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Abstract
The estimation of loss distribution is always a big issue for insurance companies. Several

parametric or nonparametric methods are introduced to fit loss distributions. In this paper, we

propose a method by combining both parametric and nonparametric methods to solve this problem.

We first determine the threshold between large and small losses by observing the graph of mean

excess function, then use the generalized Pareto distribution, the parametric method, to fit excess

data, and use kernel density estimation, the nonparametric method, to fit the distribution below

threshold. Finally, we use a data set about Chinese annual earthquake loss to compare this method

with other existing methods.

Keywords: Loss distribution, heavy tail, generalized Pareto, mean excess function, kernel

density estimation.

AMS Subject Classification: 62N02.

§1. Introduction

In non-life insurance, estimation of loss distribution is a fundamental part of the busi-

ness. In most situations, losses are small, and extreme losses are rarely observed, but the

number and the size of extreme losses can have a substantial influence on the profit of the

company. Therefore, it is of great importance to fit the loss distribution precisely, espe-

cially the tail part, since the high risk of tail part is transferred from insurance companies

to reinsurance companies.

The most frequently discussed nonparametric method is kernel density estimation

(KDE), with variety of local KDE, variable KDE and transformed KDE. Since the distribu-

tions of losses are often highly skewed and heavy tailed, several kinds of transformed KDE

were discussed. The shifted power transformation was introduced by Wand et al. (1991).
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They showed that the classical kernel density estimator was improved substantially by ap-

plying a transformation and suggested the shifted power transformation family. Bolancé et

al. (2003) improved the shifted power transformation for highly skewed data by proposing

an alternative parameter selection algorithm. The Mobius-like transformation was intro-

duced by Clements et al. (2003). Unlike the shifted power transformation, the Mobius-

like transformation transforms (0,∞) into (−1, 1) and this method is designed to avoid

boundary problems. Kernel density estimation with Champernowne transformation was

discussed by Buch-Larsen et al. (2005). They showed advantage by transforming data

through Champernowne function and divided data into three parts: big loss, middle loss

and small loss. Among all these transformed KDE, Wand’s shifted power transformation

has the simplest form and has a good fitting outcome.

Another section of method is to apply extreme value theory to handle this issue.

Beirlant and Teugels (1992), Embrechts and Kluppelberg (1993) have argued that ex-

treme value theory (EVT) motivates a number of sensible approaches to this problem.

In particular, the peak over threshold (POT) model has been advocated by Rootzén and

Tajvidi (1997), McNeil and Saladin (1997) to choose the threshold. In the POT model,

the excess losses over high thresholds are modeled with the generalized Pareto distribution

(GPD). This distribution arises naturally in a key limit theorem in EVT.

In this paper, we combine this two different skills to solve the tail fitting problem,

first use extreme value theory, the POT model to separate the data set into two parts,

big loss and small loss, both of them are easy to fit. Then apply the generalized Pareto

distribution to fit big loss data and kernel density estimation, transformed if necessary,

to fit small loss data. Section 2 describes the methods used in fitting loss. In Section

3, an empirical study is presented and Section 4 is an error measurement of the method.

Finally, Section 5 outlines the main conclusions.

§2. Methods

2.1 Classical Kernel Density Estimation

Suppose we have a sequence of independent and identically distributed observations

x1, . . . , xn, from an unknown density f . The kernel density estimator is

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
=:

1
n

n∑
i=1

Kh(x− xi), (2.1)

where K(·) is the kernel function, h = hn is the bandwidth.
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A number of kernel functions are commonly used: the probability density function

(pdf) of uniform, triangular, biweight, triweight, Epanechnikov, Gaussian and others. In

this paper we use Gaussian kernel:

K(t) =
1√
2π

exp
(−t2

2

)
,

which is easy to apply and performs well. The bandwidth is a free parameter, which

exhibits a strong influence on the resulting estimate. The most common criterion used to

select this parameter is the expected L2 risk function, also known as the mean integrated

squared error (MISE). Common rules to select bandwidth are rule of thumb (particularly

for Gaussian kernel), unbiased cross-validation, biased cross-validation, direct plug-in and

solve-the-equation rules. We try all these methods to select a best bandwidth for our

estimation.

