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Abstract
In this paper, we consider a discrete time risk process with random interest force. With the

assumption that the interest rate process behaves as a Markov chain, we obtain the recursive equa-

tions and integral equations for finite and ultimate ruin probabilities, and Lundberg inequalities

for the ultimate ruin probabilities are also provided.
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§1. Introduction

In this paper, we study the ruin probabilities for a discrete time risk model, in which

the surplus process is expressed by a recursive equation

Un = (Un−1 + Xn)(1 + In)− Yn, n = 1, 2, . . . , (1.1)

where U0 = u is the initial surplus of an insurance company, {Xn;n > 1}, {Yn;n > 1},
{In;n > 1} are three sequences of independent and identically distributed nonnegative

random variables and {Xn}, {Yn} and {In} are independent. Xn denotes the amount of

premiums during the nth period, and is received at the beginning of the nth period. Yn

is the amount of claims during the nth period, and is paid at the end of the nth period.

Xn, Yn have probability distribution functions G and F respectively. In denotes the rate

of interest during the nth period, i.e. from time n− 1 to time n, here we assume that In

evolves as a Markov chain with a denumerable state E consisting of nonnegative integers.
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By iteration of (1.1), it follows that, for any n > 1,

Un = u
n∏

k=1

(1 + Ik) +
n∑

k=1

(
(Xk(1 + Ik)− Yk)

n∏
t=k+1

(1 + It)
)
, (1.2)

where
n∏

t=m
(1 + It) = 1 if m > n.

Let (pij) be the matrix of transition probabilities of {In}, i.e.

pij = P(In+1 = j|In = i), (1.3)

where pij > 0 and
∑
j

pij = 1 for all i, j ∈ E. The ruin probabilities when we given the

initial surplus u and the initial interest rate I0 = i is defined as

ψ(u, i) = P
( ∞⋃

k=1

{Uk < 0}|U0 = u, I0 = i
)
. (1.4)

Similarly, we define the ruin probabilities in the finite-horizon as

ψn(u, i) = P
( n⋃

k=1

{Uk < 0}|U0 = u, I0 = i
)
. (1.5)

It is clear that 0 6 ψ1(u, i) 6 ψ2(u, i) 6 · · · 6 ψn(u, i) 6 · · · , and ψ(u, i) = lim
n→∞ψn(u, i).

The model (1.1) has been discussed in several references. Yang (1999) considered the

case when {In} are identical constants. Cai (2002) discussed a generalization of the model

(1.1), where {In} are assumed to have a dependent autoregressive structure of order 1,

and derived the ruin probability. when {In} are independent identical distributed random

variables, Yang and Zhang (2006) studied the ruin problem for the model, the expression

of ruin probability and the bounds for ruin probability are obtained. Wei and Hu (2008)

considered the recursive integral equations for the finite time ruin probability and the

bounds for the ultimate ruin probability are also derived.

In this paper, we consider the model (1.1), where the interest rate process behaves

as a denumerable state Markov chain, we use a similar method to that in Diasparra and

Romera (2009) to obtain the recursive equations and generalized Lundberg inequalities

for the ruin probabilities.

The rest of the paper is organized as follows. In Section 2, we will present the recursive

integral equations for the ruin probabilities for ψn(u, i) and ψ(u, i). The bounds for the

ultimate ruin probabilities ψ(u, i) will be given in Section 3.
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§2. Recursive Equations for the Ruin Probabilities

Theorem 2.1 Let U0 = u > 0 and pij be as defined in Section 1, τj = (u+ω)(1+j),

then

ψ1(u, i) =
∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω), (2.1)

and for n = 1, 2, . . .,

ψn+1(u, i) =
∑
j∈E

pij

∫ ∞

0

∫ τj

0
ψn(τj − y, j)dF (y)dG(ω) +

∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω). (2.2)

Consequently, we have

ψ(u, i) =
∑
j∈E

pij

∫ ∞

0

∫ τj

0
ψ(τj − y, j)dF (y)dG(ω) +

∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω). (2.3)

Proof From (1.1), we have that U1 = (u + X1)(1 + I1)− Y1, then

ψ1(u, i) = P(Y1 > (u + X1)(1 + I1)|I0 = i) =
∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω).

