)=0 \tag{2.12}
\end{equation*}
$$

which together with $\sum_{n=1}^{\infty} Y_{n}$ converges almost surely，we can obtain that $\sum_{n=1}^{\infty} X_{n}$ converges almost surely．

Corollary 2．1 Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of $\widetilde{\varphi}$－mixing random variables with $\mathrm{E} X_{n}=0, n \geq 1$ ，and for some constants $c>0$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{E}\left[X_{n}^{2} I\left(\left|X_{n}\right| \leq c\right)+\left|X_{n}\right| I\left(\left|X_{n}\right|>c\right)\right]<\infty \tag{2.13}
\end{equation*}
$$

Then，the series $\sum_{n=1}^{\infty} X_{n}$ converges almost surely．
Corollary 2．2 Let $\left\{X_{n} ; n \geq 1\right\}$ be a sequence of $\widetilde{\varphi}$－mixing random variables，for $0<p \leq 2, \sum_{n=1}^{\infty} \mathrm{E}\left|X_{n}\right|^{p}<\infty$ ．Furthermore，when $1<p \leq 2$ ，assume that $\mathrm{E} X_{n}=0$ ．Then， the series $\sum_{n=1}^{\infty} X_{n}$ converges almost surely．

Theorem 2．2 Let $\left\{X_{n} ; n \geq 1\right\}$ be a $\widetilde{\varphi}$－mixing sequence of random variables with $\mathrm{E} X_{n}=0$ ．Let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive real numbers such that $0<a_{n} \uparrow \infty$ ． Let $\left\{g_{n}(t) ; n \geq 1\right\}$ be a sequence of nonnegative and even functions such that for each
$n \geq 1, g_{n}(t)>0$ as $t>0, g_{n}(|t|) /|t|$ is an increasing function of $|t|$ and $g_{n}(|t|) /|t|^{2}$ is a decreasing function of $|t|$ ，respectively，that is，

$$
\begin{equation*}
\frac{g_{n}(|t|)}{|t|} \uparrow \quad \text { and } \quad \frac{g_{n}(|t|)}{|t|^{2}} \downarrow, \quad \text { as } \quad|t| \uparrow \tag{2.14}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathrm{E} \frac{g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)}<\infty \quad \text { as } \quad n \rightarrow \infty \tag{2.15}
\end{equation*}
$$

Then，

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{P}\left(\left|a_{n}^{-1} \sum_{i=1}^{n} X_{i}\right|>\varepsilon\right)<\infty \quad \text { for any } \varepsilon>0 \tag{2.16}
\end{equation*}
$$

Proof For all $n \geq 1,1 \leq i \leq n$ ，define

$$
\begin{aligned}
& X_{n} i=X_{i} I\left(\left|X_{i}\right| \leq a_{n}\right)+a_{n} I\left(X_{i}>a_{n}\right)-a_{n} I\left(X_{i}<-a_{n}\right) \\
& X_{n i}^{1}=\left(X_{i}-a_{n}\right) I\left(X_{i}>a_{n}\right)+\left(X_{i}+a_{n}\right) I\left(X_{i}<-a_{n}\right)
\end{aligned}
$$

Clearly，$X_{i}=X_{n i}+X_{n i}^{1}$ for all $n \geq 1,1 \leq i \leq n$.

$$
\begin{aligned}
\mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{i}\right|>\varepsilon\right)= & \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{k}\left(X_{n i}+X_{n i}^{1}\right)\right|>\varepsilon\right) \\
\leq & \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{n i}^{1}\right|>\frac{\varepsilon}{2}\right)+\mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{n} i\right|>\frac{\varepsilon}{2}\right) \\
\leq & \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{n i}^{1}\right|>\frac{\varepsilon}{2}\right) \\
& +\mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n}\left(X_{n i}-\mathrm{E} X_{n i}\right)\right|>\frac{\varepsilon}{2}-\left|\frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E} X_{n i}\right|\right) .
\end{aligned}
$$

It suffices to prove the following inequalities for any $\varepsilon>0$ ，

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{n i}^{1}\right|>\varepsilon / 2\right)<\infty \tag{2.17}\\
& \sum_{n=1}^{\infty} \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n}\left(X_{n i}-\mathrm{E} X_{n i}\right)\right|>\varepsilon / 2\right)<\infty \tag{2.18}\\
& \left|\frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E} X_{n i}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.19}
\end{align*}
$$

First，we show that

$$
\left|\frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E} X_{n i}\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