2.2 Transformation and Kernel Density Estimation

Classical kernel density estimation does not perform well when the true density is

asymmetric. The lack of information in the right tail of the domain makes it difficult to

obtain a reliable nonparametric estimate of the density in that area. Different papers have

proposed different transformed kernel estimation methods of density function, based on

parametric families (see [2], [3], [4] and [5]).

Let g(·) be an increasing and monotonic transformation function that has a first

derivative g′(·). The shifted power transformation family used by Wand et al. (1991) is

gλ(x) =





(x + λ1)λ2 , λ2 6= 0;

ln(x + λ1), λ2 = 0,
(2.2)

where λ1 > −min(x1, . . . , xn) and λ2 ≤ 1 for right-skewed distribution. This approach

has a simple mathematical formulation and works particularly well for asymmetric distri-

butions. In order to estimate the optimal parameters of the shifted power transformation

function, the algorithm described in [3] can be used.

Let us assume a sample of n independent and identically distributed observations

x1, . . . , xn is available. We also assume that a transformation function g(·) has been

selected so that the data can be transformed by yi = g(xi), i = 1, . . . , n. We denote the

transformed sample by y1, . . . , yn.

Having the transformed data, we then estimate the density of the transformed data
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set using the classical kernel density estimator

f̂Y (y) =
1
n

n∑
i=1

Kh(y − yi) =
1

nh

n∑
i=1

K
(y − yi

h

)
. (2.3)

So the estimator of the original density is obtained by back-transformation

f̂X(x, λ) = g′λ(x)f̂Y (y, λ) = g′λ(x)n−1
n∑

i=1
Kh(gλ(x)− gλ(Xi)). (2.4)

2.3 Selecting the Transformation Parameters and the Bandwidth

The key of shifted power transformation is to select the parameters λ = (λ1, λ2).

We restrict the set of transformation parameter λ = (λ1, λ2) to those values that give

approximately zero skewness for the transformed data y1, . . . , yn.

We define skewness as

γy =
{

n−1
n∑

i=1
(yi − y)3

}/{
n−1

n∑
i=1

(yi − y)2
}3/2

,

where y is the sample mean.

To select the parameter vector λ, we aim at minimizing the mean integrated square

error (MISE) of f̂Y (y)

MISEY (f̂Y ) = E
[ ∫ +∞

−∞
(f̂Y (y)− fY (y))2dy

]
, (2.5)

which, when h is asymptotically optimal (see [3]), can be approximated by

5
4
[k2α(K)2]2/5β(f ′′Y )1/5n−4/5, (2.6)

where k2 =
∫

t2K(t)dt, α(K) =
∫

K(t)2dt and β(f ′′Y ) =
∫ +∞

−∞
[f ′′Y (y)]2dy.

Minimizing (2.6) with respect to the transformation parameters is equivalent to min-

imizing β(f ′′Y ).

In [10] the following estimator for β(f ′′Y ) is suggested as

β̂(f ′′Y ) = n−1(n− 1)−1
n−1∑
i=1

n∑
j=i+1

c−5K ∗K{c−1(yi − yj)}, (2.7)

where

K ∗K(t) =
∫ +∞

−∞
K(t− s)K(s)ds

is the kernel convolution and c is the bandwidth used in the estimation of β(f ′′Y ), which can

be estimated by minimizing the mean square error (MSE) of β(f ′′Y ). When it is assumed
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that fY is a normal density as in the “rule of thumb” approach, c can be estimated by

ĉ = σ̂y[21/(40
√

2n2)]1/13, where

σ̂y =

√
n−1

n∑
i=1

(yi − y)2.

Finally, we need to make the selection of the bandwidth that is going to be used for

the transformation. Here we simply use the “rule of thumb” for a standard normal density.

Since our transformation aims at a transformed density with zero skewness, this approach

seems very plausible. Following [11], the estimator of the bandwidth b is b̂ = 1.059σ̂xn−1/5.

2.4 Generalized Pareto Distribution

Here we also suppose we have a sequence of independent and identically distributed

observations x1, . . . , xn from an unknown density f . We are interested in excess losses

over a high threshold u. Let x0 be the finite or infinite right endpoint of the distribution

f . That is to say, x0 = sup{x ∈ R : F (x) < 1} < ∞. We define the distribution function

of the excesses over the threshold u by

Fu(x) = P{X − u ≤ x|X > u} =
F (x + u)− F (u)

1− F (u)
, (2.8)

for 0 ≤ x < x0 − u. Fu(x) is thus the probability that a loss exceeds the threshold u by

no more than an amount x, given that the threshold is exceeded.

