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Abstract

In this paper, we consider a discrete time risk process with random interest force. With the
assumption that the interest rate process behaves as a Markov chain, we obtain the recursive equa-
tions and integral equations for finite and ultimate ruin probabilities, and Lundberg inequalities
for the ultimate ruin probabilities are also provided.
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§1. Introduction

In this paper, we study the ruin probabilities for a discrete time risk model, in which

the surplus process is expressed by a recursive equation
Up=Un-1+Xn)A+ 1) = Y, n=12..., (1.1)

where Uy = u is the initial surplus of an insurance company, {X,;n > 1}, {Y,;n > 1},
{I;n > 1} are three sequences of independent and identically distributed nonnegative
random variables and {X,}, {Y,,} and {I,,} are independent. X, denotes the amount of
premiums during the nth period, and is received at the beginning of the nth period. Y,
is the amount of claims during the nth period, and is paid at the end of the nth period.
X, Yy, have probability distribution functions G and F' respectively. I, denotes the rate
of interest during the nth period, i.e. from time n — 1 to time n, here we assume that I,

evolves as a Markov chain with a denumerable state E consisting of nonnegative integers.
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By iteration of (1.1), it follows that, for any n > 1,

Uu=u 10+ 1)+ 3 (X + 1) ¥ TT 1+ 1)), (1.2
k=1 k=1 t=k+1

n
where [[ (1+ ;) =1if m > n.
t=m

Let (p;j) be the matrix of transition probabilities of {I,,}, i.e.
pij = PIny1 = jln = i), (1.3)

where p;; > 0 and ) p;; = 1 for all 4,j € E. The ruin probabilities when we given the

J
initial surplus v and the initial interest rate Iy = i is defined as

U (U < 00 = . Tp = ). (1.4)
k=1

wlui) = P(
Similarly, we define the ruin probabilities in the finite-horizon as
n
wn(u,i):P< U{Uk<0}\U0:u,IO:i). (1.5)
k=1

It is clear that 0 < 91 (u,1) < Yo(u,i) < -+ < Yp(u,i) < -+, and Y(u,i) = Jirgown(u,z)

The model (1.1) has been discussed in several references. Yang (1999) considered the
case when {I,,} are identical constants. Cai (2002) discussed a generalization of the model
(1.1), where {I,} are assumed to have a dependent autoregressive structure of order 1,
and derived the ruin probability. when {I,,} are independent identical distributed random
variables, Yang and Zhang (2006) studied the ruin problem for the model, the expression
of ruin probability and the bounds for ruin probability are obtained. Wei and Hu (2008)
considered the recursive integral equations for the finite time ruin probability and the
bounds for the ultimate ruin probability are also derived.

In this paper, we consider the model (1.1), where the interest rate process behaves
as a denumerable state Markov chain, we use a similar method to that in Diasparra and
Romera (2009) to obtain the recursive equations and generalized Lundberg inequalities
for the ruin probabilities.

The rest of the paper is organized as follows. In Section 2, we will present the recursive
integral equations for the ruin probabilities for 1, (u,i) and ¥ (u,i). The bounds for the

ultimate ruin probabilities 1 (u, ) will be given in Section 3.
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§2. Recursive Equations for the Ruin Probabilities

Theorem 2.1  Let Uy = u > 0 and p;; be as defined in Section 1, 7; = (u+w)(1+7),
then

i) = Sy [ T F(r)dG (W), (2.1)

JEE

and forn=1,2,...,

i (09) = 3 i /0 h /0 7 (7 — 9, )AF(3)dCW) + X pi /0 T F(r)dGw). (22)

JEE

Consequently, we have

Zpl]/ / W75 — 3, )AF)AG(W) + 3 piy /OOF(Tj)dG(w). (2.3)

JEE j€EE

Proof From (1.1), we have that U; = (u+ X1)(1 + I1) — Y7, then

Ui (u,i) =PV > (u+ X1)(1+ 1)l =) = 3 pij /000 F(r;)dG(w).

JEE
Given Y1 =y, X1 =w and [; = j, if y > 7}, then
P(Ul < O|Yi = y,Il :j,U() = U,IO = Z) = 1,
which implies that
n+1
P(U W <O)i=y 1 =jUy=uly=i) =1
k=1

If 0 <y <7y, then P(U; <0|Y1 =y, 1 = j,Uy = u, Iy = i) = 0, Thus, from (1.2), for
0 < Yy < Tja
n+1
P(U Wk <0)Ys =y, 1y = j.Uo =, Io = i)
k=1

n+1 - .
= P(UW<0)i =911 =j.lo=ulo =)
k=2

(
= p(U (u flan)+ & (C0m)-v) 1T (040) <0)[th= w5 = )
(0

k=2 k=1 t=k+1
n+1 k n k

= P(U (=9 [T+ + 2 ((5041)-Y) T1 (041)) <0)[Us = u. 1y = j)
k=2 t=2 j=2 t=j+1
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Let the event A ={Y1 =y, X; =w, 1 = j,Uy = u, Iy = i}, then

n+1
Ypt1(u,i) = P<kL_Jl(Uk <0)|Up =u,Ip = z)

j€EE

— Yoy /OOO /OOO P(ZQ(Uk < 0)|4)dF(y)dG(w)

_ Epij/o (/0 jP(nle(Uk <0)\A>dF(y)+/OOdF(y)>dG(w).