In fact，by $\mathrm{E} X_{n}=0$ ，then $\mathrm{E} X_{n i}=-\mathrm{E} X_{n i}^{1}$ ．Note that $\left|X_{n i}^{1}\right| \leq\left|X_{i}\right|, g_{n}(|t|) /|t| \uparrow$ as $|t| \uparrow$ ， then we have

$$
\begin{align*}
\left|\frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E} X_{n i}\right| & \leq \frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E}\left|X_{n i}^{1}\right| \leq \frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E}\left|X_{i}\right| I\left(\left|X_{i}\right|>a_{n}\right) \\
& =\sum_{i=1}^{n} \frac{\mathrm{E} X_{i}}{a_{n}} \times \frac{g_{i}\left(a_{n}\right)}{g_{i}\left(a_{n}\right)} \times \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)} I\left(\left|X_{i}\right|>a_{n}\right) \\
& \leq \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)} I\left(\left|X_{i}\right|>a_{n}\right) \\
& \leq \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{2.20}
\end{align*}
$$

Second，note that for each $n \geq 2$ ，by Markov inequality and Lemma 2．1，it follows that

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n}\left(X_{n i}-\mathrm{E} X_{n i}\right)\right|>\varepsilon / 2\right) \\
\leq & c \sum_{n=1}^{\infty} \sum_{i=1}^{n} a_{n}^{-2} \mathrm{E} X_{i}^{2} I\left(\left|X_{i}\right| \leq a_{n}\right)+c \sum_{n=1}^{\infty} a_{n}^{-2} \sum_{i=1}^{n} a_{n}^{2} \mathrm{P}\left(\left|X_{i}\right|>a_{n}\right) . \tag{2.21}
\end{align*}
$$

Hence，we need only to prove that

$$
\begin{align*}
& \mathrm{I} \triangleq \sum_{n=1}^{\infty} \sum_{i=1}^{n} a_{n}^{-2} \mathrm{E} X_{i}^{2} I\left(\left|X_{i}\right| \leq a_{n}\right)<\infty \tag{2.22}\\
& \mathrm{II} \triangleq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathrm{P}\left(\left|X_{i}\right|>a_{n}\right)<\infty \tag{2.23}
\end{align*}
$$

It follows from（2．14）and（2．15）that

$$
\begin{align*}
\mathrm{I} & \triangleq \sum_{n=1}^{\infty} \sum_{i=1}^{n} a_{n}^{-2} \mathrm{E} X_{i}^{2} I\left(\left|X_{i}\right| \leq a_{n}\right) \\
& =C \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)} \times \frac{g_{i}\left(a_{n}\right)}{a_{n}^{2}} \times \frac{\mathrm{E}\left|X_{i}\right|^{2}}{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)} I\left(\left|X_{i}\right| \leq a_{n}\right) \\
& \leq C \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)}<\infty . \tag{2.24}
\end{align*}
$$

It follows from（2．14），（2．15）and Markov inequality that

$$
\begin{align*}
\mathrm{II} & \triangleq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathrm{P}\left(\left|X_{i}\right|>a_{n}\right) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E}\left|X_{i}\right|}{a_{n}} \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E}\left|X_{i}\right|}{a} \times \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)} \times \frac{g_{i}\left(a_{n}\right)}{g_{i}\left(a_{n}\right)} \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)}<\infty . \tag{2.25}
\end{align*}
$$

Finally，since $g_{n}(|t|) /|t| \uparrow$ as $|t| \uparrow$ ，then $g_{n}(|t|) \uparrow$ as $|t| \uparrow$ ．So，

$$
\begin{align*}
& \sum_{n=1}^{\infty} \mathrm{P}\left(\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{n i}^{1}\right|>\varepsilon / 2\right) \\
\leq & \sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathrm{P}\left(\left|X_{i}\right|>a_{n}\right) \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E}\left|X_{i}\right|}{a_{n}} \leq \sum_{n=1}^{\infty} \sum_{i=1}^{n} \frac{\mathrm{E} g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)}<\infty . \tag{2.26}
\end{align*}
$$

Corollary 2．3 Under the conditions of Theorem 2．2，then

$$
\begin{equation*}
\frac{1}{a_{n}} \sum_{i=1}^{n} X_{i} \rightarrow 0 \quad \text { a.s.. } \tag{2.27}
\end{equation*}
$$

Proof By Theorem 2．2，it follows from Borel－Cantelli Lemma that

$$
\begin{equation*}
\left|\frac{1}{a_{n}} \sum_{i=1}^{n} X_{i}\right| \rightarrow 0 \quad \text { a.s.. } \tag{2.28}
\end{equation*}
$$

then

$$
\frac{1}{a_{n}} \sum_{i=1}^{n} X_{i} \rightarrow 0 \quad \text { a.s. } \quad \text { as } \quad n \rightarrow \infty
$$