The assuming distribution that modeling the excesses data is the Generalized Pareto

distribution (GPD) which is usually expressed as a two parameter distribution with dis-

tribution function

Gξ,σ(x) =





1− (1 + ξx/σ)−1/ξ, ξ 6= 0,

1− exp(−x/σ), ξ = 0.
(2.9)

One tool for choosing suitable thresholds is the sample mean excess plot

{(u, en(u)), X(1) < u < X(n)}, (2.10)

where X(1) and X(n) are the first and n-th order statistics of the data sample and en(u)

is the sample mean excess function defined by

en(u) = E[X − u|X > u] =

n∑
i=1

(Xi − u)+

n∑
i=1

1{Xi>u}
, (2.11)
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i.e. the sum of the excesses over the threshold u divided by the number of data points

which exceed the threshold u.

If the empirical plot seems to take shape of a reasonably straight line with positive

gradient above a certain value of u, then this is an indication that the excesses over this

threshold follow a generalized Pareto distribution with positive shape parameter. This is

clear since for the GPD

e(u) = (σ + ξu)/(1− ξ), (2.12)

where σ + ξu > 0.

For points in the tail of the distribution (x > u) we note that

F (x) = P{X ≤ x} = (1− P{X ≤ u})Fu(x− u) + P{X ≤ u}, (2.13)

thus we can estimate Fu(x − u) by gξ,σ(x), which is the probability density function of

Gξ,σ(x) for u large. We can also estimate P{X ≤ u} from the data by Fn(u), the empirical

distribution function evaluated at u.

Thus for x > u we can use the tail estimate

F̂ (x) = (1− Fn(u))Gξ,σ(x) + Fn(u) = 1− nu

n

(
1 + ξ

x− u

σ

)−1/ξ
, (2.14)

to approximate the distribution function F (x).

Parameters ξ, σ can be estimated by MLE, and the maximum likelihood function is

l(ξ, σ;x) = −n lnσ −
(1

ξ
+ 1

) n∑
i=1

ln
(
1 +

ξ

σ
xi

)
. (2.15)

§3. Empirical Study

In this section, we present an empirical study. The data set contains earthquake loss

in 2009 RMB (ten thousand yuan) each year from 1961 to 2009 in China, except 2008,

since the loss in that year is much huger than any other year, and such terrible earthquake

is not likely to happen in recent decades, in order to avoid overestimation and reduce

error, we regard it as an outlier. Now we use our method to fit this data set.

We first list the descriptive statistics for the annual earthquake loss in Table 1. It

shows that both kurtosis and standard deviation are big considering that there are only

48 observations. So we view the data set as highly skewed data with heavy tail.

Table 1 Descriptive statistics for annual earthquake loss in China (in 2009 RMB)

Stat Mean Std. Dev. Skewness Kurtosis Minimum Median Maximum

Loss 129690.78 319499.07 5.359965 30.93493 4 40661.5 2158500
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3.1 Classical Kernel Density Estimation

We apply classical kernel density estimation (KDE) to fit the given data set. Here we

use Gaussian kernel and in choosing the bandwidth, the “rule of thumb” is implemented.

The KDE graph is shown in Figure 1. We note that the density does not have a smooth

shape, as it has some bumps around the sample observations. Besides, the selected band-

width is as wide as 4.351 × 104, so it is not a quite accurate estimation. Based on this

fact, we further explore the shifted power transformation to apply to our data set.

3.2 Transformation on Kernel Density Estimation

Before exploring shifted power transformation, we need to obtain parameters λ =

(λ1, λ2) first. The method which we propose to obtain the transformation parameters needs

to search within a set of transformation parameters that generate transformed variables

with zero skewness, to look for the pair of parameters minimizing expression (2.7). We

find that the value of parameters λ = (λ1, λ2) = (−3.989921, 0.25).

In Figure 2 we show the kernel density estimate of shifted power transformation of

the data set. We can see the smoothed shape of the pdf estimated in all of the domain,

including the right tail, where data is scarce.