Given Y1 = y, X1 = ω and Ii = j, if y > τj , then

P(U1 < 0|Y1 = y, I1 = j, U0 = u, I0 = i) = 1,

which implies that

P
( n+1⋃

k=1

(Uk < 0)
∣∣Y1 = y, I1 = j, U0 = u, I0 = i

)
= 1.

If 0 6 y 6 τj , then P(U1 < 0|Y1 = y, I1 = j, U0 = u, I0 = i) = 0, Thus, from (1.2), for

0 6 y 6 τj ,

P
( n+1⋃

k=1

(Uk < 0)
∣∣Y1 = y, I1 = j, U0 = u, I0 = i

)

= P
( n+1⋃

k=2

(Uk < 0)
∣∣Y1 = y, I1 = j, U0 = u, I0 = i

)

= P
( n+1⋃

k=2

(
u

n∏
k=1

(1+Ik) +
n∑

k=1

(
(Xk(1+Ik)−Yk)

n∏
t=k+1

(1+It)
)

< 0
)∣∣U0 = u, I1 = j

)

= P
( n+1⋃

k=2

(
(τj−y)

k∏
t=2

(1+It) +
n∑

j=2

(
(Xj(1+Ij)−Yj)

k∏
t=j+1

(1+It)
)

< 0
)∣∣U0 = u, I1 = j

)

= ψn(τj − y, j).
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Let the event A = {Y1 = y, X1 = ω, I1 = j, U0 = u, I0 = i}, then

ψn+1(u, i) = P
( n+1⋃

k=1

(Uk < 0)
∣∣U0 = u, I0 = i

)

=
∑
j∈E

pij

∫ ∞

0

∫ ∞

0
P
( n+1⋃

k=1

(Uk < 0)
∣∣A

)
dF (y)dG(ω)

=
∑
j∈E

pij

∫ ∞

0

( ∫ τj

0
P
( n+1⋃

k=1

(Uk < 0)
∣∣A

)
dF (y) +

∫ ∞

τj

dF (y)
)
dG(ω).

This gives (2.1). In particular,

ψ1(u, i) =
∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω).

Finally, by letting n → ∞ and using dominated convergence theorem, we obtain (2.3).

¤

§3. Bounds for the Ruin Probabilities

Theorem 3.1 Suppose that there is a constant R > 0 satisfying

E(exp(R(Y1 −X1))) = 1, (3.1)

then for any u > 0

ψ(u, i) 6 βE(exp(RY1))E(exp(−R(u + X1)(1 + I1))|I0 = i) 6 βe−Ru, (3.2)

where

β−1 = inf
t>0

∫ ∞

t
exp(Ry)dF (y)

exp(Rt)F (t)
.

Proof It is sufficient to prove that rightmost term in (3.2) is an upper bound for

ψn(u, i) for all n > 1. We will show that by induction. First, for any u > 0, we have

F (x) =

(
∫ ∞

x
exp(Ry)dF (y)

exp(Rx)F (x)

)−1

exp(−Rx)
∫ ∞

x
exp(Ry)dF (y)

6 β exp(−Rx)
∫ ∞

x
exp(Ry)dF (y)

6 β exp(−Rx)E(exp(RY1)). (3.3)
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Thus, by (2.1),

ψ1(u, i) =
∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω)

6 β
∑
j∈E

pij

∫ ∞

0
exp(−Rτj)E(exp(RY1))dG(ω)

= βE(exp(RY1))E(exp(−R(u + X1)(1 + I1))|I0 = i).

This shows that the results holds for n = 1. To prove the result for general n > 1, the

induction hypothesis is that for some n > 1 and every x > 0 and i ∈ E,

ψn(u, i) 6 βE(exp(RY1))E(exp(−R(u + X1)(1 + I1))|I0 = i). (3.4)

By (2.2),

ψn+1(u, i) = β
∑
j∈E

pij

∫ ∞

0

∫ τj

0
E(exp(RY1)) exp(−R(u + ω)(1 + j))dF (y)dG(ω)

+
∑
j∈E

pij

∫ ∞

0
F (τj)dG(ω)

= β
∑
j∈E

pij

∫ ∞

0

∑
j∈E

pijE(exp(RY1)) exp(−R(u + ω)(1 + j))dG(ω)

= βE(exp(RY1))E(exp(−R(u + X1)(1 + I1))|I0 = i)

6 E(exp(RY1))E(exp(−R(u + X1))

= β exp(−Ru).