Corollary 2．5 Under the conditions of Theorem 2．2，If

$$
\begin{equation*}
\sum_{i=1}^{n} \mathrm{E} \frac{g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{2.30}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{n}^{-1} \sum_{i=1}^{n} X_{i} \rightarrow 0 \quad \text { in probability } \tag{2.31}
\end{equation*}
$$

Proof The proof can be accomplished in a similar way as Theorem 2．2．Here，we omit the proof of this corollary．

Remark 1 Corollary 2.3 holds true under the conditions of Theorem 2．2，the fact that

$$
\sum_{n=1}^{\infty} \sum_{i=1}^{n} \mathrm{E} \frac{g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)}<\infty
$$

is stronger than the fact that

$$
\sum_{i=1}^{n} \mathrm{E} \frac{g_{i}\left(\left|X_{i}\right|\right)}{g_{i}\left(a_{n}\right)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Hence，Corollary 2.3 not only generalizes the result of Corollary 2．5，but also improves it with necessarily adding a stronger condition．

Acknowledgements The authors would like to thank to the referees and the editors for their valuable comments and some helpful suggestions that improved the clarity and readability of the paper．

References

［1］Wu，Q．Y．and Lin，L．，Convergence properties of $\widetilde{\varphi}$－mixing random sequences，Chinese Journal of Engineering Mathematics，21（1）（2004），75－80．
［2］Wang，X．J．and Hu，S．H．et al．，Strong law of large numbers and growth rate for a class of random variable sequences，Statistics and Probability Letters， 78 （18）（2008），3330－3337．
［3］Wang，X．J．，Hu，S．H．and Shen，Y．，Convergence properties about the partial sum of $\widetilde{\varphi}$－mixing random variable sequences，Chinese Journal of Engineering Mathematics，26（1）（2009），183－186．
［4］Jiang，Y．Y．and Wu，Q．Y．，Weak convergence and complete convergence for $\widetilde{\varphi}$－mixing sequences， Chinese Journal of Engineering Mathematics，27（6）（2010），1118－1124．
［5］Bradley，R．C．，On the spectral density and asymptotic normality of weakly dependent random fields， Journal of Theoretical Probability，5（1992），355－373．
［6］Bryc，W．and Smolenski，W．，Moment conditions for almost sure convergence of weakly correlated random variables，Proceedings of the American Mathematical Society，199（2）（1993），629－635．
［7］Utev，S．and Peligrad，M．，Maximal inequalities and an invariance principle for a class of weakly dependent random variables，Journal of Theoretical Probability，16（1）（2003），101－115．
［8］Wu，Q．Y．and Jiang，Y．Y．，Some strong limit theorems for $\widetilde{\rho}$－mixing sequences of random variables， Statistics and Probability Letters，78（2008），1017－1023．
［9］Wu，Q．Y．，Some convergence properties for $\tilde{\rho}$－mixing sequences，Chinese Journal of Engineering Mathematics，18（3）（2001），58－64．
［10］Gan，S．X．，Almost sure convergence for $\widetilde{\rho}$－mixing random variable sequences，Statistics and Probability Letters，67（4）（2004），289－298．
［11］Wu，Q．Y．，Probability Limit Theory for Mixed Sequence，Science Press，Beijing， 2006.

$\widetilde{\varphi}$ 混合随机变量序列的强收敛定律

黄海午 ${ }^{1,2}$ 王定成3，1 吴群英 ${ }^{2}$
（ ${ }^{1}$ 电子科技大学数学科学学院，成都，610054；${ }^{2}$ 桂林理工大学理学院，桂林，541004）
（ ${ }^{3}$ 南京审计学院金融工程研究所，金融学院，应用数学学院，南京，211815）

本文建立了 $\widetilde{\varphi}$ 混合随机变量序列的几乎处处收玫性和完全收玫性的结果。所获结果不仅把独立随机变量经典的Khintchine－Kolmogorov收敛定理和三级数收敛定理推广至 $\widetilde{\varphi}$ 混合随机变量情形下，并在没有增加任何附加条件下改进了相关结果。

关键词：$\widetilde{\varphi}$ 混合随机变量，几乎处处收玫性，完全收玫性，加权和。
学科分类号：O211．4．

[^0]: ${ }^{*}$ The project supported by the National Natural Science Foundation of China（11061012；70871104），the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning and the Plan of Jiangsu Specially－appointed Professors．

 Received May 23，2011．Revised January 4， 2012.