3.3 Combination of Two Methods

Finally the recommend fitting method is given below. We combine Generalized Pareto

distribution (GPD) and kernel density estimation (KDE) together to fit the data set. POT

method is applied to choose the threshold between big loss and small loss. The sample

mean excess plot is shown in Figure 3. Apart from the extreme right hand points which

are averages of only a small number of large excesses, the whole plot is approximately

linear, suggesting that the GPD might be fitted from a reasonably low threshold. We

have chosen a threshold at 40000 (marked by a vertical line), since above this threshold,

the data becomes scarce and almost linear. This threshold is exceeded by 24 losses and

represents a threshold at the 50th percentile of the data set.

Then we use GPD to fit the excess data over threshold. First by maximizing the log

likelihood function, we get the parameter for Pareto distribution. Then the GPD graph

can be plotted in Figure 4. So we can use an smooth curve to estimate the tail part of the

data set.

As to the part below threshold, we use bounded kernel density estimation (KDE) or

transformation kernel estimation (TKE) to estimate the loss function. Here we simply
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plot bounded KDE with Gaussian kernel and rule-of-thumb method selected bandwidth.

The kernel density estimation of loss below threshold is plotted in Figure 5. Other KDE

methods, such as TKE with shifted power transformation, are illustrated above and has

a similar way to apply. Here we do not list them again.
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Figure 5 Kernel density estimation of loss below threshold

§4. Measuring the Error

In order to show the advantage of our method over other methods, we calculate the

fitting errors of different methods. The first error measurement method are log-likelihood

function and weighted log-likelihood function, which are easy to apply when estimating

error of parametric model. The second error measurement method are integrated square

error and weighted integrated square error, which are easy to apply when estimating error

of nonparametric model.

4.1 Log-likelihood Function and Weighted Log-likelihood Function

Let us assume that we have a sample of n independent and identically distributed

observations x1, . . . , xn. f̂X is an estimate of the density for every point in the domain.

Then, we can estimate the log-likelihood function as

ln L̂(f̂X ;x1, . . . , xn) =
n∑

i=1
ln f̂X(xi). (4.1)

Similarly，if a transformation method was used as f̂X(x, λ̂; ĥ), the estimated log-

likelihood function is

ln L̂(f̂X(·);T
λ̂
(·);x1, . . . , xn) =

n∑
i=1

ln f̂X(xi, λ̂; ĥ). (4.2)
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4.2 Integrated Square Error and Weighted Integrated Square

Error

However, log-likelihood function and weighted log-likelihood function are not good

criteria to evaluate the performance of non-parametric estimation. So we measure the per-

formance of the kernel density estimators by the error measures ISE, WISE1 and WISE2.

f̂X(x) is defined as the estimate of the density for every point x in the domain and fX(x)

is the true density. Then ISE, WISE1 and WISE2 are defined as follows

ISE =
∫ ∞

0
(f̂X(x)− fX(x))2dx, (4.3)

WISE1 =
∫ ∞

0
(f̂X(x)− fX(x))2xdx, (4.4)

WISE2 =
∫ ∞

0
(f̂X(x)− fX(x))2x2dx. (4.5)

ISE weighs errors of the estimator in the whole domain equally, while WISE1 and WISE2

emphasizes the tail of the distribution, which is very relevant in practice when dealing

with heavy-tailed data set, just like the data set we used in this paper.

In [10] it is proved that minimizing ISE is equivalent to minimizing the cross-validation

(CV) function

CV =
∫ +∞

−∞
[f̂X(x)]2dx− 2

n

n∑
i=1

f̂i(xi), (4.6)

where f̂i is the “leave-one-out” estimation, the kernel estimation of fX without observation

xi.

Similarly, we can estimate WISE1 and WISE2 approximately with

WCV1 =
∫ +∞

−∞
[f̂X(x)]2dx− 2

n

n∑
i=1

f̂i(xi)xi, (4.7)

WCV2 =
∫ +∞

−∞
[f̂X(x)]2dx− 2

n

n∑
i=1

f̂i(xi)x2
i . (4.8)

4.3 Comparison of Methods

Here we compare two parametric methods by fitting with normal distribution and

lognormal distribution; three nonparametric methods, which are classical KDE, TKE with

log transformation and TKE with shifted power transformation; and the method suggested

in this paper: choosing threshold first, use GPD to fit excess data afterwards and KDE

or TKE to fit data below threshold.