JjEE k=1 Tj

This gives (2.1). In particular,

(i) = Sy [ " F(r)dG(w).

J€EE

Finally, by letting n — oo and using dominated convergence theorem, we obtain (2.3).
O

§3. Bounds for the Ruin Probabilities

Theorem 3.1  Suppose that there is a constant R > 0 satisfying

E(exp(R(Y1 — X1))) =1, (3.1)
then for any u > 0
W(u,i) < BE(exp(RY1))E(exp(—R(u + X1)(1+ I))|Io = i) < Be™ ™, (3.2)
where .
/ exp(Ry)dF(y)
B! = inf 2t

t>0  exp(Rt)F(t)

Proof It is sufficient to prove that rightmost term in (3.2) is an upper bound for

¥ (u, 1) for all n > 1. We will show that by induction. First, for any v > 0, we have

B / h exp(Ry)dF (y)
F@) = ( exp(Rz)F ()

-1
) exp(Rx)/ exp(Ry)dF(y)

o0

B exp(—Ra) / exp(Ry)dF(y)

T

< Bexp(—Rxz)E(exp(RY1)). (3.3)

N
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Thus, by (2.1),

jJEE

wlwi) = oy [ T F(r)dG W)

N

83 pi /0 exp(— R} )E(exp(RY1))dG(w)

j€EE
= PE(exp(RY1))E(exp(—R(u+ X1)(1 + 11))|lo = 7).

This shows that the results holds for n = 1. To prove the result for general n > 1, the

induction hypothesis is that for some n > 1 and every x > 0 and i € E,
Un(u, i) < BE(exp(RY1))E(exp(—R(u + X1)(1 + I1))|Lo = 1). (3.4)

By (2.2),
danalud) = 8T py /0 h /0 7 E(exp(RY1)) exp(—R(u + w)(1 + 1))dF (3)dC(w)

+ > pij /OOO F(r;)dG(w)

JjeE
= %pij 000 Z;EpijE(exp(RYl)) exp(—R(u+w)(1 + 7))dG(w)
je je
BE(exp(RY1))E(exp(—R(u + X1)(1 + I1))[Io = i)
E(exp(RY1))E(exp(—R(u + X1))

= [exp(—Ru).

N

Hence (3.4) holds for all n = 1,2,..., then by letting n — oo, we obtain the result in the

theorem. O
We can also present the upper bounds by a martingale approach.

Proposition 3.1  Suppose that E(X; — Y1) > 0, and for each i € E, there exists
pi > 0 satisfying that

Elexp(—pi(X1 = Y1) (1 + L)~ H[lo =] = 1.

Then
Ry :=minp; > R, (3.5)

and for all i € E,
Elexp(—Ry (X1 — Y1) (1 + 1) Y|l =i] < 1. (3.6)
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Proof Foreachi: € E and r > 0, let
Li(r) := Elexp(—r(X1 — Y1)(1 + I;)")|Ip = i] — 1.

It is easy to check that [;(r) is a convex function, and by the assumption of the theorem,
we have
1;(0) = E[—(X1 —V)]E[(1 + L) '|[p = i] < 0.

Let p; be the unique positive root of the equation [;(r) = 0 on (0, 00), then for 0 < p < p;,
l;(p) < 0. On the other hand, by Jensen’s inequality,
Elexp(—R(X1 —Y1)(1+ 1) Hlo =1 = X piElexp(—=R(X1 = Y1)(1 + )7 )]
J€EE
< X piElexp(~R(X — 1))
J€EE

By (3.1) and ) p;; =1,
J

Efexp(—Ri (X1 = Y1)(1+ L) )|lp =i] < L.

This implies that [;(R) < 0. Moreover, for all i, R < p;, so R := mlél pi = R, thus (3.5)
€
holds. In addition, Ry < p; for all ¢ € E, which implies (3.6). O

Theorem 3.2 Under the assumption of Proposition 3.1, for all ¢ € E, and u > 0,
Y(u,i) < exp(—Ryiu). (3.7)

k
Proof Let Vj := Uy [](1+ I;)~!, then
t=1

k l
=u+ ] ((Xl—Yl) 11
=1

t=1

(1 +It)*1).

Let S,, = exp(—R1V},), then

ntl 1
Spi1 = Sy exp ( S R{(Xy — Your) [ (L + )" )

t=1

Thus for any n > 1,

E[Snit|Yi,--o s Yo Iy ey Iy
n+1 _1
_ SnE[exp(—Rl(Xl—YnH 11 (1+1) \Yl,...,Yn,Il,...,In}

- snE[exp ( ~ Ri(X1 - Yoin)(1 +In+1)1£[1(1 +I)" )\Il, o1 }

. I1(1+1)!
< SpElexp(—Ri(X1 = Yoi1) (XL + Inpr) )|, - -, In]t=t

SO
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This implies that {S,;n > 1} is a supermartingale.
Let T; = min{n : V,, < 0|Ip = i}, then T} is a stopping time and n A T; := min{n, T;}
is a finite stopping time. Thus by the optional stopping time theorem,

ESnar, < E[So] = exp(—Ryz).

Hence we have ¥ (u, i) < exp(—Rju) by the corresponding lines in Diasparra and Romera
(2009). O
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