Hence (3.4) holds for all n = 1, 2, . . ., then by letting n →∞, we obtain the result in the

theorem. ¤

We can also present the upper bounds by a martingale approach.

Proposition 3.1 Suppose that E(X1 − Y1) > 0, and for each i ∈ E, there exists

ρi > 0 satisfying that

E[exp(−ρi(X1 − Y1)(1 + I1)−1)|I0 = i] = 1.

Then

R1 := min ρi > R, (3.5)

and for all i ∈ E,

E[exp(−R1(X1 − Y1)(1 + I1)−1)|I0 = i] 6 1. (3.6)

《
应

用
概

率
统

计
》

版
权

所
用



第三期 何晓霞 姚春 胡亦钧: 利率为马氏链的离散时间风险模型的破产概率 275

Proof For each i ∈ E and r > 0, let

li(r) := E[exp(−r(X1 − Y1)(1 + I1)−1)|I0 = i]− 1.

It is easy to check that li(r) is a convex function, and by the assumption of the theorem,

we have

li(0) = E[−(X1 − Y1)]E[(1 + I1)−1|I0 = i] < 0.

Let ρi be the unique positive root of the equation li(r) = 0 on (0,∞), then for 0 < ρ 6 ρi,

li(ρ) < 0. On the other hand, by Jensen’s inequality,

E[exp(−R(X1 − Y1)(1 + I1)−1)|I0 = i] =
∑
j∈E

pijE[exp(−R(X1 − Y1)(1 + j)−1)]

6
∑
j∈E

pijE[exp(−R(X1 − Y1))](1+j)−1
.

By (3.1) and
∑
j

pij = 1,

E[exp(−R1(X1 − Y1)(1 + I1)−1)|I0 = i] 6 1.

This implies that li(R) 6 0. Moreover, for all i, R 6 ρi, so R1 := min
i∈E

ρi > R, thus (3.5)

holds. In addition, R1 6 ρi for all i ∈ E, which implies (3.6). ¤

Theorem 3.2 Under the assumption of Proposition 3.1, for all i ∈ E, and u > 0,

ψ(u, i) 6 exp(−R1u). (3.7)

Proof Let Vk := Uk

k∏
t=1

(1 + It)−1, then

Vk = u +
k∑

l=1

(
(X1 − Y1)

l∏
t=1

(1 + It)−1
)
.

Let Sn = exp(−R1Vn), then

Sn+1 = Sn exp
(
−R1(X1 − Yn+1)

n+1∏
t=1

(1 + It)−1
)
.

Thus for any n > 1,

E[Sn+1|Y1, . . . , Yn, I1, . . . , In]

= SnE
[
exp

(
−R1(X1 − Yn+1)

n+1∏
t=1

(1 + It)−1
)∣∣Y1, . . . , Yn, I1, . . . , In

]

= SnE
[
exp

(
−R1(X1 − Yn+1)(1 + In+1)−1

n∏
t=1

(1 + It)−1
)∣∣I1, . . . , In

]

6 SnE[exp(−R1(X1 − Yn+1)(1 + In+1)−1)|I1, . . . , In]

n∏
t=1

(1+It)−1

6 Sn.
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This implies that {Sn;n > 1} is a supermartingale.

Let Ti = min{n : Vn < 0|I0 = i}, then Ti is a stopping time and n ∧ Ti := min{n, Ti}
is a finite stopping time. Thus by the optional stopping time theorem,

ESn∧Ti 6 E[S0] = exp(−R1x).

Hence we have ψ(u, i) 6 exp(−R1u) by the corresponding lines in Diasparra and Romera

(2009). ¤
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利率为马氏链的离散时间风险模型的破产概率
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本文考虑了带随机利率的离散时间风险模型. 在假设利率为马氏链条件下, 得到了有限时间和最终破产

概率所满足的递推积分方程, 以及最终破产概率的Lundberg不等式.

关键词: 离散时间风险模型, 破产概率, 递推方程, Lundberg不等式.
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