We show the results of log-likelihood and weighted log-likelihood for all these densities

for the earthquake loss in Table 2. A higher value indicates a better fit. We can easily
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observe from the first two rows that normal distribution and lognormal distribution does

not fit this data set well, which means the parametric method is not applicable in this

heavy-tailed fitting problem. From the third row to the fifth row, we can see an obvious

improvement in error measurement. This is an evidence that the nonparametric method,

KDE and TKE perform better than the parametric method in row one and row two. Row

six to row eight show our method which combines both GPD to fit excess data and KDE

or TKE to fit data below the threshold of 40000. Method I, II and III indicate classical

KDE, TKE with log transformation and TKE with shifted power transformation. This

method shows advantage over other methods, since the largest number of ln L̂ is reached

in Combination method III, lnw(1) L̂ and lnw(2) L̂ is reached in Combination method I.

Table 2 Comparison of both parametric and nonparametric methods

Method ln L̂ lnw(1) L̂ lnw(2) L̂

Normal -675.9802 -999.6313 -1475.7821

Lognormal -592.7322 -749.8355 -840.9582

Classical KDE -633.8634 -758.7188 -782.9776

TKE with log transformation -585.7816 -750.5531 -863.9291

TKE with shifted power transformation -582.8955 -742.8866 -851.5888

Combination method I -580.7832 -751.6342 -721.4960

Combination method II -572.5750 -861.1948 -733.1351

Combination method III -570.9885 -756.6023 -727.4210

From above analysis, we can see our method has advantage towards other methods,

which is a more accurate method with less error than others. As to whether apply KDE

or TKE, we propose the use of CV, WCV1 and WCV2 to compare the fit of classical

KDE and TKE, which is a better method to measure nonparametric fits. The results

for earthquake loss and the earthquake loss below threshold are found in Tables 3 and

Table 4 respectively. The lower value indicates the better fit. In Table 3, the minimum

value of CV for earthquake loss is found for TKE with shifted power transformation.

While the minimum values of WCV1 and WCV2 for earthquake loss X are found in TKE

with log transformation and classical KDE. In Table 4, the minimum values of CV and

WCV1 for earthquake loss below threshold are found in Combination method III. While

the minimum values of WCV2 are found in Combination method I. These two results

indicate that there is no method in KDE or TKE outweighs others in all three error

measurements. We may choose TKE with shifted power transformation if considering
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error in whole domain equally, and may choose Classical KDE if putting more weights

on tail. Since we have already spread the large loss to reinsurance companies and only

consider loss below threshold, we suggest to weigh all error in whole domain equally. In

this case, TKE with shifted power transformation has the best fit.

Table 3 Comparison of different KDE and TKE

Method CV WCV1 WCV2

Classical KDE -3.56×10−6 -0.2227 -35359.53

TKE with log transformation -3.43×10−6 -0.2282 -24165.06

TKE with shifted power transformation -3.24×10−3 -0.0032 -25627.42

Table 4 Comparison of combination method from earthquake loss below 40000

Method ln L̂ lnw(1) L̂ lnw(2) L̂

Combination method I -4.045547×10−5 -0.3005022 -5602.093

Combination method II -0.0001100273 -0.2251045 -3912.225

Combination method III -0.00400114 -0.30979 -4799.462

§5. Conclusion

In this paper, we have introduced an alternative method for estimating loss distri-

butions. The method, which first use extreme value theory to choose the threshold, then

fit excess data with generalized Pareto distribution, and applies kernel density estimation

with transformation to fit loss below threshold, perform well in earthquake loss fitting

problem above. Since insurance companies reinsure large loss to reinsurance companies, it

is a practical choice to select threshold and determine the scale over and below threshold.
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基于中国地震的损失模型

蔡 铨 林正炎

(浙江大学数学系, 杭州, 310027)

对损失分布的估计一直是保险公司的重要问题. 有多种参数方法以及非参数方法拟合损失分布. 本文作

者提出了结合参数和非参数的方法来解决损失分布拟合问题. 首先通过超额均值图确定大小损失之间的阈限,

再利用广义Pareto分布拟合阈值以上损失, 转换后的核密度估计拟合阈值以下损失. 最后, 通过实证分析将该

方法和其他方法进行了误差分析比较, 取得了理想的结果.

关键词: 损失分布, 重尾, 广义Pareto, 超额均值图, 核密度估计.
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